
SPLITTING HYPERGEOMETRIC FUNCTIONS

OVER ROOTS OF UNITY

DERMOT McCARTHY AND MOHIT TRIPATHI

Abstract. We examine hypergeometric functions in the finite field, p-adic and classical
settings. In each setting, we prove a formula which splits the hypergeometric function
into a sum of lower order functions whose arguments differ by roots of unity. We provide
multiple applications of these results, including new reduction and summation formulas
for finite field hypergeometric functions, along with classical analogues; evaluations of
special values of these functions which apply in both the finite field and p-adic settings;
and new relations to Fourier coefficients of modular forms.

1. Introduction

Finite field hypergeometric functions were originally defined by Greene [19, 20] as ana-
logues of classical hypergeometric series. Functions of this type were also introduced
by Katz [25] about the same time. Greene’s work includes an extensive catalogue of
transformation and summation formulas for these functions, mirroring those in the clas-
sical case. These functions also have a nice character sum representation and so the
transformation and summation formulas can be interpreted as relations to simplify and
evaluate complex character sums [13, 21]. Using character sums to count the number
of solutions to equations over finite fields is a long established practice [8, 23, 29, 52]
and finite field hypergeometric functions also naturally lend themselves to this endeavor
[1, 4, 15, 16, 18, 30, 31, 37, 40]. Following the modularity theorem, and, by then, known
links between finite field hypergeometric functions and elliptic curves, many authors be-
gan examining links between these functions and Fourier coefficients of modular forms
[9, 10, 12, 14, 17, 26, 33, 34, 38, 39, 41, 44]. More recently, finite field hypergeometric
functions have played a central role in the theory of hypergeometric motives, which has
led to increased interest in the functions and their properties [2, 7, 11, 43].

While hypergeometric functions over finite fields were originally defined by Greene, we
will use a normalized version defined by the first author [35, 37]. Throughout, let q = pr

be a prime power. Let Fq be the finite field with q elements, and let F̂∗
q be the group

of multiplicative characters of F∗
q . We extend the domain of χ ∈ F̂∗

q to Fq by defining
χ(0) := 0 (including for the trivial character ε) and denote χ as the inverse of χ. We

denote by φ the character of order two in F̂∗
q , when q is odd. More generally, for k > 2 a

positive integer, we let χk ∈ F̂∗
q denote a character of order k when q ≡ 1 (mod k). Let

θ be a fixed non-trivial additive character of Fq, and for χ ∈ F̂∗
q define the Gauss sum

g(χ) :=
∑

x∈Fq
χ(x)θ(x). We define the finite field hypergeometric function as follows.
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Definition 1.1 ([35, 37]). For A1, A2, . . . , Am, B1, B2 . . . , Bm ∈ F̂∗
q and λ ∈ Fq,

mFm

(
A1, A2, . . . , Am
B1, B2, . . . , Bm

∣∣∣ λ)
q

:=
−1

q − 1

∑
χ∈F̂∗

q

m∏
i=1

g(Aiχ)

g(Ai)

g(Biχ)

g(Bi)
χ(−1)mχ(λ).

In recent years, the second author, with Barman and others, [46, 47, 48, 49, 50] have
developed the theory of the finite field Appell functions. They establish several product
and summation formulas for these functions, which has also led to new relations for mFm,
as defined above. One such relation can be derived from recent work of the second author
and Meher [51].

Theorem 1.2. [51] For A,C ∈ F̂∗
q such that A2 ̸= ε and C2 = ε,

2F2

(
A2, A

2

ε, ε

∣∣∣ λ)
q

+ 2F2

(
A2, A

2

ε, ε

∣∣∣− λ

)
q

= 4F4

(
A, φA, A, φA

ε, φ, C, φC

∣∣∣ λ2)
q

.

The main purpose of this paper is to generalize Theorem 1.2 in multiple directions, using
more direct methods. Specifically, we generalize Theorem 1.2 from 2F2 to mFm for any
m, allowing any character arguments, without restrictions, where the sum is over all roots
of unity, not just ±1, times λ. We then extend these results in the p-adic setting. We
also prove a classical hypergeometric series analogue. All these results will be outlined in
Section 2. In Section 5, we will provide multiple applications of these generalized results,
including new reduction and summation formulas for finite field hypergeometric functions,
along with classical analogues; evaluations of special values of these functions which apply
in both the finite field and p-adic settings; and new relations to Fourier coefficients of
modular forms. After outlining some preliminaries in Section 3, we will prove our main
results in Section 4. Section 6 contains a comprehensive discussion on the relationship
between our finite field and p-adic hypergeometric functions, and, in particular, how this
relationship is affected if the parameters, or some subset thereof, are “defined over Q”.

2. Statement of Main Results

2.1. Finite Field Setting. Our first result generalizes Theorem 1.2 from 2F2 to mFm for
any m, allowing any character arguments, without restrictions, where the sum is over all
roots of unity, not just ±1, times λ.

Theorem 2.1. Let n be a positive integer and let q ≡ 1 (mod n) be a prime power. Let

ζn be a primitive n-th root of unity in F∗
q and let χn ∈ F̂∗

q denote a character of order n.

Then for A1, A2, . . . , Am, B1, B2 . . . , Bm ∈ F̂∗
q,

n−1∑
l=0

mFm

(
An1 , An2 , . . . , Anm
Bn

1 , Bn
2 , . . . , Bn

m

∣∣∣ ζ ln · λ)
q

= nmFnm

(
Ai χ

l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

Bi χ
l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

∣∣∣ λn)
q

.

We also have the following converse result.
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Theorem 2.2. Let n be a positive integer and let q ≡ 1 (mod n) be a prime power. Let

χn ∈ F̂∗
q denote a character of order n. Let A1, A2, . . . , Am, B1, B2 . . . , Bm ∈ F̂∗

q. If λ ∈ Fq
is not an n-th power, then

nmFnm

(
Ai χ

l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

Bi χ
l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

∣∣∣ λ)
q

= 0.

When n = 2, the following corollaries are immediate.

Corollary 2.3. For q an odd prime power,

mFm

(
A2

1, A2
2, . . . , A2

m

B2
1 , B2

2 , . . . , B2
m

∣∣∣ λ)
q

+ mFm

(
A2

1, A2
2, . . . , A2

m

B2
1 , B2

2 , . . . , B2
m

∣∣∣− λ

)
q

= 2mF2m

(
A1, φA1, A2, φA2, . . . , Am, φAm
B1, φB1, B2, φB2, . . . , Bm, φBm

∣∣∣ λ2)
q

.

Taking m = 2, A1 = A,A2 = A,B1 = B2 = ε in Corollary 2.3 recovers Theorem 1.2.

Corollary 2.4. Let q be an odd prime power. If λ ∈ Fq is not a square, then

2mF2m

(
A1, φA1, A2, φA2, . . . , Am, φAm
B1, φB1, B2, φB2, . . . , Bm, φBm

∣∣∣ λ)
q

= 0.

Let F∗
q = ⟨T ⟩ and Ai, Bi ∈ F̂∗

q . Then Ai = T ai(q−1) and Bi = T bi(q−1) for some ai, bi ∈ Q,
such that ai(q−1), bi(q−1) ∈ Z. Many applications of mFm({Ai}; {Bi} | λ)q require fixed
ai, bi. For fixed ai, bi, if we consider mFm({Ai}; {Bi} | λ)q to be a function of q, then the
domain of this function is all q ≡ 1 (mod d), where d is the least common denominator of
of the elements in {ai}∪{bi}. The first author has defined a function in the p-adic setting
which extends mFm({Ai}; {Bi} | λ)q, and whose domain is all q relatively prime to d. We
use this function to extend the domain of all results stated above.

2.2. p-adic Setting. Let Zp denote the ring of p-adic integers and let Γp(·) denote
Morita’s p-adic gamma function. Let ω denote the Teichmüller character of Fq (see Sec-
tion 3 for full details) with ω denoting its character inverse. For x ∈ Q, we let ⌊x⌋ denote
the greatest integer less than or equal to x and ⟨x⟩ denote the fractional part of x, i.e.
⟨x⟩ = x− ⌊x⌋.

Definition 2.5. [36, Definition 5.1] Let q = pr for p an odd prime. Let λ ∈ Fq, m ∈ Z+

and ai, bi ∈ Q ∩ Zp, for 1 ≤ i ≤ m. Then define

mGm

[
a1, a2, . . . , am
b1, b2, . . . , bm

∣∣∣ λ ]
q

:=
−1

q − 1

q−2∑
j=0

(−1)jm ωj(λ)

×
m∏
i=1

r−1∏
k=0

Γp
(
⟨(ai − j

q−1)p
k⟩
)

Γp
(
⟨aipk⟩

) Γp
(
⟨(−bi + j

q−1)p
k⟩
)

Γp
(
⟨−bipk⟩

) (−p)−⌊⟨aipk⟩− jpk

q−1
⌋−⌊⟨−bipk⟩+ jpk

q−1
⌋
.

We note that the value of mGm[· · · ] depends only on the fractional part of the ai and bi
parameters, and is invariant if we change the order of the parameters. For fixed parameters
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{ai} and {bi}, mGm[· · · ]q is defined at any odd prime power q = pr where p is relatively
prime to the denominators of the ai’s and bi’s, i.e., all ai, bi ∈ Zp.

mGm[· · · ]q extends mFm(· · · )q via the following relation.

Lemma 2.6 (c.f. [36] Lemma 3.3). For an odd prime power q, let Ai, Bi ∈ F̂∗
q be given by

ωai(q−1) and ωbi(q−1) respectively, where ω is the Teichmüller character of Fq. Then

mFm

(
A1, A2, . . . , Am
B1, B2, . . . , Bm

∣∣∣ λ)
q

= mGm

[
a1, a2, . . . , am
b1, b2, . . . , bm

∣∣∣ λ−1

]
q

.

Following [7], we say the parameters ({ai}, {bi}) are defined over Q if there exist positive
integers p1, p2, . . . , pt and q1, q2, . . . , qs, with t and s minimal, such that

m∏
i=1

x− e2πiai

x− e2πibi
=

∏t
i=1 x

pi − 1∏s
i=1 x

qi − 1
.

Let D(x) := gcd(
∏t
i=1 x

pi − 1,
∏s
i=1 x

qi − 1), of degree δ, have zeros exp
(
2πi ch
q−1

)
for 1 ≤

h ≤ δ. Let s(c) denote the multiplicity of the zero exp
(
2πi c
q−1

)
. We note that m + δ =∑t

i=1 pi =
∑s

i=1 qi and we define

M :=

∏t
i=1 pi

pi∏s
i=1 qi

qi
.

Theorem 2.7. Let q = pr for p an odd prime. If ({ai}, {bi}) are defined over Q with
corresponding exponents ({pi : 1 ≤ i ≤ t}, {qi : 1 ≤ i ≤ s}), then

mGm

[
a1, a2, . . . , am
b1, b2, . . . , bm

∣∣∣ λ ]
q

=
−1

q − 1

q−2∑
j=0

(−1)j(m+δ) q−s(0)+s(j) ωj(M · λ)

×
r−1∏
k=0

t∏
i=1

Γp
(
⟨−jpiq−1 p

k⟩
)
(−p)−⌊−jpiq−1 p

k⌋
s∏
i=1

Γp
(
⟨ jqiq−1p

k⟩
)
(−p)−⌊ jqiq−1p

k⌋
.

We now extend the results of Section 2.1.

Theorem 2.8. Let n be a positive integer and let q ≡ 1 (mod n) be an odd prime power.
Let ζn be a primitive n-th root of unity in F∗

q . If ({nai}, {nbi}) are defined over Q, then

n−1∑
l=0

mGm

[
na1, na2, . . . , nam
nb1, nb2, . . . , nbm

∣∣∣ ζ ln · λ ]
q

= nmGnm

[
ai +

l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

bi +
l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

∣∣∣ λn ]
q

.

Furthermore, if ({nai}, {nbi}) are defined over Q with corresponding exponents ({pi : 1 ≤
i ≤ t}, {qi : 1 ≤ i ≤ s}) then ({ai + l

n}, {bi +
l
n}) are defined over Q with exponents

({npi : 1 ≤ i ≤ t}, {nqi : 1 ≤ i ≤ s}).

We also have the following converse result, regardless of whether the parameters are defined
over Q.
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Theorem 2.9. Let n be a positive integer and let q ≡ 1 (mod n) be a prime power. If
λ ∈ Fq is not an n-th power, then

nmGnm

[
ai +

l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

bi +
l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

∣∣∣ λ ]
q

= 0.

When n = 2, the following corollaries are immediate.

Corollary 2.10. For q an odd prime power and ({2ai}, {2bi}) defined over Q,

mGm

[
2a1, 2a2, . . . , 2am
2b1, 2b2, . . . , 2bm

∣∣∣ λ ]
q

+ mGm

[
2a1, 2a2, . . . , 2am
2b1, 2b2, . . . , 2bm

∣∣∣ − λ

]
q

= 2mG2m

[
a1, a1 +

1
2 , a2, a2 +

1
2 , · · · , am, am + 1

2

b1, b1 +
1
2 , b2, b2 +

1
2 , · · · , bm, bm + 1

2

∣∣∣ λ2 ]
q

.

Corollary 2.11. Let q be an odd prime power. If λ ∈ Fq is not a square, then

2mG2m

[
a1, a1 +

1
2 , a2, a2 +

1
2 , · · · , am, am + 1

2

b1, b1 +
1
2 , b2, b2 +

1
2 , · · · , bm, bm + 1

2

∣∣∣ λ ]
q

= 0.

2.3. Classical Setting. Recall the classical generalized hypergeometric series mFm de-
fined by

mFm

[
a1, a2, . . . , am

b1, b2, . . . , bm

∣∣∣ z] := ∞∑
k=0

(a1)k(a2)k · · · (am)k
(b1)k(b2)k · · · (bm)k

zk,

where ai, bi and z are complex numbers, with none of the bi being negative integers or
zero, m a positive integer, (a)0 := 1 and (a)k := a(a+1)(a+2) · · · (a+k−1) for a positive
integer k. Setting b1 = 1 recovers the more usual mFm−1 definition/notation.

We have the following classical series analogue of Theorems 2.1 and 2.8.

Theorem 2.12. Let n be a positive integer and let ξn ∈ C be a primitive n-th root of
unity. Then,

n−1∑
l=0

mFm

[
na1, na2, . . . , nam

nb1, nb2, . . . , nbm

∣∣∣ ξln · z]

= n · nmFnm
[
ai +

l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

bi +
l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

∣∣∣ zn].
Theorem 2.12 can be derived from [42, eqn. 24, p. 440], which is stated without proof.

For completeness, we provide a proof in Section 4.

3. Preliminaries

We start by recalling some properties of Gauss and Jacobi sums. See [6, 24] for further
details, noting that we have adjusted results to take into account ε(0) = 0, where ε is the

trivial character. We first note that g(ε) = −1. For χ ∈ F̂∗
q ,

g(χ)g(χ) =

{
χ(−1)q if χ ̸= ε,

1 if χ = ε.
(3.1)



6 DERMOT McCARTHY AND MOHIT TRIPATHI

We now state the Hasse-Davenport product formula for Gauss sums.

Theorem 3.1 ([6] Thm. 11.3.5). Let n be a positive integer and let χn ∈ F̂∗
q be a character

of order n. For ψ ∈ F̂∗
q, we have

n−1∏
l=0

g(χlnψ) = g(ψn)ψ−n(n)
n−1∏
l=1

g(χln).

The following is a variant of the standard orthogonal relation, but we prove it here for
completeness.

Proposition 3.2. Let n be a positive integer and let q ≡ 1 (mod n) be a prime power.

Let ζn be a primitive n-th root of unity in F∗
q and let χ ∈ F̂∗

q. Then

n−1∑
l=0

χ(ζ ln) =

{
n if χ = ψn for some ψ ∈ F̂∗

q ,

0 otherwise.

Proof. If χ = ψn then χ(ζ ln) = ψ(ζnln ) = ψ(1) = 1, and the result follows. Now assume χ
is not an n-th power. Then χ(ζn) ̸= 1 and so

χ(ζn)
n−1∑
l=0

χ(ζ ln) =
n−1∑
l=0

χ(ζ l+1
n ) =

n−1∑
l=0

χ(ζ ln)

implies
∑n−1

l=0 χ(ζ
l
n) must equal zero. □

Corollary 3.3. Let n be a positive integer and let ξn ∈ C be a primitive n-th root of unity.
Then, for a non-negative integer k,

n−1∑
l=0

ξlkn =

{
n if k ≡ 0 (mod n),

0 otherwise.

Proof. Let q ≡ 1 (mod n), F∗
q = ⟨α⟩ and ξq−1 ∈ C be a primitive (q − 1)-st root of unity

such that ξ
q−1
n

q−1 = ξn. Consider the primitive character T ∈ F̂∗
q defined by T (αt) = ξtq−1.

Then α
q−1
n is a primitive n-th root of unity in F∗

q and T (α
q−1
n ) = ξn. Now let χ = T k and

ζn = α
q−1
n in Proposition 3.2 and the result follows. □

We now recall some details about the Teichmüller character and the p-adic gamma
function. For further details, see [27, 28]. Let Zp denote the ring of p-adic integers, Qp

the field of p-adic numbers, Qp the algebraic closure of Qp, and Cp the completion of Qp.
Let Zq be the ring of integers in the unique unramified extension of Qp with residue field
Fq. Recall that for each x ∈ F∗

q , there is a unique Teichmüller representative ω(x) ∈ Z×
q

such that ω(x) is a (q − 1)-st root of unity and ω(x) ≡ x (mod p). Therefore, we define
the Teichmüller character to be the primitive character ω : F∗

q → Z×
q given by x 7→ ω(x),

which we extend with ω(0) := 0.
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Let p be an odd prime. For n ∈ Z+ we define the p-adic gamma function as

Γp(n) := (−1)n
∏

0<j<n
p∤j

j

and extend it to all x ∈ Zp by setting Γp(0) := 1 and Γp(x) := limn→x Γp(n) for x ̸= 0,
where n runs through any sequence of positive integers p-adically approaching x. This
limit exists, is independent of how n approaches x, and determines a continuous function
on Zp with values in Z∗

p. The function satisfies the following product formula.

Theorem 3.4 ([22] Thm. 3.1). If n ∈ Z+, p ∤ n and 0 ≤ x < 1 with (q − 1)x ∈ Z, then
r−1∏
k=0

n−1∏
h=0

Γp

(
⟨x+hn pk⟩

)
= ω

(
n(q−1)x

) r−1∏
k=0

Γp

(
⟨xpk⟩

) n−1∏
h=1

Γp

(
⟨hnp

k⟩
)
. (3.2)

We note that in the original statement of Theorem 3.4 in [22], ω is the Teichmüller char-
acter of F∗

p. However, the result above still holds as ω|F∗
p
is the Teichmüller character of

F∗
p.
The Gross-Koblitz formula, Theorem 3.5 below, allows us to relate Gauss sums and

the p-adic gamma function. Let πp ∈ Cp be the fixed root of xp−1 + p = 0 that satisfies

πp ≡ ζp − 1 (mod (ζp − 1)2).

Theorem 3.5 ([22] Thm. 1.7). For j ∈ Z,

g(ωj) = −π
(p−1)

∑r−1
k=0⟨

jpk

q−1
⟩

p

r−1∏
k=0

Γp

(
⟨ jp

k

q−1⟩
)
.

The p-adic gamma function also satisfies the reflection formula

Γp(x)Γp(1− x) = (−1)x0 , (3.3)

where x0 ∈ {1, 2, . . . , p} such that x0 ≡ x (mod p). Techniques in [22] allow us to calculate
x0 when x = ⟨apj⟩.

Lemma 3.6 ([22] Lemmas 2.4 & 2.5). Let a ∈ Q ∩ Zp with 0 < a < 1. Let f ∈ Z+ be

such that (pf − 1)a ∈ Z+. If we write

(pf − 1)a = zf + z1 p+ z2 p
2 + · · ·+ zf−1 p

f−1,

for integers zi with 0 ≤ zi < p, then

⟨apj⟩0 = p− zf−j ,

for all 0 ≤ j < f , and

⌊apj⌋ = zf−j + zf−j+1 p+ · · ·+ zf−1 p
j−1,

for all 1 ≤ j < f . Furthermore,

f∑
i=1

zi ≡ (pf − 1)a (mod p− 1)
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and, for all 1 ≤ j < f ,
j∑
i=1

zf−i ≡ ⌊apj⌋ (mod p− 1).

Corollary 3.7. With the notation of Lemma 3.6 and for 1 ≤ r ≤ f ,

r−1∑
k=0

⟨apk⟩0 ≡ r − (pf − 1)a+ ⌊apf−1⌋ − ⌊apr−1⌋ (mod p− 1).

Proof. If r = 1 then both sides are congruent to 1 − zf . Let r > 1. From Lemma 3.6 we
see that

r−1∑
k=0

⟨apk⟩0 = rp−
r−1∑
k=0

zf−k

= rp−

(
f∑
i=1

zi −
f−1∑
i=1

zf−i

)
−

r−1∑
k=1

zf−k

≡ r − ((pf − 1)a− ⌊apf−1⌋)− ⌊apr−1⌋ (mod p− 1).

□

We will need the following result in the proof of Theorem 2.7.

Lemma 3.8. Let l ≥ 3 be an integer. Let p be an odd prime with gcd(p, l) = 1. Let

q = pr such that q ̸≡ 1 (mod l). Let f ′ be a positive integer such that qf
′ ≡ 1 (mod l). Let

f = rf ′. Then for all integers j,∑
1≤t<l

gcd(t,l)=1

⌊⟨ tl −
j
q−1⟩p

f−1⌋ − ⌊⟨ tl −
j
q−1⟩p

r−1⌋ ≡ 0 (mod 2).

Proof. Let ϕ(·) denote Euler’s totient function. We note that ϕ(l) is even, as l ≥ 3. For a

given t, let ⟨ tl −
j
q−1⟩ =

t
l −

j
q−1 + nt,j . Note nt,j ∈ Z. So,∑

1≤t<l
gcd(t,l)=1

⌊⟨ tl −
j
q−1⟩p

f−1⌋ − ⌊⟨ tl −
j
q−1⟩p

r−1⌋

=
∑
1≤t<l

gcd(t,l)=1

⌊
(
t
l −

j
q−1 + nt,j

)
pf−1⌋ − ⌊

(
t
l −

j
q−1 + nt,j

)
pr−1⌋

=
∑
1≤t<l

gcd(t,l)=1

⌊
(
t
l −

j
q−1

)
pf−1⌋ − ⌊

(
t
l −

j
q−1

)
pr−1⌋+ pr−1(pf−r − 1)

∑
1≤t<l

gcd(t,l)=1

nt,j

≡
∑
1≤t<l

gcd(t,l)=1

⌊
(
t
l −

j
q−1

)
pf−1⌋ − ⌊

(
t
l −

j
q−1

)
pr−1⌋ (mod 2). (3.4)
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as pf−r − 1 is even. Now,∑
1≤t<l

gcd(t,l)=1

⌊
(
t
l −

j
q−1

)
pf−1⌋ − ⌊

(
t
l −

j
q−1

)
pr−1⌋

=
∑
1≤t<l

gcd(t,l)=1

(
t
l −

j
q−1

)
pf−1 − ⟨

(
t
l −

j
q−1

)
pf−1⟩ −

(
t
l −

j
q−1

)
pr−1 + ⟨

(
t
l −

j
q−1

)
pr−1⟩

= pr−1(pf−r − 1)
∑
1≤t<l

gcd(t,l)=1

t
l

︸ ︷︷ ︸
=

ϕ(l)
2

∈Z

− jpr−1
(
qf

′−1−1
q−1

) ∑
1≤t<l

gcd(t,l)=1

1

︸ ︷︷ ︸
=ϕ(l)∈ 2Z

−
∑
1≤t<l

gcd(t,l)=1

⟨
(
t
l −

j
q−1

)
pf−1⟩ − ⟨

(
t
l −

j
q−1

)
pr−1⟩

≡
∑
1≤t<l

gcd(t,l)=1

⟨
(
t
l −

j
q−1

)
pf−1⟩ − ⟨

(
t
l −

j
q−1

)
pr−1⟩ (mod 2). (3.5)

So, combining (3.4) and (3.5), it suffices to prove that∑
1≤t<l

gcd(t,l)=1

⟨
(
t
l −

j
q−1

)
pf−1⟩ − ⟨

(
t
l −

j
q−1

)
pr−1⟩ ≡ 0 (mod 2).

Now,∑
1≤t<l

gcd(t,l)=1

⟨
(
t
l −

j
q−1

)
pf−1⟩ − ⟨

(
t
l −

j
q−1

)
pr−1⟩

=
∑
1≤t<l

gcd(t,l)=1

(
⟨ tl p

f−1⟩ − ⟨ j
q−1 p

f−1⟩+ δt,j(f)
)
−
(
⟨ tl p

r−1⟩ − ⟨ j
q−1 p

r−1⟩+ δt,j(r)
)
, (3.6)

where

δt,j(a) =

{
0 if ⟨ tl p

a−1⟩ ≥ ⟨ j
q−1 p

a−1⟩,
1 if ⟨ tl p

a−1⟩ < ⟨ j
q−1 p

a−1⟩.
We note that

⟨ j
q−1 p

f−1⟩ = ⟨j q
f ′−1−1
q−1 pr−1 + j

q−1 p
r−1⟩ = ⟨ j

q−1 p
r−1⟩. (3.7)

Also, as gcd(p, l) = 1, we have that for any non-negative integer a,

{t | 1 ≤ t < l, gcd(t, l) = 1}
(mod l)
≡ {t pa | 1 ≤ t < l, gcd(t, l) = 1} (3.8)

and hence ∑
1≤t<l

gcd(t,l)=1

⟨ tl p
f−1⟩ =

∑
1≤t<l

gcd(t,l)=1

⟨ tl p
r−1⟩. (3.9)
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Then, combining (3.7) and (3.8) we get that∑
1≤t<l

gcd(t,l)=1

δt,j(f) = |{t | 1 ≤ t < l, gcd(t, l) = 1, ⟨ tl p
f−1⟩ < ⟨ j

q−1 p
f−1⟩}|

= |{t | 1 ≤ t < l, gcd(t, l) = 1, ⟨ tl p
f−1⟩ < ⟨ j

q−1 p
r−1⟩}|

= |{t | 1 ≤ t < l, gcd(t, l) = 1, ⟨ tl ⟩ < ⟨ j
q−1 p

r−1⟩}|

= |{t | 1 ≤ t < l, gcd(t, l) = 1, ⟨ tl p
r−1⟩ < ⟨ j

q−1 p
r−1⟩}|

=
∑
1≤t<l

gcd(t,l)=1

δt,j(r) (3.10)

Accounting for (3.7), (3.9) and (3.10) in (3.6) completes the proof. □

4. Proofs of Main Results

4.1. Finite Field Setting. We first prove Theorems 2.1 & 2.2.

Proof of Theorem 2.1. We expand the summands by definition and then apply Proposition
3.2 and Theorem 3.1, as follows:

n−1∑
l=0

mFm

(
An1 , An2 , . . . , Anm
Bn

1 , Bn
2 , . . . , Bn

m

∣∣∣ ζ ln · λ)
q

=
−1

q − 1

n−1∑
l=0

∑
χ∈F̂∗

q

m∏
i=1

g(Ani χ)

g(Ani )

g(Bn
i χ)

g(Bn
i )

χ(−1)mχ(ζ ln · λ)

=
−1

q − 1

∑
χ∈F̂∗

q

m∏
i=1

g(Ani χ)

g(Ani )

g(Bn
i χ)

g(Bn
i )

χ(−1)mχ(λ)
n−1∑
l=0

χ(ζ ln)

=
−n
q − 1

∑
χ∈F̂∗

q

χ=ψn

m∏
i=1

g(Ani χ)

g(Ani )

g(Bn
i χ)

g(Bn
i )

χ(−1)mχ(λ)

=
−1

q − 1

∑
ψ∈F̂∗

q

m∏
i=1

g(Ani ψ
n)

g(Ani )

g(Bn
i ψ

n)

g(Bn
i )

ψ(−1)nmψ(λn)

=
−1

q − 1

∑
ψ∈F̂∗

q

m∏
i=1

n−1∏
l=0

g(χlnAiψ)

g(χlnAi)

g(χlnBiψ)

g(χlnBi)
ψ(−1)nmψ(λn)

= nmFnm

(
Ai χ

l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

Bi χ
l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

∣∣∣ λn)
q

.

□
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Proof of Theorem 2.2. By Definition 1.1, we have

nmFnm

(
Ai χ

l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

Bi χ
l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

∣∣∣ λ)
q

=
−1

q − 1

∑
χ∈F̂∗

q

m∏
i=1

n−1∏
l=0

g(χlnAiχ)

g(χlnAi)

g(χlnBiχ)

g(χlnBi)
χ(−1)nmχ(λ). (4.1)

Making the change of variable χ→ χχn in the right hand side of (4.1) gives us

nmFnm

(
Ai χ

l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

Bi χ
l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

∣∣∣ λ)
q

= χn(λ) · nmFnm
(
Ai χ

l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

Bi χ
l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

∣∣∣ λ)
q

.

Using the fact that χn(λ) = 1 if and only if λ is an n-th power, completes the proof. □

4.2. p-adic Setting. We now prove Lemma 2.6 and Theorems 2.7-2.9.

Proof of Lemma 2.6. The case when q = p was proven in [36, Lemma 3.3] and the same

approach works here. If we let χ = ωj , Ai = ωai(q−1) and Bi = ωbi(q−1), then it is
straightforward to show, using the Gross-Koblitz formula, Theorem 3.5, that

g(Aiχ)

g(Ai)

g(Biχ)

g(Bi)

=

r−1∏
k=0

Γp
(
⟨(ai − j

q−1)p
k⟩
)

Γp
(
⟨aipk⟩

) Γp
(
⟨(−bi + j

q−1)p
k⟩
)

Γp
(
⟨−bipk⟩

) (−p)−⌊⟨aipk⟩− jpk

q−1
⌋−⌊⟨−bipk⟩+ jpk

q−1
⌋
. (4.2)

Substituting for (4.2) and χ = ωj in Definition 2.5 yields the result. □

Proof of Theorem 2.7. Let ({ai}, {bi}) be defined over Q with corresponding exponents
({pi : 1 ≤ i ≤ t}, {qi : 1 ≤ i ≤ s}), i.e.,

m∏
i=1

x− e2πiai

x− e2πibi
=

∏t
i=1 x

pi − 1∏s
i=1 x

qi − 1
,

with t and s minimal. Recall, D(x) := gcd(
∏t
i=1 x

pi − 1,
∏s
i=1 x

qi − 1), of degree δ, has

zeros exp
(
2πi ch
q−1

)
for 1 ≤ h ≤ δ and s(c) denotes the multiplicity of the zero exp

(
2πi c
q−1

)
.
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Then

m∏
i=1

Γp
(
⟨(ai − j

q−1)p
k⟩
)

Γp
(
⟨aipk⟩

) Γp
(
⟨(−bi + j

q−1)p
k⟩
)

Γp
(
⟨−bipk⟩

) (−p)−⌊⟨aipk⟩− jpk

q−1
⌋−⌊⟨−bipk⟩+ jpk

q−1
⌋

=
t∏
i=1

pi−1∏
h=0

Γp
(
⟨( hpi −

j
q−1)p

k⟩
)

Γp
(
⟨ hpi p

k⟩
) (−p)−⌊⟨ h

pi
pk⟩− jpk

q−1
⌋

×
s∏
i=1

qi−1∏
h=0

Γp
(
⟨(− h

qi
+ j

q−1)p
k⟩
)

Γp
(
⟨− h

qi
pk⟩
) (−p)−⌊⟨− h

qi
pk⟩+ jpk

q−1
⌋

×
δ∏

h=1

Γp
(
⟨ ch
q−1p

k⟩
)

Γp
(
⟨( ch
q−1 − j

q−1)p
k⟩
) Γp

(
⟨− ch

q−1p
k⟩
)

Γp
(
⟨(− ch

q−1 + j
q−1)p

k⟩
)(−p)⌊⟨ ch

q−1
pk⟩− jpk

q−1
⌋+⌊⟨− ch

q−1
pk⟩+ jpk

q−1
⌋
.

(4.3)

For a given i, with 1 ≤ i ≤ t, choose l ∈ Z such that 0 ≤ l − jpi
q−1 < 1. Then, noting that

{l + h | h = 0, . . . , pi − 1} ≡ {h | h = 0, . . . , pi − 1} (mod pi) and applying Theorem 3.4

with n = pi and x = l − jpi
q−1 we get that

r−1∏
k=0

pi−1∏
h=0

Γp
(
⟨( hpi −

j
q−1)p

k⟩
)

Γp
(
⟨ hpi p

k⟩
) =

r−1∏
k=0

pi−1∏
h=0

Γp
(
⟨
(
h− jpi

q−1

pi

)
pk⟩
)

Γp
(
⟨ hpi p

k⟩
)

=
r−1∏
k=0

pi−1∏
h=0

Γp
(
⟨
(
l+h− jpi

q−1

pi

)
pk⟩
)

Γp
(
⟨ hpi p

k⟩
)

= ω
(
p
(q−1)(l− jpi

q−1
)

i

) r−1∏
k=0

Γp

(
⟨
(
l − jpi

q−1

)
pk⟩
)

= ω
(
p−jpii

) r−1∏
k=0

Γp

(
⟨− jpi

q−1p
k⟩
)
. (4.4)

Similarly, with 0 ≤ jqi
q−1 − l < 1, we have

r−1∏
k=0

qi−1∏
h=0

Γp
(
⟨(− h

qi
+ j

q−1)p
k⟩
)

Γp
(
⟨− h

qi
pk⟩
) = ω

(
qjqii

) r−1∏
k=0

Γp

(
⟨ jqiq−1p

k⟩
)
. (4.5)

As ai, bi ∈ Zp, p does not divide their denominators and, hence, gcd(p, pi) = gcd(p, qi) =

1. So {hpk | h = 0, . . . , pi − 1} ≡ {h | h = 0, . . . , pi − 1} (mod pi) and

pi−1∑
h=0

⌊⟨ hpi p
k⟩ − jpk

q−1⌋ =
pi−1∑
h=0

⌊⟨ hpi ⟩ −
jpk

q−1⌋ =
pi−1∑
h=0

⌊ hpi −
jpk

q−1⌋ = ⌊−jpiq−1 p
k⌋, (4.6)
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where we have used Hermite’s identity: for a positive integer m, ⌊mx⌋ =
∑m−1

h=0

⌊
x+ h

m

⌋
.

Similarly,

qi−1∑
h=0

⌊⟨− h
qi
pk⟩+ jpk

q−1⌋ = ⌊ jqiq−1p
k⌋. (4.7)

Accounting for (4.4)-(4.7) in (4.3) and substituting the result into Definition 2.5, we see
that it now suffices to prove

δ∏
h=1

r−1∏
k=0

Γp
(
⟨ ch
q−1p

k⟩
)

Γp
(
⟨( ch
q−1 − j

q−1)p
k⟩
) Γp

(
⟨− ch

q−1p
k⟩
)

Γp
(
⟨(− ch

q−1 + j
q−1)p

k⟩
)(−p)⌊⟨ ch

q−1
pk⟩− jpk

q−1
⌋+⌊⟨− ch

q−1
pk⟩+ jpk

q−1
⌋

= q−s(0)+s(j) (−1)jδ. (4.8)

D(x) is necessarily the product of some cyclotomic polynomials, i.e., D(x) =
∏
l∈S Φl(x)

for some set S of positive integers coprime to p, where Φl(x) denotes the l-th cyclotomic
polynomial. Then the zeros of D(x) are necessarily all the zeros of these Φl(x). If l = 1

or l = 2, then Φl(x) has only one zero corresponding to exp
(
2πi c
q−1

)
with c = 0 or c = q−1

2 ,

respectively, which are both integers. So, if ch ̸∈ Z, then exp
(
2πi ch
q−1

)
is a zero of a

cyclotomic polynomial Φl(x) with l ≥ 3. The zeros of Φl(x) are {exp
(
2πi t
l

)
|1 ≤ t <

l, gcd(t, l) = 1}. Now, exp
(
2πi ch
q−1

)
= exp

(
2πi t
l

)
, with ch ∈ Z, if and only if q ≡ 1 (mod l).

In which case, all zeros of Φl(x) can be written as exp
(
2πi c
q−1

)
for c ∈ Z. Conversely, if q ̸≡ 1

(mod l) then all zeros, when written in the form exp
(
2πi c
q−1

)
will have c ̸∈ Z. Consequently,

if we let S′ be the subset of S containing all l such that q ̸≡ 1 (mod l), then{
ch
q − 1

| ch ̸∈ Z
}

=
⋃
l∈S′

{
t

l
| 1 ≤ t < l, gcd(t, l) = 1

}
.

If we let δ = δ1+δ2, where δ1 = |{h | ch ∈ Z}| and δ2 = |{h | ch /∈ Z}|, then δ2 =
∑

l∈S′ ϕ(l)
is even, as l ≥ 3 for all l ∈ S′ (here ϕ is Euler’s totient function), and, δ ≡ δ1 (mod 2).

We now examine (4.8) when ch ∈ Z. Straightforward applications of the Gross-Koblitz
formula (Theorem 3.5) and (3.1) yield

δ∏
h=1
ch∈Z

r−1∏
k=0

Γp
(
⟨ ch
q−1p

k⟩
)

Γp
(
⟨( ch
q−1 − j

q−1)p
k⟩
) Γp

(
⟨− ch

q−1p
k⟩
)

Γp
(
⟨(− ch

q−1 + j
q−1)p

k⟩
)(−p)⌊⟨ ch

q−1
pk⟩− jpk

q−1
⌋+⌊⟨− ch

q−1
pk⟩+ jpk

q−1
⌋

=
δ∏

h=1
ch∈Z

g(ωch)g(ω−ch)

g(ωch−j)g(ω−ch+j)
= q−s(0)+s(j) ω(−1)jδ1 = q−s(0)+s(j) (−1)jδ. (4.9)

Next we examine (4.8) when ch /∈ Z. As ch ̸= 0, we have chp
k

q−1 ̸∈ Z and so ⟨− chp
k

q−1 ⟩ =
1 − ⟨ chp

k

q−1 ⟩. Similarly, ch ̸= j implies ( ch
q−1 − j

q−1)p
k ̸∈ Z. Therefore, as ⌊x⌋ + ⌊−x⌋ = −1
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when x ̸∈ Z,

⌊⟨ chp
k

q−1 ⟩ −
jpk

q−1⌋+ ⌊⟨− chp
k

q−1 ⟩+
jpk

q−1⌋ = ⌊⟨ chp
k

q−1 ⟩ −
jpk

q−1⌋+ ⌊1− ⟨ chp
k

q−1 ⟩+
jpk

q−1⌋

= ⌊ chp
k

q−1 − ⌊ chp
k

q−1 ⌋ −
jpk

q−1⌋+ ⌊1− chp
k

q−1 + ⌊ chp
k

q−1 ⌋+
jpk

q−1⌋

= 1 + ⌊ chp
k

q−1 − jpk

q−1⌋+ ⌊− chp
k

q−1 + jpk

q−1⌋ = 0. (4.10)

Applying (3.3) we see that

δ∏
h=1
ch /∈Z

r−1∏
k=0

Γp
(
⟨ ch
q−1p

k⟩
)
Γp
(
⟨− ch

q−1p
k⟩
)

=

r−1∏
k=0

∏
l∈S′

∏
1≤t<l

gcd(t,l)=1

Γp
(
⟨ tlp

k⟩
)
Γp
(
⟨− t

lp
k⟩
)

=
r−1∏
k=0

∏
l∈S′

∏
1≤t< l

2
gcd(t,l)=1

Γp
(
⟨ tlp

k⟩
)
Γp
(
⟨− t

lp
k⟩
)
Γp
(
⟨(1− t

l )p
k⟩
)
Γp
(
⟨−(1− t

l )p
k⟩
)

=
r−1∏
k=0

∏
l∈S′

∏
1≤t< l

2
gcd(t,l)=1

(
Γp
(
⟨ tlp

k⟩
)
Γp
(
⟨− t

lp
k⟩
))2

=
r−1∏
k=0

∏
l∈S′

∏
1≤t< l

2
gcd(t,l)=1

(
Γp
(
⟨ tlp

k⟩
)
Γp
(
1− ⟨ tlp

k⟩
))2

= 1. (4.11)

Similarly,

δ∏
h=1
ch /∈Z

r−1∏
k=0

Γp
(
⟨( ch
q−1 − j

q−1)p
k⟩
)
Γp
(
⟨(− ch

q−1 + j
q−1)p

k⟩
)

=

r−1∏
k=0

∏
l∈S′

∏
1≤t<l

gcd(t,l)=1

Γp
(
⟨( tl −

j
q−1)p

k⟩
)
Γp
(
⟨(− t

l +
j
q−1)p

k⟩
)

=
r−1∏
k=0

∏
l∈S′

∏
1≤t<l

gcd(t,l)=1

Γp
(
⟨( tl −

j
q−1)p

k⟩
)
Γp
(
1− ⟨( tl −

j
q−1)p

k⟩
)

=
r−1∏
k=0

∏
l∈S′

∏
1≤t<l

gcd(t,l)=1

(−1)
⟨( tl−

j
q−1 )p

k⟩
0 . (4.12)
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For a given l ∈ S′, let f ′ ∈ Z+ be chosen such that qf
′ ≡ 1 (mod l). We note that f ′ > 1.

We let f = rf ′. Then (pf − 1)⟨ tl −
j
q−1⟩ ∈ Z. So, by Corollary 3.7, with a = ⟨ tl −

j
q−1⟩,

and Lemma 3.8 we have that∑
1≤t<l

gcd(t,l)=1

r−1∑
k=0

(
⟨( tl −

j
q−1)p

k⟩
)
0

=
∑
1≤t<l

gcd(t,l)=1

r−1∑
k=0

(
⟨⟨ tl −

j
q−1⟩p

k⟩
)
0

≡
∑
1≤t<l

gcd(t,l)=1

r − (pf − 1)⟨ tl −
j
q−1⟩+ ⌊⟨ tl −

j
q−1⟩p

f−1⌋ − ⌊⟨ tl −
j
q−1⟩p

r−1⌋

≡ ϕ(l) r −
∑
1≤t<l

gcd(t,l)=1

(pf − 1)⟨ tl −
j
q−1⟩

≡
∑

1≤t< l
2

gcd(t,l)=1

(pf − 1)
(
⟨ tl −

j
q−1⟩+ ⟨1− t

l −
j
q−1⟩

)

≡
∑

1≤t< l
2

gcd(t,l)=1

(pf − 1)
(
⟨ tl −

j
q−1⟩+ ⟨− t

l −
j
q−1⟩

)

≡
∑

1≤t< l
2

gcd(t,l)=1

(pf − 1)
(
⟨ tl −

j
q−1⟩+ 1− ⟨ tl +

j
q−1⟩

)

≡
∑

1≤t< l
2

gcd(t,l)=1

(pf − 1)
(
t
l −

j
q−1 − ⌊ tl −

j
q−1⌋ −

t
l −

j
q−1 + ⌊ tl +

j
q−1⌋+ 1

)

≡
∑

1≤t< l
2

gcd(t,l)=1

(pf − 1)
(
− 2j
q−1 − ⌊ tl −

j
q−1⌋+ ⌊ tl +

j
q−1⌋+ 1

)

≡ 0 (mod 2), (4.13)

as pf − 1 is even and (pf − 1) j
q−1 = (qf

′ − 1) j
q−1 ∈ Z. Combining (4.10)-(4.13) we get that

δ∏
h=1
ch /∈Z

r−1∏
k=0

Γp
(
⟨ ch
q−1p

k⟩
)

Γp
(
⟨( ch
q−1 − j

q−1)p
k⟩
) Γp

(
⟨− ch

q−1p
k⟩
)

Γp
(
⟨(− ch

q−1 + j
q−1)p

k⟩
)(−p)⌊⟨ ch

q−1
pk⟩− jpk

q−1
⌋+⌊⟨− ch

q−1
pk⟩+ jpk

q−1
⌋
= 1.

(4.14)
The product of (4.9) and (4.14) establishes (4.8), which completes the proof.

□
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Proof of Theorem 2.8. Let ({nai}, {nbi}) be defined over Q with exponents ({pi : 1 ≤
i ≤ t}, {qi : 1 ≤ i ≤ s}). Then, ({ai + l

n}, {bi +
l
n}) are defined over Q with exponents

({npi : 1 ≤ i ≤ t}, {nqi : 1 ≤ i ≤ s}) as

m∏
i=1

n−1∏
l=0

x− e2πi(ai+
l
n
)

x− e2πi(bi+
l
n
)
=

m∏
i=1

n−1∏
l=0

x− e2πiaie2πi
l
n

x− e2πibie2πi
l
n

=

m∏
i=1

xn − e2πinai

xn − e2πinbi
=

∏t
i=1 x

npi − 1∏s
i=1 x

nqi − 1
.

We note that

Mn :=

∏t
i=1 (npi)

npi∏s
i=1 (nqi)

nqi = nn(
∑t

i=1 pi−
∑s

i=1 qi) ·
∏t
i=1 pi

npi∏s
i=1 qi

nqi
=

(∏t
i=1 pi

pi∏s
i=1 qi

qi

)n
=Mn.

We also note that if D(x) = gcd(
∏t
i=1 x

pi − 1,
∏s
i=1 x

qi − 1) has degree δ, then Dn(x) :=

gcd(
∏t
i=1 x

npi − 1,
∏s
i=1 x

nqi − 1) has degree nδ. If z = exp
(
2πi c
q−1

)
is a zero of Dn(x) with

multiplicity sn(c) then z
n = exp

(
2πinc
q−1

)
is a zero of D(x) with the same multiplicity, i.e.

s(nc) = sn(c).
As ({nai}, {nbi}) are defined over Q we use Theorem 2.7 expand the summands and

then apply Proposition 3.2, with χ = ωj , to get

n−1∑
l=0

mGm

[
na1, na2, . . . , nam
nb1, nb2, . . . , nbm

∣∣∣ ζ ln · λ ]
q

=
−1

q − 1

q−2∑
j=0

(−1)j(m+δ) q−s(0)+s(j) ωj(M · λ)

×
r−1∏
k=0

t∏
i=1

Γp
(
⟨−jpiq−1 p

k⟩
)
(−p)⌊

−jpi
q−1 p

k⌋
s∏
i=1

Γp
(
⟨ jqiq−1p

k⟩
)
(−p)⌊

jqi
q−1p

k⌋

×
n−1∑
l=0

ωj(ζ ln)

=
−n
q − 1

q−2∑
j=0

j≡0 (mod n)

(−1)j(m+δ) q−s(0)+s(j) ωj(M · λ)

×
r−1∏
k=0

t∏
i=1

Γp
(
⟨−jpiq−1 p

k⟩
)
(−p)⌊

−jpi
q−1 p

k⌋
s∏
i=1

Γp
(
⟨ jqiq−1p

k⟩
)
(−p)⌊

jqi
q−1p

k⌋

=
−n
q − 1

q−1
n

−1∑
j=0

(−1)jn(m+δ) q−s(0)+s(jn) ωjn(M · λ)

×
r−1∏
k=0

t∏
i=1

Γp
(
⟨−jnpiq−1 p

k⟩
)
(−p)⌊

−jnpi
q−1 pk⌋

s∏
i=1

Γp
(
⟨ jnqiq−1 p

k⟩
)
(−p)⌊

jnqi
q−1 p

k⌋
.
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If we denote the summand of the last expression above as f(j) then it is easy to show that

f(j + b( q−1
n )) = f(j) for all 0 ≤ b ≤ n− 1. Thus

∑ q−1
n

−1

j=0 f(j) = 1
n

∑q−2
j=0 f(j). So,

n−1∑
l=0

mGm

[
na1, na2, . . . , nam
nb1, nb2, . . . , nbm

∣∣∣ ζ ln · λ ]
q

=
−1

q − 1

q−2∑
j=0

(−1)jn(m+δ) q−s(0)+s(jn) ωjn(M · λ)

×
r−1∏
k=0

t∏
i=1

Γp
(
⟨−jnpiq−1 p

k⟩
)
(−p)⌊

−jnpi
q−1 pk⌋

s∏
i=1

Γp
(
⟨ jnqiq−1 p

k⟩
)
(−p)⌊

jnqi
q−1 p

k⌋

=
−1

q − 1

q−2∑
j=0

(−1)j(nm+nδ) q−sn(0)+sn(j) ωj(Mn · λn)

×
r−1∏
k=0

t∏
i=1

Γp
(
⟨−jnpiq−1 p

k⟩
)
(−p)⌊

−jnpi
q−1 pk⌋

s∏
i=1

Γp
(
⟨ jnqiq−1 p

k⟩
)
(−p)⌊

jnqi
q−1 p

k⌋

= nmGnm

[
ai +

l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

bi +
l
n : 1 ≤ i ≤ m, 0 ≤ l ≤ n− 1

∣∣∣ λn ]
q

.

□

Proof of Theorem 2.9. This proof is similar to its finite field counterpart, Theorem 2.2.
We expand nmGnm[{ai + l

n}; {bi +
l
n} | λ ]q, by Definition 2.5, and make the change of

variable j → j − q−1
n to get that

nmGnm[{ai + l
n}; {bi +

l
n} | λ ]q = ω

q−1
n (λ) · nmGnm[{ai + l

n}; {bi +
l
n} | λ ]q.

Noting that ω
q−1
n (λ) ̸= 1, as λ is not an n-th power, completes the proof. □

4.3. Classical Setting.

Proof of Theorem 2.12. By definition, we see that (a)nk = nnk
∏n−1
l=0

(
a
n + l

n

)
k
. Therefore,

n−1∑
l=0

mFm

[
na1, na2, . . . , nam

nb1, nb2, . . . , nbm

∣∣∣ ξln · z] = n−1∑
l=0

∞∑
k=0

m∏
i=1

(nai)k
(nbi)k

(ξlnz)
k

=

∞∑
k=0

m∏
i=1

(nai)k
(nbi)k

zk
n−1∑
l=0

ξlkn

= n
∞∑
k=0

k≡0 (mod n)

m∏
i=1

(nai)k
(nbi)k

zk (by Cor. 3.3)

= n
∞∑
k=0

m∏
i=1

(nai)nk
(nbi)nk

znk
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= n
∞∑
k=0

m∏
i=1

n−1∏
l=0

(
ai +

l
n

)
k(

bi +
l
n

)
k

znk,

as required. □

5. Applications

In this section we give some applications of our main results. The purpose is mainly
to show the different types of applications, giving one or two illustrative examples in each
case. So, the list of such results shown here is by no means exhaustive.

5.1. Finite Field Setting. Using Corollary 2.3 we can leverage known reduction formulas
at lower orders to get new reduction formulas. We give examples when m = 2, 3, 4.

Corollary 5.1. For q odd and A2, B4 ̸= ε,

4F4

(
A, φA, B, φB

ε, φ, AB, φAB

∣∣∣ 1)
q

=
g(B2)g(A2B4)

g(A2B2)g(B4)
+
∑

R2=A2

g(A2)g(RB2)

g(R)g(A2B2)
.

Proof. Applying Corollary 2.3 with m = 2, λ = 1, A1 = A, A2 = B, B1 = ε and B2 = AB
we get that

4F4

(
A, φA, B, φB

ε, φ, AB, φAB

∣∣∣ 1)
q

= 2F2

(
A2, B2

ε, A2B2

∣∣∣ 1)
q

+ 2F2

(
A2, B2

ε, A2B2

∣∣∣− 1

)
q

.

Each 2F2 can be reduced to an expression in terms of Gauss sums by Theorems 1.9 and
1.10 in [35], respectively, giving the desired result. □

Corollary 5.2. For q ≡ 1 (mod 4) and A8 ̸= ε,

6F6

(
χ4, χ4, χ4A, χ4A, χ4A, χ4A

ε, φ, A, φA, A, φA

∣∣∣ 1)
q

= 1 +
∑
R2=φ

g(RφA2) g(RφA2)

g(R)2
+


∑
S2=χ4

g(SA) g(χ4SA)

g(φSA) g(χ4SA)
if q ≡ 1 (8),

0 otherwise.

Proof. From [19, (6.38)] we can derive that, for C4 ̸= ε,

3F3

(
φ, φC, φC

ε, C, C

∣∣∣− 1

)
q

= C(−1)×

1 +

0 if χ4C is not a square,∑
D2=χ4C

g(D) g(χ4D)

g(φD) g(χ4D)
otherwise.

 . (5.1)
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We apply Corollary 2.3 with m = 3, λ = 1, A1 = χ4, A2 = χ4A, A3 = χ4A, B1 = ε,
B2 = A and B3 = A to split the 6F6 in the statement of the corollary into 3F3(· · · |
+1) + 3F3(· · · | −1). The 3F3(· · · | +1) can be reduced by [35, Thm. 1.11] and the

3F3(· · · | −1) by (5.1), giving the desired result. □

The case corresponding to Corollary 5.2 with A = ε is covered by Corollary 5.5.

Corollary 5.3. For q ≡ 1 (mod 4), A4 ̸= ε, B8 ̸= ε and A2 ̸= φB4,

8F8

(
A, φA, χ4A, χ4A, B, φB, χ4B, χ4B

ε, φ, χ4, χ4, AB, φAB, χ4AB, χ4AB

∣∣∣ 1)
q

=
g(B4)g(A4B8)

g(A4B4)g(B8)
+
∑

R2=A4

g(A4)g(RB4)

g(R)g(A4B4)

+
g(A2) g(A2φB4)

g(A2B2) g(A2φB2)

∑
R2=A2

3F2

(
RφA2, B2, φB2

R, φ

∣∣∣ 1)
q

.

Proof. We apply Corollary 2.3 with m = 4, λ = 1, A1 = A, A2 = χ4A, A3 = B,
A4 = χ4B, B1 = ε, B2 = χ4, B3 = AB and B4 = χ4AB to split the 8F8 in the statement
of the corollary into 4F4(· · · | +1) + 4F4(· · · | −1). The 4F4(· · · | +1) can be reduced by
Corollary 5.1 and the 4F4(· · · | −1) by [35, Thm. 1.5], giving the desired result. □

5.2. p-adic Setting. We begin by looking at Corollary 2.10 in the case that ai = 1
4 ,

bi = 1, i.e.,

mGm

[ 1
2

1
2 . . . 1

2

1 1 . . . 1

∣∣∣ λ ]
q

+ mGm

[ 1
2

1
2 . . . 1

2

1 1 . . . 1

∣∣∣ − λ

]
q

= 2mG2m

[ 1
4

3
4

1
4

3
4 · · · 1

4
3
4

1 1
2 1 1

2 · · · 1 1
2

∣∣∣ λ2 ]
q

. (5.2)

We will consider (5.2) for m = 2, 3, 4 and various values of λ.

Corollary 5.4 (m = 2, λ = 1). Let q = pr be an odd prime power. When q ≡ 1 (mod 4),
we write q = x2 + y2 for integers x and y, such that x ≡ 1 (mod 4), and p ∤ x when p ≡ 1
(mod 4). Then

4G4

[ 1
4

3
4

1
4

3
4

1 1
2 1 1

2

∣∣∣ 1 ]
q

=


−1 if q ≡ 3 (mod 4),

1 + 2x if q ≡ 1 (mod 8),

1− 2x if q ≡ 5 (mod 8).

Proof. By [20, Thm. 4.9],

2G2

[ 1
2

1
2

1 1

∣∣∣ 1 ]
q

=

{
−1 if q ≡ 3 (mod 4),

+1 if q ≡ 1 (mod 4).
(5.3)
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Combining [35, Thm 1.10] and [9, Lemma 3.5] we have

2G2

[ 1
2

1
2

1 1

∣∣∣− 1

]
q

=


0 if q ≡ 3 (mod 4),

+2x if q ≡ 1 (mod 8),

−2x if q ≡ 5 (mod 8).

(5.4)

Substituting (5.3) and (5.4) into (5.2), when m = 2 and λ = 1, yields the result. □

Corollary 5.5 (m = 3, λ = 1). Let q = pr be an odd prime power. When q ≡ 1 (mod 4),
we write q = x2 + y2 for integers x and y, such that p ∤ x when p ≡ 1 (mod 4). When
q ≡ 1, 3 (mod 8), we write q = u2+2v2 for integers u and v, such that p ∤ u when p ≡ 1, 3
(mod 8). Then

6G6

[ 1
4

3
4

1
4

3
4

1
4

3
4

1 1
2 1 1

2 1 1
2

∣∣∣ 1 ]
q

=


4(x2 + u2)− 3q if q ≡ 1 (mod 8),

q − 4u2 if q ≡ 3 (mod 8),

4x2 − q if q ≡ 5 (mod 8),

−q if q ≡ 7 (mod 8).

Proof. Combining [35, Thm 1.11] and [9, Lemma 3.5] we have

3G3

[ 1
2

1
2

1
2

1 1 1

∣∣∣ 1 ]
q

=

{
0 if q ≡ 3 (mod 4),

4x2 − 2q if q ≡ 1 (mod 4).
(5.5)

From [13] we have

3G3

[ 1
2

1
2

1
2

1 1 1

∣∣∣− 1

]
q

=


4u2 − q if q ≡ 1 (mod 8),

−4u2 + q if q ≡ 3 (mod 8),

q if q ≡ 5 (mod 8),

−q if q ≡ 7 (mod 8).

(5.6)

Substituting (5.5) and (5.6) into (5.2), when m = 3 and λ = 1, yields the result. □

When q = p we can relate the hypergeometric functions in (5.3), (5.5) and (5.6) to the
p-th Fourier coefficients of certain modular forms. All modular forms will be denoted f#,
where the subscript # is the form’s unique identifier from LMFDB [32], and will have
Fourier expansion f# =

∑
n≥0 an(f#)q

n.

Corollary 5.6. Consider the modular form f32.2.a.a = η2(4z)η2(8z) =
∑

n≥1 an(f32.2.a.a)q
n ∈

S2(Γ0(32)). If p is an odd prime, then

4G4

[ 1
4

3
4

1
4

3
4

1 1
2 1 1

2

∣∣∣ 1 ]
p

= φ(−1) + ap(f32.2.a.a).

Proof. From [40, Prop. 1 & Thm. 2] we have

2G2

[ 1
2

1
2

1 1

∣∣∣− 1

]
p

= ap(f32.2.a.a). (5.7)

Substituting (5.3) and (5.7) into (5.2), when m = 2 and λ = 1, yields the result. □
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Corollary 5.7. Consider the modular forms f16.3.c.a = η6(4z) =
∑

n≥1 an(f16.3.c.a)q
n ∈

S3(Γ0(16), (
−4
· )) and f256.2.a.a =

∑
n≥1 an(f256.2.a.a)q

n ∈ S2(Γ0(256)). If p is an odd prime,
then

6G6

[ 1
4

3
4

1
4

3
4

1
4

3
4

1 1
2 1 1

2 1 1
2

∣∣∣ 1 ]
p

= ap(f16.3.c.a) + φ(2) · ap2(f256.2.a.a).

Proof. The relation

3G3

[ 1
2

1
2

1
2

1 1 1

∣∣∣ 1 ]
p

= ap(f16.3.c.a) (5.8)

corresponds to one of Rodriguez Villegas supercongruence conjectures [44] and can be
found in [39]. From [40, Thms. 5 & 6] we have

3G3

[ 1
2

1
2

1
2

1 1 1

∣∣∣− 1

]
p

= φ(2)(ap(f256.2.a.a)
2 − p) = φ(2) · ap2(f256.2.a.a). (5.9)

Substituting (5.8) and (5.9) into (5.2), when m = 3 and λ = 1, yields the result. □

In fact, we can produce similar results to Corollary 5.7, for almost any rational λ, via
the following result of Ono’s combined with the modularity theorem.

Theorem 5.8 ([40] Thm. 5). Let t ∈ Q−{0, 4} and consider the elliptic curve Et/Q given
by

Et : y
2 = x3 − t2x2 + (4t3 − t4)x+ t6 − 4t5.

If p is an odd prime for which ordp(t(t− 4)) = 0, then

3G3

[ 1
2

1
2

1
2

1 1 1

∣∣∣ 4− t

4

]
p

= φ(t2 − 4t)
(
ap(Et)

2 − p
)
,

where ap(Et) = p+ 1−#Et(Fp).
Here are some examples where one of the modular forms has complex multiplication

(CM), corresponding to the elliptic curves in [40, Thm. 6].

Corollary 5.9. Let

6G6

[
λ
]
p
:= 6G6

[ 1
4

3
4

1
4

3
4

1
4

3
4

1 1
2 1 1

2 1 1
2

∣∣∣ λ ]
p

.

(1) For p ̸= 2, 3,

6G6

[
1
64

]
p
= φ(−7) · ap2(f1568.2.a.a) + ap2(f32.2.a.a)

= φ(−7) · ap2(f1568.2.a.a) +

{
−p if p ≡ 3 (mod 4),

4x2 − p if p ≡ 1 (mod 4),

where p = x2 + y2 ≡ 1 (mod 4), with x odd.
(2) For p ̸= 2, 3,

6G6

[
64
]
p
= φ(14) · ap2(f1568.2.a.a) + φ(2) · ap2(f32.2.a.a)

= φ(14) · ap2(f1568.2.a.a) + φ(2)

{
−p if p ≡ 3 (mod 4),

4x2 − p if p ≡ 1 (mod 4),
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where p = x2 + y2 ≡ 1 (mod 4), with x odd.
(3) For p ̸= 2, 5,

6G6

[
1
16

]
p
= φ(5) · ap2(f200.2.a.b) + φ(−3) · ap2(f36.2.a.a)

= φ(5) · ap2(f200.2.a.b) + φ(−3)

{
−p if p ≡ 2 (mod 3),

4x2 − p if p ≡ 1 (mod 3),

where p = x2 + 3y2 ≡ 1 (mod 3).
(4) For p ̸= 2, 5,

6G6

[
16
]
p
= φ(5) · ap2(f200.2.a.b) + φ(3) · ap2(f36.2.a.a)

= φ(5) · ap2(f200.2.a.b) + φ(3)

{
−p if p ≡ 2 (mod 3),

4x2 − p if p ≡ 1 (mod 3),

where p = x2 + 3y2 ≡ 1 (mod 3).
(5) For p ̸= 2, 3, 5, 13,

6G6

[
1

4096

]
p
= φ(65) · ap2(f4225.2.a.h) + φ(−7) · ap2(f49.2.a.a)

= φ(65) · ap2(f4225.2.a.h) + φ(−7)

{
−p if p ≡ 3, 5, 6 (mod 7),

4x2 − p if p ≡ 1, 2, 4 (mod 7),

where p = x2 + 7y2 ≡ 1, 2, 4 (mod 7).
(6) For p ̸= 2, 3, 5, 13,

6G6

[
4096

]
p
= φ(65) · ap2(f4225.2.a.h) + φ(7) · ap2(f49.2.a.a)

= φ(65) · ap2(f4225.2.a.h) + φ(7)

{
−p if p ≡ 3, 5, 6 (mod 7),

4x2 − p if p ≡ 1, 2, 4 (mod 7),

where p = x2 + 7y2 ≡ 1, 2, 4 (mod 7).

Proof. We use (5.2) with m = 3. We then consider Theorem 5.8 for appropriate values of
t and combine with the modularity theorem (curves and modular forms are determined in
Sage [45] and LMFDB [32]). We follow [40, Thm. 6] for evaluation of coefficients in the
CM forms. (1) t = 7

2 ,
9
2 . (3) t = 5, 3. (5) t = 65

16 ,
63
16 . For cases (2), (4) and (6) we note

that [20, Thm. 4.2]

3G3

[ 1
2

1
2

1
2

1 1 1

∣∣∣ λ ]
p

= φ(−λ) · 3G3

[ 1
2

1
2

1
2

1 1 1

∣∣∣ 1
λ

]
p

.

□

We can perform a similar exercise in the case of m = 2 for a1 = 1
8 , a2 = 3

8 , b1 = 1
6 and

b2 =
1
3 , using the following result of the first author.

Theorem 5.10 ([36] Thm. 1.2). Let p > 3 be prime. Consider an elliptic curve Ea,b/Fp of
the form Ea,b : y

2 = x3+ax+b, with j(Ea,b) ̸= 0, 1728. Define ap(Ea,b) := p+1−#Ea,b(Fp).
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Then

ap(Ea,b) = φ(b) · p · 2G2

[ 1
4

3
4

1
3

2
3

∣∣∣ −27b2

4a3

]
p

. (5.10)

Combining Theorem 5.10 and Corollary 2.10, with m = 2, the following corollary is
immediate.

Corollary 5.11. Let p > 3 be prime. For Ea,b/Fp and E−a,b/Fp elliptic curves with
j(E±a,b) ̸= 0, 1728,

4G4

[ 1
8

5
8

3
8

7
8

1
6

2
3

1
3

5
6

∣∣∣ 36b4
24a6

]
p

=
φ(b)

p

(
ap(Ea,b) + ap(E−a,b)

)
.

By taking different values of a and b we can relate special values of the 4G4 in Corollary
5.11 to coefficients of modular forms. Here is one such example with a = 1 and b = 1.
Again, we use Sage [45] and LMFDB [32] to identify the relevant elliptic curves and
modular forms.

Corollary 5.12. For p > 3,

p · 4G4

[ 1
8

5
8

3
8

7
8

1
6

2
3

1
3

5
6

∣∣∣ 36
24

]
p

= φ(−1) · ap(f248.2.a.c) + ap(f92.2.a.a).

Barman and Saikia [5] provide similar results to Theorem 5.10 for the elliptic curves
E1 : y2 = x3 + ax2 + b and E2 : y2 = x3 + ax2 + bx. Their results can also be used to
provide relations similar to those in Corollaries 5.11 and 5.12.

We now examine an application of (5.2) in the case m = 4.

Corollary 5.13. For p an odd prime,

8G8

[ 1
4

3
4

1
4

3
4

1
4

3
4

1
4

3
4

1 1
2 1 1

2 1 1
2 1 1

2

∣∣∣ 1 ]
p

= ap(f8.4.a.a) + ap(f32.2.a.a) · ap(f32.3.c.a) + p

Furthermore, the right-hand side reduces to ap(f8.4.a.a) + p when p ≡ 3 (mod 4).

Proof. By a result of Ahlgren and Ono [1, Thm. 6] we have, for p odd,

4G4

[ 1
2

1
2

1
2

1
2

1 1 1 1

∣∣∣ 1 ]
p

= ap(f8.4.a.a) + p. (5.11)

In [38], the first author and Papanikolas proved that, for p odd,

4G4

[ 1
2

1
2

1
2

1
2

1 1 1 1

∣∣∣ − 1

]
p

= ap(f32.2.a.a) · ap(f32.3.c.a), (5.12)

and both sides of (5.12) are zero when p ≡ 3 (mod 4). Substituting (5.11) and (5.12) into
(5.2), when m = 4 and λ = 1, yields the result. □
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5.3. Classical Setting. Similar to the development of Corollaries 5.1-5.3 in the finite
field setting, we can use Theorem 2.12, with n = 2, to leverage known reduction formulas
at lower orders to produce reduction formulas at higher orders in the classical setting.

Corollary 5.14. For Re(b) < 1
4 ,

4F4

[
a, a+ 1

2 , b, b+ 1
2

1, 1
2 ,

1
2 + a− b, 1 + a− b

∣∣∣ 1]
=

1

2
×
[
Γ(1 + 2a− 2b)Γ(1− 4b)

Γ(1− 2b)Γ(1 + 2a− 4b)
+

Γ(1 + 2a− 2b)Γ(1 + a)

Γ(1 + 2a)Γ(1 + a− 2b)

]
.

Proof. We use Theorem 2.12 with n = m = 2, λ = 1, a1 = a, a2 = b, b1 = 1
2 and b2 =

1
2+a−b to split the 4F4 in the statement of the corollary into 2F2 [· · · | +1]+2F2 [· · · | −1].
The 2F2 [· · · | +1] can be reduced by Gauss’ theorem [3, p. 2] and the 2F2 [· · · | −1] by
Kummer’s theorem [3, p. 9], giving the desired result. □

Corollary 5.14 is a direct analogue of Corollary 5.1 and is already known. It appears
(without proof) in [42, eqn. 11, p. 555].

Corollary 5.15.

6F6

[ 1
4 ,

3
4 ,

1
4 + a, 3

4 + a, 1
4 − a, 3

4 − a

1, 1
2 , 1− a, 1

2 − a, 1 + a, 1
2 + a

∣∣∣ 1]

=
Γ(1 + 2a)Γ(1− 2a)

4π

[
Γ
(
1
4

)2
Γ
(
3
4 − 2a

)
Γ
(
3
4 + 2a

) + √
2π2

Γ
(
a+ 5

8

)
Γ
(
a+ 7

8

)
Γ
(
−a+ 5

8

)
Γ
(
−a+ 7

8

)] .
Proof. Combining Whipple’s [53, eqn. (9.3)] and [53, eqn. (10.3)] we get that

3F3

[ 1
2 ,

1
2 + a, 1

2 − a

1, 1 + a, 1− a

∣∣∣ − 1

]
=

π Γ(1 + a)Γ(1− a)√
2Γ
(
a
2 + 5

8

)
Γ
(
a
2 + 7

8

)
Γ
(
−a

2 + 5
8

)
Γ
(
−a

2 + 7
8

) . (5.13)

We now use Theorem 2.12 with n = 2, m = 3, λ = 1, a1 = 1
4 , a2 = 1

4 + a, a3 = 1
4 − a,

b1 = 1
2 , b2 = 1

2 − a and b3 = 1
2 + a to split the 6F6 in the statement of the corollary into

3F3 [· · · | +1] + 3F3 [· · · | −1]. The 3F3 [· · · | +1] can be evaluated using Dixon’s theorem
[53, eqn. (10.1)] and the 3F3 [· · · | −1] by (5.13), giving the desired result. □

Corollary 5.15 is a direct analogue of Corollary 5.2. We are conscious of the fact that it
is unlikely such a result is not already known. However, we haven’t found Corollary 5.15
in the literature.
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Corollary 5.16. For Re(b) < 1
8 ,

8F8

[
a, a+ 1

2 , a+ 1
4 , a+ 3

4 , b, b+ 1
2 , b+ 1

4 , b+ 3
4

1, 1
2 ,

1
4 ,

3
4 ,

1
2 + a− b, 1 + a− b, 1

4 + a− b, 3
4 + a− b

∣∣∣ 1]
=

1

4
×
[
Γ(1 + 4a− 4b)Γ(1− 8b)

Γ(1− 4b)Γ(1 + 4a− 8b)
+

Γ(1 + 4a− 4b)Γ(1 + 2a)

Γ(1 + 4a)Γ(1 + 2a− 4b)

]
+

Γ(1 + 2a− 2b) Γ
(
1
2 + 2a− 2b

)
2Γ(1 + 2a) Γ

(
1
2 + 2a− 4b

) 3F2

[ 1
2 − a, 2b, 2b+ 1

2

1 + a, 1
2

∣∣∣ 1].
Proof. Again, we use Theorem 2.12, this time with n = 2,m = 4, λ = 1, a1 = a, a2 = a+ 1

4 ,

a3 = b, a4 = b + 1
4 , b1 = 1

2 , b2 = 1
4 , b3 = 1

2 + a − b and b4 = 1
4 + a − b. This splits the

8F8 in the statement of the corollary into 4F4 [· · · | +1] + 4F4 [· · · | −1]. The 4F4 [· · · | +1]
can be evaluated using Corollary 5.14 and the 4F4 [· · · | −1] by a result of Whipple [53,
eqn. (3.4)], giving the desired result. □

Corollary 5.16 is a direct analogue of Corollary 5.3 and, again, we haven’t found it in
the literature.

6. More on the Relationship between F (· · · )q and G[· · · ]q
We recall the discussion at the end of Section 2.1 and beginning of Section 2.2 regarding

the domains of F (· · · )q and G[· · · ]q, when considered as functions of q. Let F∗
q = ⟨T ⟩. For

fixed ai, bi ∈ Q, if we consider mFm({T ai(q−1)}; {T bi(q−1)} | · )q to be a function of q, then
the domain is all q ≡ 1 (mod d), where d is the least common denominator of the elements

in {ai}∪{bi}, ensuring ai(q−1), bi(q−1) ∈ Z. Via Lemma 2.6, mFm({T ai(q−1)}; {T bi(q−1)} |
· )q extends to mGm[{ai}; {bi} | · ]q, whose domain is all q relatively prime to d.

It is possible to extend the domain of mFm({T ai(q−1)}; {T bi(q−1)} | · )q without moving
to the p-adic setting, in certain circumstances. Specifically, if the parameters ({ai}, {bi}),
or some subset thereof, are defined over Q. Using the same notation as in Section 2.2, if
({ai}, {bi}) are defined over Q with corresponding exponents ({pi : 1 ≤ i ≤ t}, {qi : 1 ≤
i ≤ s}), then [7], for Ai = T ai(q−1) and T bi(q−1),

mFm

(
A1, A2, . . . , Am
B1, B2, . . . , Bm

∣∣∣ λ)
q

=
(−1)t+s+1

q − 1

q−2∑
j=0

q−s(0)+s(−j)
t∏
i=1

g(T jpi)
s∏
i=1

g(T−jqi) · T j((−1)m+δM−1λ). (6.1)

We can use (6.1) as the definition of mFm({T ai(q−1)}; {T bi(q−1)} | λ )q if ({ai}, {bi})
are defined over Q, and then its domain is all q relatively prime to d, the same as

mGm[{ai}; {bi} | · ]q. Letting T = ω in (6.1), then using the Gross-Koblitz formula, Theo-
rem 3.5, followed by the change of variable j → (q− 1)− j, we get, via Theorem 2.7, that

mFm({T ai(q−1)}; {T bi(q−1)} | λ )q = mGm[{ai}; {bi} | λ−1 ]q. So, if ({ai}, {bi}) are defined

over Q, then mFm({T ai(q−1)}; {T bi(q−1)} | · )q, as defined by (6.1), and mGm[{ai}; {bi} | · ]q
are equivalent, up to inversion of the argument λ. Therefore, Theorem 2.8; Corollary
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2.10; equation (5.2); and, Corollaries 5.4-5.13 all still hold with mGm[{ai}; {bi} |
λ ]q replaced by mFm({T ai(q−1)}; {T bi(q−1)} | λ−1 )q, as defined by (6.1).

The case where some, but not necessarily all, of the ({ai}, {bi}) parameters are defined
over Q was considered by Doran et al. in [11]. Let Sa and Sb be submultisets of {ai} and
{bi}, respectively, such that ∏

a∈Sa
x− e2πia∏

b∈Sb
x− e2πib

=

∏t
i=1 x

pi − 1∏s
i=1 x

qi − 1
,

for some positive integers p1, p2, . . . , pt and q1, q2, . . . , qs, with t and s minimal. We say
(Sa, Sb) are defined over Q and we use the the same notation D(x), δ, s(c) and M , as

defined in Section 2.2. Let S
′
a = {ai} \ Sa and S

′
b = {bi} \ Sb. Then [11], for Ai = T ai(q−1)

and T bi(q−1),

mFm

(
A1, A2, . . . , Am
B1, B2, . . . , Bm

∣∣∣ λ)
q

=
(−1)t+s+1

q − 1

q−2∑
j=0

q−s(0)+s(−j)
t∏
i=1

g(T jpi)
s∏
i=1

g(T−jqi)

×
∏
a∈S′

a

g(T j+a(q−1))

g(T a(q−1))

∏
b∈S′

b

g(T−j−b(q−1))

g(T−b(q−1))
· T j((−1)m+δM−1λ). (6.2)

So, we can use (6.2) as the definition of mFm({T ai(q−1)}; {T bi(q−1)} | λ )q if (Sa, Sb) are
defined over Q, and then its domain is all q, such that q is relatively prime to d1, where
d1 is the least common denominator of of the elements in Sa ∪ Sb, and, q ≡ 1 (mod d2),

where d2 is the least common denominator of the elements in S
′
a ∪ S

′
b. If ({ai}, {bi}) are

defined over Q, then, taking Sa = {ai} and Sb = {bi}, we recover (6.1).
If (Sa, Sb) are defined over Q, it is straightforward to show, using the same approach as

in the proof of Theorem 2.7, that

mGm

[
a1, a2, . . . , am
b1, b2, . . . , bm

∣∣∣ λ ]
q

=
−1

q − 1

q−2∑
j=0

(−1)j(m+δ) q−s(0)+s(j) ωj(M · λ)

×
r−1∏
k=0

t∏
i=1

Γp
(
⟨−jpiq−1 p

k⟩
)
(−p)−⌊−jpiq−1 p

k⌋
s∏
i=1

Γp
(
⟨ jqiq−1p

k⟩
)
(−p)−⌊ jqiq−1p

k⌋

×
∏
a∈S′

a

Γp
(
⟨(a− j

q−1)p
k⟩
)

Γp
(
⟨apk⟩

) (−p)−⌊⟨apk⟩− jpk

q−1
⌋ ∏
b∈S′

b

Γp
(
⟨(−b+ j

q−1)p
k⟩
)

Γp
(
⟨−bpk⟩

) (−p)−⌊⟨−bipk⟩+ jpk

q−1
⌋
.

(6.3)

Again, letting T = ω in (6.2), then using the Gross-Koblitz formula, Theorem 3.5, followed

by the change of variable j → (q−1)−j, we get, via (6.3), that mFm({T ai(q−1)}; {T bi(q−1)} |
λ )q = mGm[{ai}; {bi} | λ−1 ]q. However, in this case, if the full ({ai}, {bi}) are not

defined over Q, then the domain of mFm({T ai(q−1)}; {T bi(q−1)} | · )q is smaller than that
of mGm[{ai}; {bi} | · ]q.
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This is the reason we use G[· · · ]q. While G[· · · ]q will coincide with F (· · · )q (up to
inversion of the argument λ) on any domain on which F (· · · )q is defined, G[· · · ]q will
always be defined on the largest domain possible, i.e., when q is relatively prime to d,
where d is the least common denominator of the elements in {ai} ∪ {bi}.
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