Math 4363 - Combinatorics Homework 5

Due in Class - Thursday 18 April 2019

1. Let $f(n)$ denote the Fibonacci sequence. By evaluating each of the following expressions for small values of n, conjecture a general formula and then prove it using induction and the Fibonacci recurrence.
(a) $f(1)+f(3)+f(5)+\cdots+f(2 n-1)$
(b) $f(0)+f(2)+f(4)+\cdots+f(2 n)$
(c) $f(0)-f(1)+f(2)-\cdots+(-1)^{n} f(n)$
(d) $f(0)^{2}+f(1)^{2}+f(2)^{2}+\cdots+f(n)^{2}$
2. By examining the Fibonacci sequence, make and prove a conjecture about when $f(n)$ is divisible by 7 .
3. Let $h(n)$ be the number of different ways in which the squares of 1-by- n board can be colored, using the colors red, white and blue, so that no two squares that are colored red are adjacent. Find and verify a recurrence relation for $h(n)$. Then find a formula for $h(n)$.
4. Determine the generating function for each of the following sequences,
(a) $1, c, c^{2}, c^{3}, \cdots, c^{n}, \cdots$
(b) $1,-1,1,-1, \cdots,(-1)^{n}, \cdots$
(c) $1, \frac{1}{1!}, \frac{1}{2!}, \frac{1}{3!}, \cdots, \frac{1}{n!}, \cdots$
(d) $1,-\frac{1}{1!}, \frac{1}{2!},-\frac{1}{3!}, \cdots,(-1)^{n} \frac{1}{n!}, \cdots$
5. Determine the generating function for the sequence $h(n)$ of the number of ways to choose n pieces of fruit from apples, bananas, pears and oranges such that the number of

- apples is even;
- bananas is a multiple of 3 ;
- oranges is at most 2 ; and
- pears is at most 1 .

Then find a formula for $h(n)$ from the generating function.

