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Abstract. We prove multiplicative relations among certain Fourier coefficients of degree
two Siegel eigenforms constructed from Igusa theta constants with half-integral charac-
teristics. We also provide simple relations between their eigenvalues and their Fourier
coefficients.

1. Introduction

One of the most important questions relating to modular forms is that of multiplicity
one, which asks, is a Hecke eigenform uniquely determined (up to scalar multiple) by its
eigenvalues. A closely related question is, given an eigenform’s eigenvalues, is it possible
to explicitly determine its Fourier coefficients. In the case of elliptic modular forms, we
can answer both questions in the affirmative (after accounting for the theory of newforms)
and we have simple relations linking the eigenvalues to the Fourier coefficients, as well
as multiplicative relations among the coefficients, allowing us to reconstruct an eigenform
from its eigenvalues.

In the case of Siegel modular forms in general, the picture is less clear. In a recent break-
through, Schmidt [10] provides a multiplicity one result for degree two Siegel eigenforms
on the full modular group. In particular, if F1, F2 are cuspidal Hecke eigenforms of weight
k, with eigenvalues λ1(·), λ2(·), respectively, and, for almost all primes p, λ1(pr) = λ2(pr)
for r ∈ {1, 2}, then F1 is a scalar multiple of F2. In fact, Schmidt proves a stronger result,
where F1 and F2 are not assumed to have the same weight, and these results form part
of a more general result establishing multiplicity one for paramodular cusp forms. More
recently, Schmidt’s result has been strengthened to hold if the eigenvalues agree at a set
of primes of positive upper density, by Kumar, Meher and Shankhadhar [8].

However, it is, as yet, unclear as to whether it is possible to explicitly reconstruct a Siegel
eigenform’s Fourier coefficients from its eigenvalues. A modest step in this direction by this
author in [9], following the work of Andrianov [1], provides simple relations between the
eigenvalues and the Fourier coefficients, and also multiplicative relations among the Fourier
coefficients, in certain cases. Specifically, let F (Z) =

∑
N≥0 a(N) exp (2πiTr(NZ)) be a

degree two weight k Hecke eigenform on the full modular group, normalized with a(I) = 1
(where I is the identity matrix), with eigenvalues λ(·). Then, for any odd prime p,

λ(p) = a(pI) +
(
1 +

(−1
p

))
pk−2
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and

λ(p2) = a(p2I) +
(
1 +

(−1
p

)) (
pk−2 a(pI) + p2k−4

)
,

where
( ·
p

)
is the Legendre symbol modulo p. Also, for m,n ∈ Z+ with gcd(m,n) = 1,

a (mnI) = a (mI) a (nI) .

Relations for a(pr+1I) in terms of a(prI) and a(pr−1I), r ∈ Z+, are also provided. These
results were subsequently extended to eigenforms on Γ0(N) by Walling [11]. However,
Siegel modular forms constructed from Igusa theta constants, which transform on the
so-called theta group and are an important class of forms, are not covered by the above
results. The purpose of this paper is to prove similar relations between the eigenvalues and
the Fourier coefficients, and also multiplicative relations among the Fourier coefficients, of
Siegel eigenforms constructed from Igusa theta constants with half-integral characteristics.
We use similar methods to those in [9]. However, the approach is less strighforward in
this case, as certain properties of the eigenform very much depend on the characteristics
of theta constants.

Before stating our results, we will need to give some background on Igusa theta con-
stants. In the next section we outline some notation. Section 3 gives details of Siegel
modular forms on principal congruence subgroups and the associated Hecke theory. In
Section 4, we introduce Igusa theta constants, outline some of their important properties
and state our results. Our main results appear in Theorems 4.4 and 4.5. We then go on
to prove these results in Section 5.

2. Notation

Let Am×n denote the set of all m×n matrices with entries in the set A. For a matrix M
we let tM denote its transpose; ifM is square, Tr(M) its trace and Det(M) its determinant;
and if M has entries in C, Im(M) its imaginary part. For a square matrix M , we can
form a vector of its diagonal entries, arranged in a natural way, which we denote diag(M).
Also, for an n×n matrix M , we let ATr(M) be the sum of the entries on its anti-diagonal,
i.e., if M = (mi,j) then ATr(M) =

∑n
i=1mi,n+1−i. If a matrix M ∈ Rn×n is positive

definite, then we write M > 0, and if M is positive semi-definite, we write M ≥ 0. If M
is a square matrix we set e{M} := exp (πiTr(M)). We denote the n× n identity matrix
by In. Throughout this paper, we will often drop subscripts and/or superscripts from
notation when the size/degree is clear from the context.

3. Siegel Modular Forms and Hecke Operators

We start with a brief summary of Siegel modular forms. See [2] for more details. The
Siegel half-plane Hg of degree g is defined by

Hg :=
{
Z ∈ Cg×g | tZ = Z, Im(Z) > 0

}
.

Let

Γg := Sp2g(Z) =
{
M∈ Z2g×2g | tMJM = J

}
, J =

(
0 I
−I 0

)
,

be the Siegel (full) modular group of degree g and let

Γg(q) := {M ∈ Γg | M ≡ I2g (mod q)}
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be its principal congruence subgroup of level q ∈ Z+. If Γ′ is a subgroup of Γg such that
Γg(q) ⊂ Γ′ for some minimal q, then we say Γ′ is a congruence subgroup of degree g and
level q. The modular group Γg acts on Hg via the operation

M · Z = (AZ +B) (CZ +D)−1 ,

where M =
(
A B
C D

)
∈ Γg, Z ∈ Hg. Let Γ′ be a congruence subgroup of degree g and

level q, and let χ be a character on Γ′. A holomorphic function F : Hg → C is called a
Siegel modular form of degree g, weight k ∈ Z+ and level q on Γ′ if

F |kM(Z) := Det(CZ +D)−k F (M · Z) = χ(M)F (Z)

for all M =
(
A B
C D

)
∈ Γ′. When g = 1 we also require the usual growth condition. The

set of all such modular forms is a finite dimensional vector space over C, which we denote
Mk(Γ

′, χ). Every F ∈Mk(Γ
′, χ) has a Fourier expansion of the form

F (Z) =
∑
N∈Rg

a(N) exp
(

2πi
q′ Tr(NZ)

)
where q′ is a positive integer depending on Γ′ and χ, and

Rg =
{
N = (Nij) ∈ Qg×g | tN = N ≥ 0;Nii, 2Nij ∈ Z

}
.

If Γ′ = Γg(q) and χ is trivial then q′ = q. We note that

a(UN tU) = Det(U)k χ(M) a(N) (3.1)

for allM =
(
tU
−1

0
0 U

)
∈ Γ′. We call F ∈Mk(Γ

′, χ) a cusp form if a(N) = 0 for all N 6> 0.

In [4], Evdokimov gives a very nice description of the Hecke theory for Siegel modular
forms on the principal congruence subgroup. We gave a brief summary here. Let

S(g) :=
{
M∈ Z2g×2g | tMJM = µ(M)J, µ(M) = 1, 2, · · ·

}
and

S(g)(q) :=

{
M∈ S(g) | M ≡

(
I 0
0 µ(M)I

)
(mod q), gcd(µ(M), q) = 1

}
.

Then every double coset Γg(q)MΓg(q), with M ∈ S(g)(q), can be written as union of

finitely many right cosets of Γg(q) in S(g)(q), i.e.,

Γg(q)MΓg(q) =
ν⋃
i=1

Γg(q)σi,

for some σi ∈ S(g)(q), ν ∈ Z+. For each such double coset we associate an operator
Tk(Γ

g(q)MΓg(q)) which acts on Mk(Γ
g(q)) as follows. For F ∈Mk(Γ

g(q)),

Tk(Γ
g(q)MΓg(q))F := µ(M)gk−

g(g+1)
2

ν∑
i=1

F |kσi.

Tk(Γ
g(q)MΓg(q)) is independent of the choice of representatives {σi} and maps Mk(Γ

g(q))
into itself. We call F ∈Mk(Γ

g(q)) an eigenform if it is an eigenfunction for all the operators

Tk(Γ
g(q)MΓg(q)), M ∈ S(g)(q). For all k, g ≥ 1, Mk(Γ

g(q)) has a basis consisting of
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eigenforms. For gcd(m, q) = 1, we define the Hecke operator of index m, Tk(m), by the
following finite sum:

Tk(m) :=
∑

µ(M)=m

Tk(Γ
g(q)MΓg(q)).

Then

Tk(m)Tk(n) = Tk(n)Tk(m) = Tk(mn), when (m,n) = 1. (3.2)

For F ∈Mk(Γ
g(q)) an eigenform, we define its eigenvalues, λF (m), for gcd(m, q) = 1, by

Tk(m)F = λF (m)F.

We will refer to λF (m) as the eigenvalue of index m associated to F .
Let Vi(m) ∈ Zg×g be the diagonal matrix whose first i diagonal entries equal m and

whose remaining diagonal entries equal 1. Now let Mi(m) ∈ Γg such that Mi(m) ≡(
tVi(m)

−1
0

0 Vi(m)

)
(mod q). For χ1, χ2, . . . , χg multiplicative characters modulo q, we define

Mk(Γ
g(q);χ1, χ2, . . . , χg)

:= {F ∈Mk(Γ
g(q)) | F |kMi(m) = χi(m)F for all i ∈ {1, 2, . . . , g}, gcd(m, q) = 1}

The space Mk(Γ
g(q);χ1, χ2, . . . , χg) is invariant under the action of the Hecke operators

and we have the direct sum decomposition [4, p. 437]

Mk(Γ
g(q)) =

⊕
χ1,χ2,...,χg

Mk(Γ
g(q);χ1, χ2, . . . , χg)

where the sum is over all sets of g multiplicative characters modulo q.

Let F (Z) =
∑

N∈R2 a(N) exp
(

2πi
q Tr(NZ)

)
∈ Mk(Γ

2(q);χ1, χ2). In [4], Evdokimov

considers the Fourier coefficients of Tk(m)F , where gcd(m, q) = 1. Given (3.2), it suffices
to study Tk(p

δ)F , for p prime with gcd(p, q) = 1 and δ ≥ 1. Let

Tk(p
δ)F (Z) =

∑
N∈R2

a(pδ;N) exp
(

2πi
q Tr(NZ)

)
.

Evdokimov provides us with a formula for a(pδ;N) in terms of a(·), the Fourier coefficients
of F , which we state in Theorem 3.1 below. We first note that if F is an eigenform, then
for any N ∈ R2 we have the relation

a(N)λ(pδ) = a(pδ;N). (3.3)

Let

R(pβ) =

{(
u1 u2

u3 u4

)
∈ SL2(Z) | (u1, u2) (mod pβ)

}
be any set of 2 × 2 integral matrices whose first row ranges over a complete set of rep-
resentatives of the equivalence classes of relatively prime integers under the equivalence
relation

(u1, u2) ∼ (u′1, u
′
2) (mod pβ)⇔ lu1 ≡ u′1, lu2 ≡ u′2 (mod pβ), (3.4)
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for some l ∈
(
Z/pβZ

)×
, and whose second rows are chosen so that u1u4 − u2u3 = 1. We

note that, if gcd(p, q) = 1, then it is possible to choose R(pβ) ⊆ Γ1(q). For N =
(

a b/2
b/2 c

)
,

let
(

au bu/2
bu/2 cu

)
= UN tU , for a given U ∈ SL2(Z).

Theorem 3.1 (Evdokimov [4, (3.7)]). For p prime, with gcd(p, q) = 1, and N =
(

a b/2
b/2 c

)
,

a(pδ;N) =
∑

α+β+γ=δ
α,β,γ≥0

χ1(pβ)χ2(pγ)p(k−2)β+(2k−3)γ
∑

U∈R(pβ)⊆Γ1(q)

au≡0 (mod pβ+γ)
bu≡cu≡0 (mod pγ)

a

(
pα
(
aup−β−γ

bu
2
p−γ

bu
2
p−γ cupβ−γ

))
.

4. Igusa Theta Constants and Statement of Results

The Igusa theta constant [6, 7] of degree g with characteristic m = (m′,m′′) ∈ R1×2g,
m′,m′′ ∈ R1×g is defined, for Z ∈ Hg, by

θm(Z) =
∑

n∈Z1×g

exp
(
πi
{

(n+m′)Z t(n+m′) + 2(n+m′) tm′′
})
.

The product of h theta constants with characteristics m1,m2, · · · ,mh can be written [3]

Θ(Z,M) :=
h∏
i=1

θmi(Z) =
∑

N∈Zh×g
e
{
Z t(N +M ′)(N +M ′) + 2 tM ′′(N +M ′)

}
where M = (M ′,M ′′) with

M ′ =


m′1
m′2,

...
m′h

 and M ′′ =


m′′1
m′′2,

...
m′′h

 .

We let m′i = (m′i1,m
′
i2, . . . ,m

′
ig) and m′′i = (m′′i1,m

′′
i2, . . . ,m

′′
ig).

For the remainder of the paper we will assume h = 2k is even and M ∈ 1
2Z

h×2g.
Then, Θ(Z,M) is a modular form of weight k on Γg(4, 8), where

Γg(8) ⊂ Γg(4, 8) :=
{(

A B
C D

)
∈ Γg(4) | diag(B) ≡ diag(C) ≡ 0 (mod 8)

}
⊂ Γg(4),

with Fourier expansion Θ(Z,M) =
∑

N∈Rg a(N) exp
(

2πi
8 Tr(NZ)

)
. In fact [3, Theorem

2.2], Θ(Z,M) ∈Mk(Γ
g(2), χM ), where, for M =

(
A B
C D

)
∈ Γg(2),

χM (M) = ρ(Det(D))k e{S(M) tMM},
with

S(M) =

(
B + tB −A tB tD −A tD
D − I − C tB −C tD

)
,

which is symmetric, and ρ is the non-trivial Dirichlet character modulo four. In particular,

if M =
(
A 0
0 D

)
, then A = tD

−1
and

χM (M) = ρ(Det(D))k exp
(
2πiTr

(
(D − I) tM ′M ′′

))
, (4.1)
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where we have used the fact that Tr(XY ) = Tr(Y X) when XY is square. We will useM
in this form often. So, for convenience, we define, for

(
tD
−1

0
0 D

)
∈ Γg(2),

ψM (D) := exp
(
2πiTr

(
(D − I) tM ′M ′′

))
=

{
+1 if Tr

(
(D − I) tM ′M ′′

)
∈ Z,

−1 otherwise,

as D − I ∈ 2Zg×g and tM ′M ′′ ∈ 1
4Z

g×g, necessarily. So, (4.1) becomes

χM (M) = ρ(Det(D))k · ψM (D). (4.2)

Furthermore, if tM ′M ′′ ∈ 1
2Z

g×g, then ψM (D) = 1 and χM (M) = ρ(Det(D))k.

Lemma 4.1. Let Θ(Z,M) =
∑

N∈Rg a(N) exp
(

2πi
8 Tr(NZ)

)
. Then

a(UN tU) = a(N) · ψM (U)

for all U ∈ Zg×g with DetU = ±1 and U ≡ I (mod 2). In particular, if tM ′M ′′ ∈ 1
2Z

g×g,
then a(UN tU) = a(N).

Proof. The result follows from the fact that Θ(Z,M) ∈Mk(Γ
g(2), χM ), and applying (3.1)

and (4.2). �

Lemma 4.2. If Θ(Z,M) is not identically zero, then Tr(tM ′M ′′) ∈ 1
2Z.

Proof. From [7, Theorem 2], if Θ(Z,M) is not identically zero then m′i
tm′′i ∈ 1

2Z for all
1 ≤ i ≤ h. The result follows as

Tr(tM ′M ′′) = Tr(tM ′′M ′) = Tr(M ′ tM ′′) =
h∑
i=1

m′i
tm′′i ,

using the facts that Tr(tX) = Tr(X), and Tr(XY ) = Tr(Y X) when XY is square. �

For the remainder of the paper we will assume Θ(Z,M) is not identically zero.

Lemma 4.3. Let g = 2. Then Θ(Z,M) ∈Mk(Γ
2(8); ρk+ω, ε), where ε is trivial and

ω :=

0 if

h∑
i=1

m′i1m
′′
i1 ∈ 1

2Z,

1 otherwise.

In particular, if tM ′M ′′ ∈ 1
2Z

2×2 then Θ(Z,M) ∈Mk(Γ
2(8); ρk, ε).

Proof. Recall, Θ(Z,M) ∈ Mk(Γ
2(8);χ1 , χ2) if Θ(Z,M)|kMi(m) = χi(m)Θ(Z,M) for all

i ∈ {1, 2}, gcd(m, 8) = 1, where Γ2 3 Mi(m) ≡
(
tVi(m)

−1
0

0 Vi(m)

)
(mod 8) and Vi(m) ∈

Z2×2 is the diagonal matrix whose first i diagonal entries equal m and whose remaining
diagonal entries equal 1. ThusMi(m) ∈ Γ2(2) and so χi(m) = χM (Mi(m)). By definition,
we see that χM (M) is completely determined by M (mod 8). Therefore,

χi(m) = ρ(Det(Vi(m)))k · ψM (Vi(m)).

When i = 2, V2(m) = (m 0
0 m ) and, so, Tr

(
(V2(m)− I) tM ′M ′′

)
= (m− 1) Tr(tM ′M ′′) ∈ Z

and Det(V2(m)) = m2 ≡ 1 (mod 8). So, χ2(m) = ε. When i = 1, V1(m) = (m 0
0 1 ) and
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Tr
(
(V1(m)− I) tM ′M ′′

)
= (m− 1)

∑h
i=1m

′
i1m

′′
i1. Thus, ψM (V1(m)) = 1 if

∑h
i=1m

′
i1m

′′
i1 ∈

1
2Z, and equals ρ(m) if not. �

Our main results exhibit simple relations between the eigenvalues and the Fourier coef-
ficients of Θ(Z,M), and also among certain Fourier coefficients, when Θ(Z,M) is a degree
two eigenform. We note that such eigenforms do exist. For example, many of weight three
are exhibited in [5].

Theorem 4.4. Let Θ(Z,M) =
∑

N∈R2 a(N) exp
(

2πi
8 Tr(NZ)

)
∈ Mk(Γ

2(8); ρk+ω, ε) be
an eigenform.

(1) If a (I) = 0, then a (nI) = 0 for all n ∈ Z+.

(2) a (I) a (mnI) = a (mI) a (nI) when gcd(m,n) = 1.

(3) a (I) a
(
pr+1I

)
= a (pI) a (prI)− p2k−3 a (I) a

(
pr−1I

)
−ρk+ω(p) pk−2 a (I)

[
a
(
pr+1 0

0 pr−1

)
+a
(
pr−1 0

0 pr+1

)
+

p−1∑
u=1

(8u)2 6≡−1 (mod p)

a
(
pr−1

(
1+(8u)2 8up

8up p2

))]
,

for all odd primes p and r ≥ 1.

Theorem 4.5. Let Θ(Z,M) =
∑

N∈R2 a(N) exp
(

2πi
8 Tr(NZ)

)
∈Mk(Γ

2(8)) be an eigen-

form, normalized with a(I) = 1. Let s := 4 ATr(tM ′M ′′). Then, for any odd prime p, the
eigenvalues of index p and p2 associated to Θ satisfy

λ(p) = a(pI) +
(
1 +

(−1
p

))
·
(

2
p

)s · pk−2

and

λ(p2) = a(p2I) +
(
1 +

(−1
p

))
·
((

2
p

)s · pk−2 · a(pI) + p2k−4
)
.

We note that if a(I) = 0 then it will not be possible to normalize a(I) = 1. However, in
this case, it should be possible to produce a similar result to Theorem 4.5, albeit more
complicated, leveraged from a non-zero coefficient, using similar methods. We note that
eigenforms constructed from theta constants with a(I) 6= 0 do exist. In fact, eight of the
11 eigenforms listed in [5] have this property.

5. Proofs

We will first need the following lemma which examines the sets R(pβ) ⊆ Γ1(q), for
β = 0, 1, 2, which appear in Theorem 3.1.

Lemma 5.1. For a positive integer q with gcd(p, q) = 1, we can choose

(1) R(p0) = {( 1 0
0 1 )};

(2) R(p1) = {
(

1 uq
0 1

)
| u = 0, 1, · · · , p− 1} ∪ {

( vp q
−wq 1

)
| vp+ wq2 = 1}; and

(3) R(p2) = {
(

1 uq
0 1

)
| u = 0, · · · , p2 − 1} ∪ {

( vup uq
−wuq 1

)
| vup + wuuq

2 = 1, gcd(vu, p) =

1;u = 1, · · · , p− 1} ∪ {
(
vp2 q
−wq 1

)
| vp2 + wq2 = 1},

and all are contained in Γ1(q).
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Proof of Lemma 5.1. In [9, Lemma 3.1] we showed that we could choose

R(p0) = {( 1 0
0 1 )};

R(p1) = {( 1 u
0 1 ) | u = 0, 1, · · · , p− 1} ∪ {

(
0 1
−1 0

)
}; and

R(p2) = {( 1 u
0 1 ) | u = 0, 1, · · · , p2 − 1} ∪ {

(
up 1
−1 0

)
| u = 0, · · · , p− 1}.

So it suffices to prove that these representations are equivalent, via (3.4), to those in
the statement of the lemma. Both representations for R(p0) are the same so (1) follows
automatically. (2): As gcd(p, q) = 1,

{uq | u = 0, · · · , p− 1}
(p)
≡ {u | u = 0, · · · , p− 1}

and so

{(1, uq) | u = 0, · · · , p− 1} ∼ {(1, u) | u = 0, · · · , p− 1},
in some order. Choose integers v and w such that vp+ wq2 = 1. Then

(vp, q) ∼ (0, q) ∼ (0, 1),

where in the last relation we have used (3.4) with l equal to the inverse of q modulo p. (3):
In this case we will be applying the relation ∼ from (3.4) modulo p2. As gcd(p, q) = 1, we
get that

{(1, uqp) | u = 0, · · · , p− 1} ∼ {(1, up) | u = 0, · · · , p− 1},
and

{(1, uq) | u ∈
(
Z/p2Z

)×} ∼ {(1, u) | u ∈
(
Z/p2Z

)×}.
So, combining these we see that

{(1, uq) | u = 0, · · · , p2 − 1} ∼ {(1, u) | u = 0, · · · , p2 − 1}.

Let u ∈ {1, · · · , p − 1}. Note gcd(p, uq2) = 1, so we can choose integers vu and wu such
that vup + wuuq

2 = 1 with gcd(vu, p) = 1. Let u−1 be the inverse of u modulo p and let
u′ ∈ {1, · · · , p− 1} be the unique integer satisfying u′q ≡ vu (mod p). Then

(up, 1) ∼ (pq, u−1q) ∼ (vup, u
′u−1q),

and, consequently,

{(up, 1) | u = 1, · · · , p− 1} ∼ {(vup, uq) | u = 1, · · · , p− 1}

in some order. Finally, we choose integers v and w such that vp2 + wq2 = 1 and note

(0, 1) ∼ (0, q) ∼ (vp2, q).

�

We will also need the following result.

Lemma 5.2. Let p ≡ 1 (mod 4) be prime and let β be a positive integer. Then, for an
even integer µ satisfying µ2 ≡ −1 (mod pβ), there exists S ∈ Γ(2) such that

S tS =

(
(1 + µ2)/pβ µ

µ pβ

)
.
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Proof. From [9, Lemma 3.3] we know that for any µ, not necessarily even, satisfying
µ2 ≡ −1 (mod pβ), there exists S ∈ SL2(Z) with the desired property. Furthermore, we
know that S is one of

S1 =

(
(µyβ + xβ)/pβ (µxβ − yβ)/pβ

yβ xβ

)
or S2 =

(
(µyβ − xβ)/pβ −(µxβ + yβ)/pβ

yβ −xβ

)
,

depending on which one is integral, where xβ, yβ are integers such that pβ = x2
β + y2

β with

xβ odd, yβ even and p - xβ, p - yβ. If µ is even then it easy to see that S ≡ I (mod 2). �

To prove our main results we will need to simplify and evaluate the result in Theorem
3.1 under certain circumstances. Corollaries (5.3) - (5.5) are the results of these efforts.
We adopt the usual convention that a(N) = 0 if N 6∈ R2.

Corollary 5.3. For p prime, with gcd(p, q) = 1, and N =
(

a b/2
b/2 c

)
with c 6≡ 0 (mod p),

a(pδ;N) = a(pδN)+

δ∑
β=1

χ1(pβ) p(k−2)β
pβ−1∑
u=0

a+buq+c(uq)2≡0 (pβ)

a
(
pδ−β

(
(a+buq+c(uq)2)p−β b/2+cuq

b/2+cuq cpβ

))
.

Corollary 5.4. For p prime, with gcd(p, q) = 1, and N =
(

a b/2
b/2 c

)
,

a(p;N) = a(pN) + χ2(p) p2k−3 a(p−1N)

+ χ1(p) pk−2
p−1∑
u=0

a+buq+c(uq)2≡0 (p)

a
(

(a+buq+c(uq)2)p−1 b/2+cuq
b/2+cuq cp

)

+ χ1(p) pk−2 a
(

(a(vp)2+bvpq+cq2)p−1 −avpwq+b(vp−wq2)/2+cq

−avpwq+b(vp−wq2)/2+cq (a(wq)2−bwq+c)p

)
,

where v and w are any integers satisfying vp+ wq2 = 1.

Corollary 5.5. Let F (Z) = Θ(Z,M) ∈ Mk(Γ
2(8); ρk+ω, ε). Then, for p an odd prime

and m ∈ Z+ such that (m, p) = 1,

a(pδ;mI) = a(mpδI)

+



2

δ∑
β=1

p(k−2)β a(mpδ−βI) if p ≡ 1 (mod 8), or,

if p ≡ 5 (mod 8) and ATr(tM ′M ′′) ∈ 1
2Z,

2

δ∑
β=1

(−1)β p(k−2)β a(mpδ−βI) if p ≡ 5 (mod 8) and ATr(tM ′M ′′) 6∈ 1
2Z,

0 if p ≡ 3 (mod 4).

Proof of Corollary 5.3. Consider Theorem 3.1. Let U = ( u1 u2u3 u4 ). Then(
au bu/2
bu/2 cu

)
=

(
au2

1 + bu1u2 + cu2
2 au1u3 + b

2(u1u4 + u2u3) + cu2u4

au1u3 + b
2(u1u4 + u2u3) + cu2u4 au2

3 + bu3u4 + cu2
4

)
.
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We first consider the case when β = 0. By Lemma 5.1, R(p0) = {I} and so U = I is the
only term to consider in the second sum. In which case cu = c. The condition on the
second sum that cu ≡ 0 (mod pγ) then implies γ = 0, as c 6≡ 0 (mod p), and so α = δ.
Therefore, the contribution to a(pδ;N) in the β = 0 case is a(pδN).

Now we consider when β ≥ 1. The condition au ≡ 0 (mod pβ+γ) implies p | au2
1 +

bu1u2 + cu2
2. If p | u1 then p - u2 as (u1, u2) = 1 and so p | c. But c 6≡ 0 (mod p), so

p - u1. In this case (u1, u2) ∼ (1, u) (mod pβ), where u ∈ {0, 1, · · · , pβ−1} with u ≡ u−1
1 u2

(mod pβ), and u−1
1 is the inverse of u1 in

(
Z/pβZ

)×
. So we need only consider U in any

subset of R(pβ) ⊆ Γ1(q) that is ∼ equivalent to {( 1 u
0 1 ) | u = 0, 1, · · · , pβ − 1}. We choose

{
(

1 uq
0 1

)
| u = 0, 1, · · · , pβ − 1} for this subset. Note that if U =

(
1 uq
0 1

)
then(

au
bu
2

bu
2 cu

)
=

(
a+ buq + c(uq)2 b

2 + cuq
b
2 + cuq c

)
.

In particular cu = c and so the condition that cu ≡ 0 (mod pγ) implies γ = 0. Thus the
contribution to a(pδ;N) in the case β ≥ 1 is

δ∑
β=1

χ1(pβ) p(k−2)β
pβ−1∑
u=0

a+buq+c(uq)2≡0 (pβ)

a
(
pδ−β

(
(a+buq+c(uq)2)p−β b/2+cuq

b/2+cuq cpβ

))
.

�

Proof of Corollary 5.4. This follows easily from taking δ = 1 in Theorem 3.1 and applying
Lemma 5.1. �

Proof of Corollary 5.5. Taking N = mI in Corollary 5.3 and applying to Θ(Z,M) ∈
Mk(Γ

2(8); ρk+ω, ε) we get that

a(pδ;mI) = a(mpδI) +

δ∑
β=1

ρk+ω(pβ) p(k−2)β
pβ−1∑
u=0

m+m(8u)2≡0 (pβ)

a
(
mpδ−β

(
(1+(8u)2)p−β 8u

8u pβ

))

Now m + m(8u)2 ≡ 0 (mod pβ) ⇔ (8u)2 ≡ −1 (mod pβ) as (m, p) = 1. If p ≡ 3 (mod 4)
there is no such u and so a(pδ;mI) = a(mpδI). Now we examine the case when p ≡ 1
(mod 4). In this case, (8u)2 ≡ −1 (mod pβ) has two distinct solutions. From Lemma 5.2,
with µ = 8u, we know there exists S ∈ Γ(2) such that

S tS =
(

(1+(8u)2)/pβ 8u

8u pβ

)
.

Therefore

S mpδ−βI tS = mpδ−β
(

(1+(8u)2)/pβ 8u

8u pβ

)
,

and so by Lemma 4.1 we see that

a
(
mpδ−β

(
(1+(8u)2)/pβ 8u

8u pβ

))
= a(mpδ−βI) · ψM (S).

Now, ψM (S) = exp
(
2πiTr

(
(S − I) tM ′M ′′

))
, so we need only consider S modulo 4 as

tM ′M ′′ ∈ 1
4Z

g×g, necessarily. From the proof of Lemma 5.2, we see that S = S1 ≡
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xβ −yβ
yβ xβ

)
(mod 4) or S = S2 ≡

(
−xβ −yβ
yβ −xβ

)
(mod 4), where xβ, yβ are integers such that

pβ = x2
β + y2

β with xβ odd, yβ even and p - xβ, p - yβ. So,

ψM (S) = exp
(
2πi

(
(±xβ − 1) · Tr(tM ′M ′′) + yβ ·ATr(tM ′M ′′)

))
= exp

(
2πi

(
yβ ·ATr(tM ′M ′′)

))
as ±xβ − 1 is even and Tr(tM ′M ′′) ∈ 1

2Z by Lemma 4.2. If pβ ≡ 1 (mod 8) then yβ ≡ 0

(mod 4) and ψM (S) = 1. If ATr(tM ′M ′′) ∈ 1
2Z then ψM (S) = 1. The only other possibility

is that pβ ≡ 5 (mod 8), i.e., p ≡ 5 (mod 8) with β odd, and ATr(tM ′M ′′) 6∈ 1
2Z. In this

case yβ ≡ 2 (mod 4) and ψM (S) = −1. �

Proof of Theorem 4.5. We take m = 1 in Corollary 5.5 to get that

a(pδ; I) = a(pδI)+



2

δ∑
β=1

p(k−2)β a(pδ−βI) if p ≡ 1 (mod 8), or,

if p ≡ 5 (mod 8) and ATr(tM ′M ′′) ∈ 1
2Z,

2
δ∑

β=1

(−1)β p(k−2)β a(pδ−βI) if p ≡ 5 (mod 8) and ATr(tM ′M ′′) 6∈ 1
2Z,

0 if p ≡ 3 (mod 4).

Taking δ = 1, 2 and then applying (3.3), noting that ATr(tM ′M ′′) ∈ 1
4Z, a(I) = 1 and

(
1 +

(−1
p

))
·
(

2
p

)s
=


2 if p ≡ 1 (mod 8), or, p ≡ 5 (mod 8) and ATr(tM ′M ′′) ∈ 1

2Z,

−2 if p ≡ 5 (mod 8) and ATr(tM ′M ′′) 6∈ 1
2Z,

0 if p ≡ 3 (mod 4),

yields the result. �

Proof of Theorem 4.4. Let s := 4 ATr(tM ′M ′′). (1) We take δ = 1 in Corollary 5.5 and
then apply (3.3) to get that, for (m, p) = 1,

a(mI)λ(p) = a(mpI) +
(
1 +

(−1
p

))
·
(

2
p

)s · pk−2 a(mI). (5.1)

Therefore, if a(mI) = 0 then a(mpI) = 0, whenever (m, p) = 1. Inductively, we can then
show, using Corollary 5.5, that

a(mI) = 0⇒ a(mpδI) = 0, (5.2)

for any δ ∈ Z+, whenever (m, p) = 1. If n = pδ11 p
δ2
2 · · · p

δt
t for distinct primes p1, p2, · · · pt,

then repeated use of (5.2) yields

a(I) = 0⇒ a(pδ11 I) = 0⇒ a(pδ11 p
δ2
2 I) = 0⇒ · · · ⇒ a(nI) = 0,

as required.
(2) It suffices to prove

a(I)a(mpδI) = a(mI)a(pδI)



12 DERMOT McCARTHY

for all δ ∈ Z+ and (m, p) = 1. We prove this by induction on δ. Taking m = 1 in (5.1) we
have

a(I)λ(p) = a(pI) +
(
1 +

(−1
p

))
·
(

2
p

)s · pk−2 a(I). (5.3)

Then a(I) times (5.1) minus a(mI) times (5.3) tells us that

a(I)a(mpI) = a(mI)a(pI) (5.4)

when (m, p) = 1. In a similar manner, but this time using Corollary 5.5, with δ unre-
stricted, instead of (5.1), we get that

a(I)a(mpδI) = a(mI)a(pδI)

where we have used the fact that

a(I)a(mpδ−βI) = a(mI)a(pδ−βI)

for all 1 ≤ β ≤ δ, by the induction hypotheses and (5.4).
(3) Taking N = prI in Corollary 5.4 and applying to Θ(Z,M) ∈Mk(Γ

2(8); ρk+ω, ε) we
get that

a(p; prI) = a(pr+1I) + p2k−3 a(pr−1I) + ρk+ω(p) pk−2 a
(
pr−1

(
q2+(pv)2 pq−p2vwq
pq−p2vwq p2(1+(wq)2)

))
+ ρk+ω(p) pk−2

p−1∑
u=0

a
(
pr−1

(
(1+(uq)2 puq

puq p2

))
, (5.5)

where q = 8, p is odd, and, v and w are any integers satisfying vp + wq2 = 1. Applying

Lemma 4.1 with U =
( v q
−wq p

)
and N =

(
pr+1 0

0 pr−1

)
we have that

a
(
pr−1

(
q2+(pv)2 pq−p2vwq
pq−p2vwq p2(1+(wq)2)

))
= a

(
pr+1 0

0 pr−1

)
· ψM (U). (5.6)

By definition, to evaluate ψM (U), we need only consider U modulo 4, as tM ′M ′′ ∈ 1
4Z

g×g.
Note q = 8 and v ≡ p (mod 4). Therefore,

ψM (U) = exp
(
2πi

(
(p− 1) · Tr(tM ′M ′′)

))
= 1,

as p odd and Tr(tM ′M ′′) ∈ 1
2Z

g×g by Lemma 4.2.

We now consider the sum in (5.5) when (uq)2 ≡ −1 (mod p), which has exactly two
solutions in u when p ≡ 1 (mod 4), and none when p ≡ 3 (mod 4). So, when p ≡ 1
(mod 4), by Lemma 5.2, with µ = uq and β = 1, there exists S ∈ Γ(2) such that

S tS =
(

(1+(uq)2)/p uq
uq p

)
.

Then applying Lemma 4.1 with U = S and N = prI we get

a
(
pr−1

(
(1+(uq)2 puq

puq p2

))
= a(prI) · ψM (S) (5.7)

From the proof of Corollary 5.5 we see that, when β = 1,

ψM (S) =

1 if p ≡ 1 (mod 8), or, p ≡ 5 (mod 8) and ATr(tM ′M ′′) ∈ 1
2Z,

−1 if p ≡ 5 (mod 8) and ATr(tM ′M ′′) 6∈ 1
2Z.
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So ψM (S) =
(

2
p

)s
. Now, substituting for (5.6) and (5.7) in (5.5) and splitting off the u = 0

term yields

a(p; prI) = a(pr+1I) + p2k−3 a(pr−1I) + ρk+ω(p) pk−2

[
a
(
pr+1 0

0 pr−1

)
+ a

(
pr−1 0

0 pr+1

)
+
(
1 +

(−1
p

))
·
(

2
p

)s · a(prI) +

p−1∑
u=1

(uq)2 6≡−1 (mod p)

a
(
pr−1

(
(1+(uq)2 puq

puq p2

))]
. (5.8)

Now a(I)a(p; prI) = a(I)a(prI)λ(p) = a(prI)a(p; I). Accounting for (5.8) and (5.3) in the
previous statement yields the result. �
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