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Abstract. We define a function in terms of quotients of the p-adic gamma
function which generalizes earlier work of the author on extending hypergeo-
metric functions over finite fields to the p-adic setting. We prove, for primes
p > 3, that the trace of Frobenius of any elliptic curve over Fp, whose j-
invariant does not equal 0 or 1728, is just a special value of this function.
This generalizes results of Fuselier and Lennon which evaluate the trace of
Frobenius in terms of hypergeometric functions over Fp when p ≡ 1 (mod 12).

1. Introduction and Statement of Results

Let Fp denote the finite field with p, a prime, elements. Consider E/Q an
elliptic curve with an integral model of discriminant ∆(E). We denote Ep the
reduction of E modulo p. We note that Ep is non-singular, and hence an elliptic
curve over Fp, if and only if p - ∆(E), in which case we say p is a prime of good
reduction. Regardless, we define

ap(E) := p+ 1−#Ep(Fp). (1.1)

If p is not a prime of good reduction we know ap(E) = 0,±1 depending on the
nature of the singularity. If p is a prime of good reduction, we refer to ap(E)
as the trace of Frobenius as it can be interpreted as the trace of the Frobenius
endomorphism of E/Fp. For a given elliptic curve E/Q, these ap are impor-
tant quantities. Recall the Hasse-Weil L-function of E (viewed as function of a
complex variable s) is defined by

L(E, s) :=
∏
p|∆

1

1− ap(E)p−s

∏
p-∆

1

1− ap(E)p−s + p1−2s
.

This Euler product converges for Re(s) > 3
2 and has analytic continuation to the

whole complex plane. The Birch and Swinnerton-Dyer conjecture concerns the
behavior of L(E, s) at s = 1.

The main result of this paper relates the trace of Frobenius to a special value
of a function which we define in terms of quotients of the p-adic gamma function.
Let Γp(·) denote Morita’s p-adic gamma function and let ω denote the Teichmüller
character of Fp with ω denoting its character inverse. For x ∈ Q we let bxc denote
the greatest integer less than or equal to x and 〈x〉 denote the fractional part of
x, i.e. x− bxc.
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Definition 1.1. Let p be an odd prime and let t ∈ Fp. For n ∈ Z+ and 1 ≤ i ≤ n,
let ai, bi ∈ Q ∩ Zp. Then we define

nGn

[
a1, a2, . . . , an
b1, b2, . . . , bn

∣∣∣ t ]
p

:=
−1

p− 1

p−2∑
j=0

(−1)jn ωj(t)

×
n∏
i=1

Γp
(
〈ai − j

p−1〉
)

Γp
(
〈ai〉

) Γp
(
〈−bi + j

p−1〉
)

Γp
(
〈−bi〉

) (−p)−b〈ai〉−
j

p−1
c−b〈−bi〉+ j

p−1
c
.

Throughout the paper we will refer to this function as nGn[· · · ]. The value of

nGn[· · · ] depends only on the fractional part of the a and b parameters. Therefore,
we can assume 0 ≤ ai, bi < 1.

This function has some very nice properties. It generalizes the function defined
by the author in [13] which exhibits relationships to Fourier coefficients of modular
forms. This earlier function has only one line of parameters and corresponds to

nGn[· · · ] when all the bottom line parameters are integral and t = 1. The earlier
function also extended, to the p-adic setting, hypergeometric functions over finite
fields with trivial bottom line parameters. In Section 3 we will see that nGn[· · · ]
extends hypergeometric functions over finite fields in their full generality, to the
p-adic setting. By definition, results involving hypergeometric functions over
finite fields will often be restricted to primes in certain congruence classes (see
for example [3, 5, 12, 16, 20]). The motivation for developing nGn[· · · ] is that it
can often allow these results to be extended to a wider class of primes [13, 14],
as we exhibit in our main result below. We will discuss these properties in more
detail in Section 3.

We now state our main result which relates the trace of Frobenius of an elliptic
curve over Fp to a special value of nGn[· · · ]. We first note that if p > 3 then any
elliptic curve over Fp is isomorphic to an elliptic curve of the form E : y2 =
x3 + ax + b, i.e., short Weierstrass form, and that the trace of Frobenius of
isomorphic curves are equal. Let j(E) denote the j-invariant of the elliptic curve
E. Let φp(·) be the Legendre symbol modulo p. We will often omit the subscript
p when it is clear from the context.

Theorem 1.2. Let p > 3 be prime. Consider an elliptic curve E/Fp of the form
E : y2 = x3 + ax+ b with j(E) 6= 0, 1728. Then

ap(E) = φ(b) · p · 2G2

[ 1
4 ,

3
4

1
3 ,

2
3

∣∣∣ −27b2

4a3

]
p

. (1.2)

Independent of Theorem 1.2, we will see later from Proposition 3.1 that the
right-hand side of (1.2) is p-integral.

Theorem 1.2 generalizes results of Fuselier [5, Theorem 1.2] and Lennon [12,
Theorem 2.1] which evaluate the trace of Frobenius in terms of hypergeometric
functions over Fp when p ≡ 1 (mod 12). The results in [12] are in fact over Fq,
for q ≡ 1 (mod 12) a prime power, and hence allow calculation of ap up to sign
when p 6≡ 1 (mod 12) via the relation a2

p = ap2 + 2p. Theorem 1.2 however gives
a direct evaluation of ap for all primes p > 3 and resolves this sign issue.
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One of the nice features of the main result in [12] is that it is independent of
the Weierstrass model of the elliptic curve. Recall an elliptic curve over a field K
in Weierstrass form is given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.3)

with a1, a2, . . . , a6 ∈ K. We can define the quantities b2 := a1
2 + 4a2; b4 :=

2a4+a1a3; b6 := a3
2+4a6; b8 := a1

2a6+4a2a6−a1a3a4+a2a3
2−a4

2; c4 := b22−24b4;
and c6 := −b32 + 36b2b4 − 216b6, in the standard way. These can then be used

to calculate ∆(E) =
c34−c26
1728 and j(E) =

c34
∆(E) . An admissible change of variables,

x = u2x′+r and y = u3y′+su2x′t with u, r, s, t,∈ K and u 6= 0, in (1.3) will result
in an isomorphic curve also given in Weierstrass form, and any two isomorphic
curves over K are related by such an admissible change of variables. Two curves
related by an admissible change of variables will have the same j-invariant but
their discriminants will differ by a factor of a twelfth-power, namely u12 and their
respective ci quantities will differ by a factor of ui. This allows the main result in
[12], which is stated in terms of j(E) and ∆(E), to be expressed independently
of the Weierstrass model of the elliptic curve. We can do something similar with
Theorem 1.2.

Corollary 1.3. Let p > 3 be prime. Consider an elliptic curve E/Fp in Weier-
strass form with j(E) 6= 0, 1728. Then

ap(E) = φ(−6 · c6) · p · 2G2

[ 1
4 ,

3
4

1
3 ,

2
3

∣∣∣ 1− 1728

j(E)

]
p

.

Please refer to [10, 19] for a detailed account of any of the properties of elliptic
curves mentioned in the above discussion. The rest of this paper is organized as
follows. In Section 2 we recall some basic properties of multiplicative characters,
Gauss sums and the p-adic gamma function. We discuss some properties of

nGn[· · · ] in Section 3 including its relationship to hypergeometric functions over
finite fields. The proofs of our main results are contained in Section 4. Finally,
we make some closing remarks in Section 5.

2. Preliminaries

Let Zp denote the ring of p-adic integers, Qp the field of p-adic numbers, Qp

the algebraic closure of Qp, and Cp the completion of Qp.

2.1. Multiplicative Characters and Gauss Sums. Let F̂∗p denote the group

of multiplicative characters of F∗p. We extend the domain of χ ∈ F̂∗p to Fp, by
defining χ(0) := 0 (including the trivial character ε) and denote χ as the inverse

of χ. We recall the following orthogonal relations. For χ ∈ F̂∗p we have

∑
x∈Fp

χ(x) =

{
p− 1 if χ = ε,

0 if χ 6= ε,
(2.1)
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and, for x ∈ Fp we have

∑
χ∈F̂∗

p

χ(x) =

{
p− 1 if x = 1,

0 if x 6= 1.
(2.2)

We now introduce some properties of Gauss sums. For further details see [2],
noting that we have adjusted results to take into account ε(0) = 0. Let ζp be

a fixed primitive p-th root of unity in Qp. We define the additive character
θ : Fp → Qp(ζp) by θ(x) := ζxp . It is easy to see that

θ(a+ b) = θ(a)θ(b). (2.3)

and ∑
x∈Fp

θ(x) = 0. (2.4)

We note that Qp contains all (p− 1)-th roots of unity and in fact they are all in
Z∗p. Thus we can consider multiplicative characters of F∗p to be maps χ : F∗p →
Z∗p. Recall then that for χ ∈ F̂∗p, the Gauss sum g(χ) is defined by g(χ) :=∑

x∈Fp
χ(x)θ(x). It easily follows from (2.2) that we can express the additive

character as a sum of Gauss sums. Specifically, for x ∈ F∗p we have

θ(x) =
1

p− 1

∑
χ∈F̂∗

p

g(χ)χ(x). (2.5)

The following important result gives a simple expression for the product of two

Gauss sums. For χ ∈ F̂∗p we have

g(χ)g(χ) =

{
χ(−1)p if χ 6= ε,

1 if χ = ε.
(2.6)

Another important product formula for Gauss sums is the Hasse-Davenport for-
mula.

Theorem 2.1 (Hasse, Davenport [2] Thm 11.3.5). Let χ be a character of order
m of F∗p for some positive integer m. For a character ψ of F∗p we have

m−1∏
i=0

g(χiψ) = g(ψm)ψ−m(m)
m−1∏
i=1

g(χi).

We now recall a formula for counting zeros of polynomials in affine space using
the additive character. If f(x1, x2, . . . , xn) ∈ Fp[x1, x2, . . . , xn], then the number
of points, Np, in An(Fp) satisfying f(x1, x2, . . . , xn) = 0 is given by

pNp = pn +
∑
y∈F∗

p

∑
x1,x2,...,xn∈Fp

θ(y f(x1, x2, . . . , xn)) . (2.7)
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2.2. p-adic preliminaries. We define the Teichmüller character to be the prim-
itive character ω : Fp → Z∗p satisfying ω(x) ≡ x (mod p) for all x ∈ {0, 1, . . . , p−
1}. We now recall the p-adic gamma function. For further details, see [11]. Let
p be an odd prime. For n ∈ Z+ we define the p-adic gamma function as

Γp(n) := (−1)n
∏

0<j<n
p-j

j

and extend to all x ∈ Zp by setting Γp(0) := 1 and

Γp(x) := lim
n→x

Γp(n)

for x 6= 0, where n runs through any sequence of positive integers p-adically
approaching x. This limit exists, is independent of how n approaches x, and
determines a continuous function on Zp with values in Z∗p. We now state a

product formula for the p-adic gamma function. If m ∈ Z+, p - m and x = r
p−1

with 0 ≤ r ≤ p− 1 then

m−1∏
h=0

Γp
(
x+h
m

)
= ω

(
m(1−x)(1−p)

)
Γp(x)

m−1∏
h=1

Γp
(
h
m

)
. (2.8)

We note also that

Γp(x)Γp(1− x) = (−1)x0 , (2.9)

where x0 ∈ {1, 2, . . . , p} satisfies x0 ≡ x (mod p). The Gross-Koblitz formula [8]
allows us to relate Gauss sums and the p-adic gamma function. Let π ∈ Cp be

the fixed root of xp−1 + p = 0 which satisfies π ≡ ζp − 1 (mod (ζp − 1)2). Then
we have the following result.

Theorem 2.2 (Gross, Koblitz [8]). For j ∈ Z,

g(ωj) = −π(p−1)〈 j
p−1
〉

Γp

(
〈 j
p−1〉

)
.

3. Properties of nGn[· · · ].

As both Γp(·) and ω(·) are in Z∗p, we see immediately from its definition that

nGn[· · · ]p ∈ pδZp for some δ ∈ Z. We describe δ explicitly in the following
proposition. We first define

〈bi〉∗ := 1− 〈−bi〉 =

{
〈bi〉 if bi /∈ Z,
1 if bi ∈ Z.

Proposition 3.1. Let p be an odd prime and let t ∈ Fp. Let n ∈ Z+, 1 ≤ i ≤ n
and ai, bi ∈ Q ∩ Zp. For j ∈ Z we define

f(j) := #{ai | 〈ai〉 < j
p−1 , 1 ≤ i ≤ n} −#{bi | 〈bi〉∗ ≤ j

p−1 , 1 ≤ i ≤ n}.

Then

nGn

[
a1, a2, . . . , an
b1, b2, . . . , bn

∣∣∣ t ]
p

∈ pδZp,
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where

δ = Min{f(j) | 0 ≤ j ≤ p− 2}.

Proof. As Γp(·), ω(·) and 1
p−1 are all in Z∗p, the result follows from noting that

b〈ai〉 − j
p−1c =

{
−1 if 〈ai〉 < j

p−1 ,

0 if 〈ai〉 ≥ j
p−1 ,

and b〈−bi〉+ j
p−1c =

{
1 if 〈bi〉∗ ≤ j

p−1 ,

0 if 〈bi〉∗ > j
p−1 .

�

We note that nGn[· · · ] generalizes the function defined by the author in [13].
This earlier function has only one line of parameters and corresponds to nGn[· · · ]
when all the bottom line parameters are integral and t = 1. Therefore the re-
sults from [13, 14] can be restated using nGn[· · · ]. The motivation for developing

nGn[· · · ] and its predecessor was to allow results involving hypergeometric func-
tions over finite fields, which are often restricted to primes in certain congruence
classes, to be extended to a wider class of primes. While the function defined
in [13] extended, to the p-adic setting, hypergeometric functions over finite fields
with trivial bottom line parameters, we now show, in Lemma 3.3, that nGn[· · · ]
extends hypergeometric functions over finite fields in their full generality.

Hypergeometric functions over finite fields were originally defined by Greene
[7], who first established these functions as analogues of classical hypergeometric
functions. Functions of this type were also introduced by Katz [9] about the
same time. In the present article we use a normalized version of these functions
defined by the author in [15], which is more suitable for our purposes. The
reader is directed to [15, §2] for the precise connections among these three classes
of functions.

Definition 3.2. [15, Definition 1.4] For A0, A1, . . . , An, B1, . . . , Bn ∈ F̂∗p and
x ∈ Fp define

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣ x)
p

:=
1

p− 1

∑
χ∈F̂∗

p

n∏
i=0

g(Aiχ)

g(Ai)

n∏
j=1

g(Bjχ)

g(Bj)
g(χ)χ(−1)n+1χ(x). (3.1)

Many of the results concerning hypergeometric functions over finite fields that
we quote from other articles were originally stated using Greene’s function. If
this is the case, note then that we have reformulated them in terms n+1Fn(· · · )
as defined above.

We have the following relationship between nGn[· · · ] and n+1Fn(· · · ).

Lemma 3.3. For a fixed odd prime p, let Ai, Bk ∈ F̂∗p be given by ωai(p−1) and

ωbk(p−1) respectively, where ω is the Teichmüller character . Then

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣ t)
p

= n+1Gn+1

[
a0, a1, . . . , an
0, b1, . . . , bn

∣∣∣ t−1

]
p

.
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Proof. Starting from the definition of n+1Fn(· · · ), we convert the right-hand side
of (3.1) to an expression involving the p-adic gamma function and Teichmüller

character. We note F̂∗p can be given by {ωj | 0 ≤ j ≤ p−2}. Then, straightforward

applications of the Gross-Koblitz formula (Theorem 2.2) with χ = ωj yield

g(χ) = −πjΓp
( j
p−1

)
,

g(Aiχ)

g(Ai)
= π

−j−(p−1)(bai− j
p−1
c−baic) Γp

(
〈ai − j

p−1〉
)

Γp
(
〈ai〉

)
and

g(Bkχ)

g(Bk)
= π

j−(p−1)(b−bk+ j
p−1
c−b−bkc)

Γp
(
〈−bk + j

p−1〉
)

Γp
(
〈−bk〉

) ,

where π is as defined in Section 2.2. Substituting these expressions into (3.1) and
tidying up yields the result. �

We note that if χ ∈ F̂∗p is a character of order d and is given by ωx(p−1) then
x = m

d ∈ Q and p ≡ 1 (mod d). Therefore, given a hypergeometric function over
Fp whose arguments are characters of prescribed order, the function will only be
defined for primes p in certain congruence classes. By Lemma 3.3, for primes in
these congruence classes, the finite field hypergeometric function will be related
to an appropriate nGn[· · · ] function. However this corresponding nGn[· · · ] will be
defined at all primes not dividing the orders of the particular characters appearing
in the the finite field hypergeometric function. This opens the possibility of
extending results involving hypergeometric functions over finite fields to all but
finitely many primes.

For example, we have the following result from [14] which relates a special
value of the hypergeometric function over finite fields to a p-th Fourier coefficient
of a certain modular form. Let

f(z) := f1(z) + 5f2(z) + 20f3(z) + 25f4(z) + 25f5(z) =
∞∑
n=1

c(n)qn (3.2)

where fi(z) := η5−i(z) η4(5z) ηi−1(25z), η(z) := q
1
24
∏∞
n=1(1−qn) is the Dedekind

eta function and q := e2πiz. Then f is a cusp form of weight four on the congru-
ence subgroup Γ0(25).

Theorem 3.4. [14, Corollary 1.6] If p ≡ 1 (mod 5) is prime, χ5 ∈ F̂∗p is a
character of order 5 and c(p) is as defined in (3.2), then

4F3

(
χ5, χ2

5, χ3
5, χ4

5

ε, ε, ε

∣∣∣ 1

)
p

− p = c(p).

This result can be extended to almost all primes using nGn[· · · ], as follows.

Theorem 3.5. [14, Theorem 1.4] If p 6= 5 is an odd prime and c(p) is as defined
in (3.2), then

4G4

[ 1
5 ,

2
5 ,

3
5 ,

4
5

0, 0, 0, 0

∣∣∣ 1

]
p

−
(

5
p

)
p = c(p),
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where
( ·
p

)
is the Legendre symbol modulo p.

Results in [16] establish congruences modulo p2 between the classical hyperge-
ometric series and the hypergeometric function over Fp, for primes p in certain
congruence classes. In [13] we extend these results to primes in additional congru-
ence classes and, in some cases to modulo p3, using the predecessor to nGn[· · · ].

The main purpose of this paper is to extend to almost all primes the results in
[12], which relate the trace of Frobenius ap to a special value of a hypergeometric
function over Fp when p ≡ 1 (mod 12). In addition to their formal statement, the
results in [12] appear in various forms throughout that paper, all of of which are
related by known transformations for hypergeometric function over finite fields.
We recall one such version of [12, Theorem 2.1].

Theorem 3.6 (Lennon [12] §2.2). Let p ≡ 1 (mod 12) be prime and let ψ ∈ F̂∗p
be a character of order 12. Consider an elliptic curve E/Fp of the form E : y2 =
x3 + ax+ b with j(E) 6= 0, 1728. Then

ap(E) = ψ3

(
−a

3

27

)
· 2F1

(
ψ, ψ5

ε

∣∣∣ 4a3 + 27b2

4a3

)
p

.

Theorem 3.6 generalizes [5, Theorem 1.2] and other results from Fuselier’s the-
sis [4] which provide similar results for various families of elliptic curves. In
attempting to extend Theorem 3.6 beyond p ≡ 1 (mod 12) one might consider

using 2G2

[ 1
12 ,

5
12

0, 0

∣∣∣ 4a3

4a3 + 27b2

]
p

, as suggested by Lemma 3.3. However this

leads to poor results when p 6≡ 1 (mod 12). Results where nGn[· · · ] extend those
involving n+1Fn(· · · ), seem to work best when the arguments of nGn[· · · ] appear
in sets such that for each denominator all possible relatively prime numerators
are represented. This is reflected in Theorem 1.2.

Hypergeometric functions over finite fields have been applied to many areas
but most interestingly perhaps has been their relationships to modular forms
[1, 3, 5, 6, 14, 16, 17, 18] and their use in evaluating the number of points over
Fp on certain algebraic varieties [1, 5, 14, 20]. Lemma 3.3 allows these results to
be expressed in terms of nGn[· · · ] also. Many of these cited results are based on

n+1Fn(· · · ) with arguments which are characters of order ≤ 2 and hold for all odd
primes. However there is much scope for developing results where the characters
involved have higher orders, in which case, these functions will be defined for
primes in certain congruence classes and nGn[· · · ] allows the possibility to extend
these results to a wider class of primes.

4. Proofs of Theorem 1.2 and Corollary 1.3

We first prove a preliminary result which we will require later for the proof of
our main result.

Lemma 4.1. Let p be prime. For 0 ≤ j ≤ p− 2 and t ∈ Z+ with p - t,

Γp

(〈
tj
p−1

〉)
ω(ttj)

t−1∏
h=1

Γp
(
h
t

)
=

t−1∏
h=0

Γp

(〈
h
t + j

p−1

〉)
(4.1)
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and

Γp

(〈
−tj
p−1

〉)
ω(t−tj)

t−1∏
h=1

Γp
(
h
t

)
=

t−1∏
h=0

Γp

(〈
1+h
t −

j
p−1

〉)
. (4.2)

Proof. Fix 0 ≤ j ≤ p− 2 and let k ∈ Z≥0 be defined such that

k
(
p−1
t

)
≤ j < (k + 1)

(
p−1
t

)
. (4.3)

Letting m = t and x = tj
p−1 − k in (2.8) yields

t−1∏
h=0

Γp

(
j

p−1 + h−k
t

)
= ω

(
t
(1− tj

p−1
+k)(1−p)

)
Γp

(
tj
p−1 − k

) t−1∏
h=1

Γp
(
h
t

)
. (4.4)

We note that 0 ≤ k < t. Using (4.3) we see that if 0 ≤ h < t then 0 ≤ h−k
t + j

p−1 <

1. Therefore, if 1 ≤ k < t then

t−1∏
h=0

Γp

(
h−k
t + j

p−1

)
=

t−1∏
h=0

Γp

(〈
h−k
t + j

p−1

〉)

=
k−1∏
h=0

Γp

(〈
t+h−k

t + j
p−1

〉) t−1∏
h=k

Γp

(〈
h−k
t + j

p−1

〉)

=

t−1∏
h=t−k

Γp

(〈
h
t + j

p−1

〉) t−k−1∏
h=0

Γp

(〈
h
t + j

p−1

〉)

=

t−1∏
h=0

Γp

(〈
h
t + j

p−1

〉)
. (4.5)

The result in (4.5) also holds when k = 0. Substituting (4.5) into (4.4) and noting

that Γp

(〈
tj
p−1

〉)
= Γp

(
tj
p−1 − k

)
, by (4.3), yields (4.1).

We use a similar argument to prove (4.2). The result is trivial for j = 0. Fix
0 < j ≤ p− 2 and let k ∈ Z+ be defined such that

(k − 1)
(
p−1
t

)
< j ≤ k

(
p−1
t

)
. (4.6)

Letting m = t and x = k − tj
p−1 in (2.8) yields

t−1∏
h=0

Γp

(
k+h
t −

tj
p−1

)
= ω

(
t
(1−k+ tj

p−1
)(1−p)

)
Γp

(
k − tj

p−1

) t−1∏
h=1

Γp
(
h
t

)
. (4.7)
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We note that 1 ≤ k ≤ t. Using (4.6) we see that if 0 ≤ h < t then 0 ≤ k+h
t −

j
p−1 <

1. Therefore, if 1 < k ≤ t then

t−1∏
h=0

Γp

(
k+h
t −

j
p−1

)
=

t−1∏
h=0

Γp

(〈
k+h
t −

j
p−1

〉)

=
t−k∏
h=0

Γp

(〈
k+h
t −

j
p−1

〉) t−1∏
h=t−k+1

Γp

(〈
k+h−t

t − j
p−1

〉)

=
t−1∏

h=k−1

Γp

(〈
1+h
t −

j
p−1

〉) k−2∏
h=0

Γp

(〈
1+h
t −

j
p−1

〉)

=
t−1∏
h=0

Γp

(〈
1+h
t −

j
p−1

〉)
. (4.8)

The result in (4.8) also holds when k = 1. Substituting (4.8) into (4.7) and noting

that Γp

(〈
−tj
p−1

〉)
= Γp

(
−tj
p−1 + k

)
, by (4.6), yields (4.2). �

Proof of Theorem 1.2. We note from the outset that a 6= 0, b 6= 0 and −27b2

4a3
6= 1

as j(E) 6= 0, 1728. Initially the proof proceeds along similar lines to the proofs
of [5, Thm 1.2] and [12, Thm 2.1] by using (2.7) to evaluate #E(Fp). However
we then transfer to the p-adic setting using the Gross-Koblitz formula (Theorem
2.2) and use properties of the p-adic gamma function, including Lemma 4.1, to
prove the desired result. By (2.7) we have that

p(#E(Fp)− 1) = p2 +
∑
y∈F∗

p

∑
x1,x2∈Fp

θ(y (x3
1 + ax1 + b− x2

2))

= p2 +
∑
y∈F∗

p

θ(yb) +
∑

y,x2∈F∗
p

θ(yb− yx2
2) +

∑
y,x1∈F∗

p

θ(yx3
1 + ayx1 + yb)

+
∑

y,x1,x2∈F∗
p

θ(yx3
1 + ayx1 + by − yx2

2)). (4.9)

We now examine each sum of (4.9) in turn and will refer to them as S1 to S4

respectively. Using (2.4) we see that

S1 =
∑
y∈F∗

p

θ(yb) = −1.

We use (2.3) and (2.5) to expand the remaining terms as expressions in Gauss
sums. This exercise has also been carried out in the proof of [12, Thm 2.1] so
we only give a brief account here. Let T be a fixed generator for the group of
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characters of F∗p. Then

S2 =
∑

y,x2∈F∗
p

θ(yb− yx2
2)

=
1

(p− 1)2

p−2∑
r,s=0

g(T−r) g(T−s) T r(b) T s(−1)
∑
x2∈F∗

p

T 2s(x2)
∑
y∈F∗

p

T r+s(y).

We now apply (2.1) to the last summation on the right, which yields (p − 1) if
r = −s and zero otherwise. So

S2 =
1

(p− 1)

p−2∑
s=0

g(T s) g(T−s) T−s(b) T s(−1)
∑
x2∈F∗

p

T 2s(x2).

Again we apply (2.1) to the last summation on the right, which yields (p− 1) if

s = 0 or s = p−1
2 , and zero otherwise. Thus, and using (2.6), we get that

S2 = g(ε) g(ε) + g(φ) g(φ) φ(−b) = 1 + p φ(b).

Similarly,

S3 =
∑

y,x1∈F∗
p

θ(yx3
1 + ayx1 + yb)

=
1

(p− 1)3

p−2∑
r,s,t=0

g(T−r) g(T−s) g(T−t) T s(a) T t(b)

·
∑
x1∈F∗

p

T 3r+s(x1)
∑
y∈F∗

p

T r+s+t(y),

and

S4 =
∑

y,x1,x2∈F∗
p

θ(yx3
1 + ayx1 + by − yx2

2))

=
1

(p− 1)4

p−2∑
j,r,s,t=0

g(T−j) g(T−r) g(T−s) g(T−t) T r(a) T s(b) T t(−1)

·
∑
x1∈F∗

p

T 3j+r(x1)
∑
y∈F∗

p

T j+r+s+t(y)
∑
x2∈F∗

p

T 2t(x2).

We now apply (2.1) to the last summation on the right of S4, which yields (p−1)

if t = 0 or t = p−1
2 and zero otherwise. In the case t = 0 we find that

S4,t=0 = −S3.

When t = p−1
2 we get, after applying (2.1) twice more,

S4,t= p−1
2

=
φ(−b)
(p− 1)

p−2∑
j=0

g(T−j) g(T
p−1
2
−2j) g(T 3j) g(T

p−1
2 ) T−3j(a) T 2j(b).
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Combining (1.1), (4.9) and the evaluations of S1, S2, S3 and S4 we find that

ap(E) = − φ(b) p

(p− 1)
− φ(−b)
p(p− 1)

p−2∑
j=1

g(T−j) g(T
p−1
2
−2j) g(T 3j) g(T

p−1
2 ) T j( b

2

a3
).

(4.10)

We know from Theorem 2.1 with χ = φ = T
p−1
2 and ψ = T−2j that

g(T
p−1
2
−2j) =

g(T−4j) g(T
p−1
2 ) T 4j(2)

g(T−2j)
. (4.11)

Accounting for (4.11) in (4.10) and applying (2.6) with χ = φ = T
p−1
2 gives us

ap(E) =
−φ(b) p

(p− 1)

1 +
1

p

p−2∑
j=1

g(T−j) g(T 3j) g(T−4j)

g(T−2j)
T j(16b2

a3
)

 . (4.12)

We now take T to be the inverse of the Teichmüller character, i.e., T = ω, and
use the Gross-Koblitz formula (Theorem 2.2) to convert (4.12) to an expression
involving the p-adic gamma function. This yields

ap(E) =
−φ(b) p

(p− 1)

1−
p−2∑
j=1

(−p)
(
b−2j
p−1
c−b −j

p−1
c−b 3j

p−1
c−b−4j

p−1
c−1

)

·
Γp
(
〈 −jp−1〉

)
Γp
(
〈 3j
p−1〉

)
Γp
(
〈−4j
p−1〉

)
Γp
(
〈−2j
p−1〉

) ωj(16b2

a3
)

]
. (4.13)

Next we use Lemma 4.1 to transform the components of (4.13) which involve the
p-adic gamma function. After some tidying up we then get

ap(E) =
−φ(b) p

(p− 1)

1−
p−2∑
j=1

(−p)
(
b−2j
p−1
c−b −j

p−1
c−b 3j

p−1
c−b−4j

p−1
c−1

)
Γp
(
1− j

p−1

)
Γp
( j
p−1

)
·

Γp
(
〈14 −

j
p−1〉

)
Γp
(
〈34 −

j
p−1〉

)
Γp
(
〈13 + j

p−1〉
)
Γp
(
〈23 + j

p−1〉
)

Γp
(

1
4

)
Γp
(

3
4

)
Γp
(

1
3

)
Γp
(

2
3

) ωj(27b2

4a3
)

]
.

We note for 0 ≤ j ≤ p− 2 that

b−4j
p−1c − b

−2j
p−1c = b1

4 −
j

p−1c+ b3
4 −

j
p−1c,

and when 1 ≤ j ≤ p− 2 that

b −jp−1c+ b 3j
p−1c+ 1 = b1

3 + j
p−1c+ b2

3 + j
p−1c.

Also, by (2.9) we have that, for 0 ≤ j ≤ p− 1,

Γp
(
1− j

p−1

)
Γp
( j
p−1

)
= (−1)p−j = (−1)p ωj(−1).
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Therefore

ap(E) =
−φ(b) p

(p− 1)

p−2∑
j=0

(−p)

(
−b14−

j
p−1 c−b

3
4−

j
p−1 c−b

1
3 +

j
p−1 c−b

2
3 +

j
p−1 c

)

·
Γp
(
〈14 −

j
p−1〉

)
Γp
(
〈34 −

j
p−1〉

)
Γp
(

1
4

)
Γp
(

3
4

) ·
Γp
(
〈−2

3 + j
p−1〉

)
Γp
(
〈−1

3 + j
p−1〉

)
Γp
(
〈−2

3〉
)
Γp
(
〈−1

3〉
) ωj(−27b2

4a3
)

]

= φ(b) · p · 2G2

[ 1
4 ,

3
4

1
3 ,

2
3

∣∣∣ −27b2

4a3

]
p

.

�

Remark 4.2. Using (2.7) to evaluate the number of points on certain algebraic
varieties over finite fields is by no means new. However, the author first observed
the technique in the work of Fuselier [4, 5] where it was used to relate these
evaluations to hypergeometric functions over finite fields. These methods were
subsequently used by Lennon [12] in generalizing Fuseliers work and, as we’ve
seen, also form part of our proof of Theorem 1.2.

Proof of Corollary 1.3. As noted in the introduction, when p > 3 then any elliptic
curve E/Fp is isomorphic to an elliptic curve of the form E′ : y2 = x3 + ax + b.
Therefore ap(E) = ap(E

′) and Theorem 1.2 can be used to evaluate ap(E). We

also note that j(E) = j(E′) = 1728·4a3
4a3+27b2

and so 1− 1728
j(E) = −27b2

4a3
. As E and E′ are

related by an admissible change of variables, this implies c6(E) = c6(E′) · u6 for
some u ∈ F∗p. Now c6(E′) = −27 · 32 · b so φ(b) = φ(−6 · c6(E)) as required. �

5. Concluding Remarks

5.1. The p = 3 Case. Theorem 1.2 considers elliptic curves over Fp for primes
p > 3. While nGn[· · · ]p is not defined for p = 2 it is defined for p = 3 once the
parameters are 3-adic integers. As the parameters of the 2G2[· · · ]p in Theorem
1.2 are not all 3-adic integers it is clear that the result cannot be extended to
p = 3 using the same function. However we can say something about the p = 3
case. Any elliptic curve over F3, whose j-invariant is non-zero, is isomorphic to
a curve of the form E : y2 = x3 + ax2 + b with both a and b non-zero [19, App.
A]. It is an easy exercise to evaluate a3(E) and to show that

a3(E) = φ(a) · 2G2

[
0, 0

0, 1
2

∣∣∣ −a
b

]
3

.

This relationship is somewhat contrived however and direct calculation of a3(E)
is much more straightforward.

5.2. Transformation Properties of nGn[· · · ]p. As mentioned in Section 3,
hypergeometric functions over finite fields were originally defined by Greene [7]
as analogues of classical hypergeometric functions. His motivation was to de-
velop the area of character sums and their evaluations through parallels with the
classical functions, and, in particular, with their transformation properties. His
endeavor was largely successful and analogues of various classical transformations
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were found [7]. Some others were recently provided by the author in [15]. These
transformations for hypergeometric functions over finite fields can obviously be
re-written in terms of nGn[· · · ]p via Lemma 3.3 and these results will hold for
all p where the original characters existed over Fp. It is an interesting question
to consider if these transformations can then be extended to almost all p and
become transformations for nGn[· · · ]p in full generality. This is something yet to
be considered and may be the subject of forthcoming work.

5.3. q-Version of nGn[· · · ]p. As discussed in Section 3, nGn[· · · ]p extends hy-
pergeometric functions over finite fields, as defined in Definition 3.2, to the p-adic
setting. Definition 3.2 can easily be extended to Fq where q is a prime power and
indeed, this is how it was originally defined in [15, Definition 1.4]. In a similar
manner to the proof of Lemma 3.3, we can then use the Gross-Koblitz formula
(not as quoted in Theorem 2.2 but its Fq-version) to transform the hypergeo-
metric function over Fq to an expression involving products of the p-adic gamma
function. Generalizing the resulting expression yields the following q-version of

nGn[· · · ]p. We now let ω denote the Teichmüller character of Fq.

Definition 5.1. Let q = pr, for p an odd prime and r ∈ Z+, and let t ∈ Fq. For
n ∈ Z+ and 1 ≤ i ≤ n, let ai, bi ∈ Q ∩ Zp. Then we define

nGn

[
a1, a2, . . . , an
b1, b2, . . . , bn

∣∣∣ t ]
q

:=
−1

q − 1

q−2∑
j=0

(−1)jn ωj(t)

×
n∏
i=1

r−1∏
k=0

Γp
(
〈(ai − j

q−1)pk〉
)

Γp
(
〈aipk〉

) Γp
(
〈(−bi + j

q−1)pk〉
)

Γp
(
〈−bipk〉

) (−p)−b〈aip
k〉− jpk

q−1
c−b〈−bipk〉+ jpk

q−1
c
.

When q = p in Definition 5.1 we recover nGn[· · · ]p as per Definition 1.1. We
believe nGn[· · · ]q could be used to generalize results involving hypergeometric
functions over Fq which are restricted to q in certain congruence classes (e.g
those in [12]). However we do not examine this here for the following reason.
The main purpose of this paper is to demonstrate that nGn[· · · ]p can be used to
extend results involving hypergeometric functions over Fp, which are limited to
primes in certain congruence classes, and thus avoid the need to work over Fq.
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