Lecture 16

Sec 4.5

Basis for a vector space

Suppose a collection of vectors $S = \{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ in a vector space V is given.

We say that S is a basis for V if (1) $\operatorname{Span}(S) = V$, and (2) S is linearly independent.

Example 1 Let $S = \{(1,0), (0,1)\}$ with $V = \mathbb{R}^2$.

Solution Let us check whether: (1) $Span(S) = \mathbb{R}^2$?

A random vector in \mathbb{R}^2 is $\mathbf{v} = (v_1, v_2)$.

We are looking for scalars c_1 , c_2 so that $c_1(1,0) + c_2(0,1) = (v_1, v_2)$.

Clearly, we select $c_1 = v_1$ and $c_2 = v_2$.

(2) Is S linearly independent? Consider $c_1(1,0) + c_2(0,1) = (0,0)$. Clearly, $c_1 = 0$ and $c_2 = 0$.

Hence, S is a basis for \mathbb{R}^2 .

Recall (from Section 3.3)

If A is an $n \times n$ matrix, then the following conditions are equivalent.

- 1. A is invertible
- 2. $A \mathbf{c} = \mathbf{v}$ has a unique solution for every $n \times 1$ vector \mathbf{v} .
- 3. $A \mathbf{c} = \mathbf{0}$ has only the trivial solution $\mathbf{c} = \mathbf{0}$.
- 4. A is row equivalent to I_n .
- 5. A can be written as a product of elementary matrices.
- 6. det $A \neq 0$.

Standard basis for \mathbb{R}^n

The set
$$S = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$$
 where $\mathbf{e}_1 = (1, 0, \dots, 0)$
 $\mathbf{e}_2 = (0, 1, \dots, 0)$
 \vdots
 $\mathbf{e}_n = (0, 0, \dots, 1)$

is called the standard basis for \mathbb{R}^n .

Non-standard basis for \mathbb{R}^n

Consider the set $S = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$. Form the $n \times n$ matrix $A = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$.

- (1) S spans \mathbb{R}^n if $A \mathbf{c} = \mathbf{b}$ has a solution for any vector \mathbf{b} .
- (2) S is linearly independent if $A \mathbf{c} = \mathbf{0}$ has the only solution $\mathbf{c} = \mathbf{0}$.

We know that both are equivalent to: A is nonsingular.

Thus the column vectors of a generic nonsingular $n \times n$ matrix is a non-standard basis for \mathbb{R}^n

Example 1 Let $S = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}$ with $V = \mathbb{R}^3$.

Solution Consider the matrix
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
.

Let us check whether A is nonsingular.

$$|A| = 1 (1) - 2 (1)$$

= $-1 \neq 0$

Hence, S is a basis for \mathbb{R}^3 .

Example 2 Let $S = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1)\}$ with $V = \mathbb{R}^3$.

Solution Consider the matrix
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
.

$$|A| = 1(1) - 1(1) = 0$$

Hence, S is not a basis for \mathbb{R}^3 .

Example 3 Let
$$S = \{(1, 2, 3), (0, 1, 2)\}$$
 with $V = \mathbb{R}^3$.

Solution If we consider the matrix
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}$$

we see that we cannot check for nonsingularity as the matrix is not square.

It is easy to see that the set S is linearly independent.

(Solve $A \mathbf{c} = \mathbf{0}$ and show that the solution is $\mathbf{c} = \mathbf{0}$.)

So, we suspect that $Span(S) \neq \mathbb{R}^3$.

We solve $A \mathbf{c} = \mathbf{b}$ where \mathbf{b} is a random vector in \mathbb{R}^3 .

We consider the augmented matrix
$$\begin{bmatrix} 1 & 0 & b_1 \\ 2 & 1 & b_2 \\ 3 & 2 & b_3 \end{bmatrix}$$

The row echelon form is:
$$\begin{vmatrix} 1 & 0 & b_1 \\ 0 & 1 & * \\ 0 & 0 & * \end{vmatrix}$$

The system is inconsistent. Span $(S) \neq \mathbb{R}^3$.

The set S is not a basis for \mathbb{R}^3 .

Example 3 Let $S = \{(1, 2, 3), (0, 1, 2), (1, 0, 0), (-1, -1, -1)\}$ with $V = \mathbb{R}^3$.

Solution If we consider the matrix $A = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 0 & -1 \\ 3 & 2 & 0 & -1 \end{bmatrix}$

we see that we cannot check for nonsingularity as the matrix is not square.

Let us check whether the set S is linearly independent.

We solve $A \mathbf{c} = \mathbf{0}$.

The augmented matrix is: $\begin{bmatrix} 1 & 0 & 1 & -1 & 0 \\ 2 & 1 & 0 & -1 & 0 \\ 3 & 2 & 0 & -1 & 0 \end{bmatrix}$

The reduced row echelon form is: $\begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$

As there is a free variable, the set S is linearly dependent.

The set S is not a basis for \mathbb{R}^3 .

Standard basis for P_n

$$P_n = \{ a_n \, x^n + a_{n-1} \, x^{n-1} + \dots + a_1 \, x + a_0 \mid a_0, \, a_1, \dots, a_n \in \mathbb{R} \}.$$

We set up a one-one correspondence between P_n and \mathbb{R}^{n+1} .

$$x^{n} \longleftrightarrow \mathbf{e}_{1}$$

$$x^{n-1} \longleftrightarrow \mathbf{e}_{2}$$

$$\vdots$$

$$x^{1} \longleftrightarrow \mathbf{e}_{n}$$

$$1 \longleftrightarrow \mathbf{e}_{n+1}$$

So,
$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \longleftrightarrow (a_n, a_{n-1}, \dots, a_0)$$

The above one-to-one correspondence shows how to obtain standard basis vectors in P_n from standard basis vectors for \mathbb{R}^{n+1} .

Standard basis for $M_{m,n}$ – the set of $m \times n$ matrices

We set up a one-one correspondence between $M_{m,n}$ and \mathbb{R}^{mn} .

Let E(i,j) denote the matrix with 1 in the (i,j) location, and zeros elsewhere.

$$E(i,j) \longleftrightarrow \mathbf{e}_{i+(j-1)m}$$
So, $E(1,1) \longleftrightarrow \mathbf{e}_{1}$

$$E(2,1) \longleftrightarrow \mathbf{e}_{2}$$

$$\vdots$$

$$E(m,1) \longleftrightarrow \mathbf{e}_{m}$$

$$E(1,2) \longleftrightarrow \mathbf{e}_{m+1}$$

$$\vdots$$

$$E(m,n) \longleftrightarrow \mathbf{e}_{mn}$$

The above one-to-one correspondence shows how to obtain standard basis vectors in $M_{m,n}$ from standard basis vectors for \mathbb{R}^{mn} .

Properties of a basis

• Unique representation of a vector in the vector space using basis vectors.

Example $\mathbf{v} = (1, 2, -1)$ in \mathbb{R}^3 is written as $\mathbf{v} = 1 \, \mathbf{e}_1 + 2 \, \mathbf{e}_2 - 1 \, \mathbf{e}_3$.

This is the only possible representation using the standard basis.

Example With the basis $S = \{(1,0,0), (1,1,0), (1,1,1)\}$ we consider $c_1(1,0,0) + c_2(1,1,0) + c_3(1,1,1) = (1,2,-1).$

The system is:
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

The only solution is $c_3 = -1$, $c_2 = 3$, and $c_1 = -1$.

So,
$$\mathbf{v} = -1(1,0,0) + 3(1,1,0) - 1(1,1,1)$$
.

Easy proof Let $S = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ be a basis for a vector space V. Let $\mathbf{v} \in V$. Suppose $\mathbf{v} = c_1 \mathbf{u}_1 + \dots + c_k \mathbf{u}_k$, and $\mathbf{v} = d_1 \mathbf{u}_1 + \dots + d_k \mathbf{u}_k$. Hence $(c_1 - d_1) \mathbf{u}_1 + \dots + (c_k - d_k) \mathbf{u}_k = \mathbf{0}$.

As S is a basis, $c_1 = d_1$ etc.

• If a basis has n vectors, then any collection of more than n vectors is not a basis.

Example In \mathbb{R}^3 , the standard basis has 3 vectors.

Let
$$S = \{(1, 2, 3), (0, 1, 2), (1, 0, 0), (-1, -1, -1)\}.$$

From 2 slides ago, the set S is linearly dependent. The set S is not a basis for \mathbb{R}^3 .

Easy proof Let $S = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ be a basis for a vector space V.

Consider the collection $T = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ where m > n.

As S is a basis, $\mathbf{v}_1 = c_{11} \, \mathbf{u}_1 + \cdots + c_{n1} \, \mathbf{u}_n$.

$$\mathbf{v}_2 = c_{12} \, \mathbf{u}_1 + \dots + c_{n2} \, \mathbf{u}_n.$$

$$\mathbf{v}_m = c_{1m} \, \mathbf{u}_1 + \dots + c_{nm} \, \mathbf{u}_n.$$

Consider the equation
$$k_1 \mathbf{v}_1 + \cdots + k_m \mathbf{v}_m = \mathbf{0}$$

This yields the system:
$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nm} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

As m > n, there are free variables, and $\mathbf{k} = \mathbf{0}$ is not the only solution.

The set S is linearly dependent and not a basis for V.

• If any one basis has n vectors, then any other basis also has n vectors.

Suppose S and T are two basis sets for a vector space V.

Suppose S has n vectors and T has m vectors.

Case I: m > n

T cannot be a basis as it has more than n vectors, and S is a basis.

Case II: m < n

S cannot be a basis as it has more than m vectors, and T is a basis.

Case III: m = n

Both basis have exactly the same number of vectors.

Dimension of a vector space

It is the number of vectors in any basis set.

Special case: If V is only the zero vector, then the dimension is 0.

Let V be a vector space of dimension n. We assume it can be represented using \mathbb{R}^n .

Suppose $S = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is a linearly independent set of vectors.

If Span(S) = V, then S is a basis for V.

Let $\mathbf{v} \in V$ and consider the equation $c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n = \mathbf{v}$.

Let $A = [\mathbf{u}_1 \cdots \mathbf{u}_n]$ be an $n \times n$ matrix.

The above system is equivalent to $A \mathbf{c} = \mathbf{v}$.

From 3.3, we know that a unique solution exists if A is non-singular.

From 3.3, the condition of nonsingularity is equivalent to $A \mathbf{c} = \mathbf{0}$ has only the zero solution.

 $A \mathbf{c} = \mathbf{0}$ has only the zero solution if S is linearly independent.

S is linearly independent set \implies S is a basis for V.

Let V be a vector space of dimension n. We assume it can be represented using \mathbb{R}^n .

Suppose $S = \{\mathbf{u}_1, \cdots, \mathbf{u}_n\}$ spans V.

For any $\mathbf{v} \in V$, the equation $c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n = \mathbf{v}$ has a solution.

To show S is linearly independent, consider the equation $c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n = \mathbf{0}$.

Let $A = [\mathbf{u}_1 \cdots \mathbf{u}_n]$ be an $n \times n$ matrix.

The above system is equivalent to $A \mathbf{c} = \mathbf{0}$.

From 3.3, if there is a non-zero solution \mathbf{c} , then A must be singular.

From 3.3, A is singular if A is not row equivalent to identity.

If A is not row equivalent to identity, the reduced row echelon form of A has a row of zeros.

Hence $A \mathbf{c} = \mathbf{v}$ is inconsistent for some \mathbf{v} which is a contradiction.

S is spanning set \implies S is a basis for V.