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Abstract. Let k ≥ 2 be an even integer. Let q be a prime power such that q ≡ k + 1
(mod 2k). We define the k-th power Paley digraph of order q, Gk(q), as the graph with
vertex set Fq where a → b is an edge if and only if b − a is a k-th power residue.
This generalizes the (k=2) Paley Tournament. We provide a formula, in terms of finite
field hypergeometric functions, for the number of transitive subtournaments of order four
contained in Gk(q), K4(Gk(q)), which holds for all k. We also provide a formula, in terms
of Jacobi sums, for the number of transitive subtournaments of order three contained in
Gk(q), K3(Gk(q)). In both cases, we give explicit determinations of these formulae for
small k. We show that zero values of K4(Gk(q)) (resp. K3(Gk(q))) yield lower bounds
for the multicolor directed Ramsey numbers R k

2
(4) = R(4, 4, · · · , 4) (resp. R k

2
(3)). We

state explicitly these lower bounds for k ≤ 10 and compare to known bounds, showing
improvement for R2(4) and R3(3). Combining with known multiplicative relations we
give improved lower bounds for Rt(4), for all t ≥ 2, and for Rt(3), for all t ≥ 3.

1. Introduction

The Paley graphs are a well-known family of self-complementary strongly-regular undi-
rected graphs. Let Fq denote the finite field with q elements. For q ≡ 1 (mod 4), the Paley
graph of order q is the graph with vertex set Fq where ab is an edge if and only if a− b is
a square. One of the earliest appearances of Paley graphs (although not called that at the
time) in the literature was in Greenwood and Gleason’s proof that the two-color diagonal
Ramsey number R(4, 4) = 18, in 1955 [15]. They showed that the Paley graph of order 17
does not contain a clique of order four, thus showing 17 < R(4, 4), and then combined this
with elementary upper bounds. Paley graphs can be generalized from connections based
on squares to k-th powers, for any integer k ≥ 2, provided q ≡ 1 (mod k) if q is even, or,
q ≡ 1 (mod 2k) if q is odd [7, 17]. Finding the number of cliques of a given order and
improving bounds for the order of the maximum clique (i.e., the clique number) in gener-
alized Paley graphs is an open problem and an active area of inquiry [8, 9, 12, 16, 24, 25].
Using various types of character sums to count cliques in generalized Paley graphs and
other similar types of graphs is a common theme [2, 3, 4, 9, 24].

When q ≡ 3 (mod 4), we can use a similar construction to Paley graphs to define
the Paley tournament. Specifically, the Paley tournament of order q is the digraph with
vertex set Fq where a → b is an edge if and only if b − a is a square. Erdös and Moser
[11] used the Paley tournament of order seven to prove that the directed Ramsey number
R(4) = 8. They showed that the Paley tournament of order seven does not contain a
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transitive subtournament of order four, thus showing 7 < R(4), and then combined this
with elementary upper bounds.

In a similar manner to how Paley graphs can be generalized, we can generalize the
Paley tournament construction to higher powers. Let k ≥ 2 be an even integer. Let q be
a prime power such that q ≡ k+1 (mod 2k). Let Sk be the subgroup of the multiplicative

group F∗
q of order q−1

k containing the k-th power residues, i.e., if ω is a primitive element

of Fq, then Sk = ⟨ωk⟩. Then we define the k-th power Paley digraph of order q, Gk(q),
as the graph with vertex set Fq where a → b is an edge if and only if b − a ∈ Sk. We
note, due to the conditions imposed on q, that −1 /∈ Sk so Gk(q) is a well-defined directed
graph. When k = 2 we recover the Paley tournament. There is little reference to these
graphs in the literature for k > 2. Ananchuen [1] proves that, for positive integers n
and t, and for q > f(n, t) sufficiently large, G4(q) has the property that every subset of
n vertices is dominated by at least t other vertices. Podestá and Videla [22] study the
spectral properties of Gk(q) and give an explicit evaluation of the spectrum when k = 4.

Let Km(G) denote the number of transitive subtournaments of order m contained in
a digraph G. The main purpose of this paper is to provide a general formula for both
K3(Gk(q)) and K4(Gk(q)), which hold for all k. In both cases, we give explicit determina-
tions of these formulae for small k. We also examine the consequences for lower bounds for
multicolor directed Ramsey numbers. Specifically, we will show that if Km(Gk(q)) = 0 for
some q, then q < R k

2
(m) and use this to provide lower bounds for the multicolor directed

Ramsey numbers R k
2
(3) and R k

2
(4). We compare to known bounds, showing improvement

in the case of R2(4) and R3(3). Combining these with known multiplicative relations, we
give improved lower bounds for Rt(4), for all t ≥ 2, and for Rt(3), for all t ≥ 3.

We use similar techniques to [9], which contains analogous results for generalized undi-
rected Paley graphs. Besides the obvious differences of dealing with digraphs and transitive
subtournaments in this paper, as opposed to undirected graphs and cliques in [9], the char-
acter sum determinations are more complicated in this paper due to the fact that -1 is not
a k-th power. This is especially relevant for the evaluations in Section 5.

2. Statement of Main Results

2.1. Subtournaments of Order Four. Our most general results will be stated in terms

of Greene’s finite field hypergeometric function [13, 14]. Let F̂∗
q denote the group of

multiplicative characters of F∗
q . We extend the domain of χ ∈ F̂∗

q to Fq, by defining
χ(0) := 0 (including the trivial character ε) and denote χ as the inverse of χ. For A,B ∈
F̂∗
q , we define the Jacobi sum J(A,B) :=

∑
a∈Fq

A(a)B(1 − a) and define the symbol(
A
B

)
:= B(−1)

q J(A,B). For characters A0, A1, . . . , An and B1, . . . , Bn of F∗
q and λ ∈ Fq,

define the finite field hypergeometric function

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣ λ)
q

:=
q

q − 1

∑
χ

(
A0χ

χ

)(
A1χ

B1χ

)
· · ·
(
Anχ

Bnχ

)
χ(λ),

where the sum is over all multiplicative characters χ of F∗
q . For k ≥ 2 an integer, let

χk ∈ F̂∗
q be a character of order k, when q ≡ 1 (mod k). For t⃗ = (t1, t2, t3, t4, t5) ∈ (Zk)

5,
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we define

3F2

(
t⃗
∣∣ λ)

q,k
:= (−1)t3+t5

3F2

(
χt1
k , χt2

k , χt3
k

χt4
k , χt5

k

∣∣∣ λ)
q

.

Theorem 2.1. Let k ≥ 2 be an even integer. Let q be a prime power such that q ≡ k + 1
(mod 2k). Then

K4(Gk(q)) =
q(q − 1)

k6

∑
t⃗∈(Zk)

5

3F2

(
t⃗
∣∣ 1)

q,k
.

We can use known reduction formulae for finite field hypergeometric functions to simplify
many of the summands in Theorem 2.1. Evaluating these terms yields our second result.

Theorem 2.2. Let k ≥ 2 be an even integer. Let q be a prime power such that q ≡ k + 1
(mod 2k). Then

K4(Gk(q)) =
q(q − 1)

k6

[
10Rk(q)

2 + 5
(
q − k2 + 1

)
Rk(q)− 10Sk(q)− 5 S−k (q)

+ q2 − 10 (k − 1)2 q + 5k2(k − 1) + 1 + q2
∑
t⃗∈Xk

3F2

(
t⃗
∣∣ 1)

q,k

]
,

where Xk := {(t1, t2, t3, t4, t5) ∈ (Zk)
5 | t1, t2, t3 ̸= 0, t4, t5 ; t1 + t2 + t3 ̸= t4 + t5},

Rk(q) :=
k−1∑
s,t=1

s+t̸≡0 (k)

J
(
χs
k, χ

t
k

)
, Sk(q) :=

k−1∑
s,t,v=1

s+t,v+t,v−s ̸≡0 (k)

J
(
χs
k, χ

t
k

)
J (χk

s, χv
k) .

and

S−k (q) :=
k−1∑

s,t,v=1
s+t,v+t,v−s ̸≡0 (k)

(−1)s+tJ
(
χs
k, χ

t
k

)
J (χk

s, χv
k) .

Many of the summands that still remain in Theorem 2.2 are equal, up to sign. A group
action on Xk is described in Section 6, which allows us to restrict the sum to orbit repre-
sentatives. For specific small k, Theorem 2.2 reduces to relatively few terms.

Corollary 2.3 (k = 2). Let q ≡ 3 (mod 4) be a prime power. Then

K4(G2(q)) =
q(q − 1)(q − 3)(q − 7)

26
.

So, K4(G2(7)) = 0 and we reconfirm the lower bound 8 ≤ R(4) of Erdös and Moser.

Corollary 2.4 (k = 4). Let q = pr ≡ 5 (mod 8) for a prime p. Let φ, χ4 ∈ F̂∗
q be

characters of order 2 and 4 respectively. Write q = x2+ y2 for integers x and y, such that
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x ≡ 1 (mod 4), and p ∤ x. Then

K4(G4(q)) =
q(q − 1)

212
.

[
q2 + 2q(5x− 21) + 24x2 − 150x+ 241

+ 10 q23F2

(
χ4, φ, φ

ε, ε

∣∣∣ 1)
q

]
.

An algorithm for determining x can be found in [19]. It is interesting to note that, when
q = p is prime, the values of the hypergeometric function in Corollary 2.4 correspond to
the p-th Fourier coefficients of a certain non-CM modular form of weight three and level
32 [10, 20].

We will discuss the relationship between the k-th power Paley digraphs and multicolor
directed Ramsey numbers in Section 7. Specifically, we will show that if Km(Gk(q)) =
0 for some q, then q < R k

2
(m). For k = 4 and q = 53 we get that x = −11 and

q23F2

(
χ4, φ, φ

ε, ε

∣∣∣ 1)
q

= −142 and so, by Corollary 2.4, K4(G4(125)) = 0. Thus,

126 ≤ R(4, 4). Based on a review of the literature, this is an improvement on the current
best known lower bound. Combining with results from [18] we get the following improved
lower bounds for Rt(4) in general. See Section 7 for further details.

Corollary 2.5. For t ≥ 2,
125 · 7t−2 + 1 ≤ Rt(4).

2.2. Subtournaments of Order Three. We have similar results for K3(Gk(q)) in terms
of Jacobi sums.

Theorem 2.6. Let k ≥ 2 be an even integer. Let q be a prime power such that q ≡ k + 1
(mod 2k). Then

K3(Gk(q)) =
q(q − 1)

k3
(Rk(q) + q − 2k + 1),

where Rk(q) is as defined in Theorem 2.2.

Corollary 2.7 (k = 2). Let q ≡ 3 (mod 4) be a prime power. Then

K3(G2(q)) =
q(q − 1)(q − 3)

23
.

Corollary 2.8 (k = 4). Let q = pr ≡ 5 (mod 8) for a prime p. Write q = x2 + y2 for
integers x and y, such that x ≡ 1 (mod 4), and p ∤ x. Then

K3(G4(q)) =
q(q − 1)(q + 2x− 7)

26
.

It is easy to see from Corollaries 2.7 and 2.8 that K3(G2(3)) = K3(G4(13)) = 0 which leads
to the following corresponding lower bounds for multicolor Ramsey numbers: 4 ≤ R(3)
and 14 ≤ R(3, 3). It is known that R(3) = 4 and R(3, 3) = 14 [6, 18]. However, when
k = 6 we get 44 ≤ R3(3) = R(3, 3, 3), which is an improvement on the best known lower
bound from the literature. Combining with results from [18] we get the following improved
lower bounds for Rt(3) in general. See Section 7 for further details.
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Corollary 2.9. For t ≥ 3,

43 · 3t−3 + 1 ≤ Rt(3).

3. Preliminaries

3.1. Jacobi Sums. We start by recalling some well-known properties of Jacobi sums. See
[5] for more details, noting that we have adjusted results therein to account for ε(0) = 0.

Proposition 3.1. For non-trivial χ ∈ F̂∗
q we have

(a) J(ε, ε) = q − 2;
(b) J(ε, χ) = −1; and
(c) J(χ, χ) = −χ(−1).

Proposition 3.2. For χ, ψ ∈ F̂∗
q, J(χ, ψ) = χ(−1)J(χ, χψ).

Proposition 3.3. For non-trivial χ, ψ ∈ F̂∗
q with χψ non-trivial, J(χ, ψ)J(χ, ψ) = q.

Recall, if we let k ≥ 2 be an integer, q ≡ 1 (mod k) be a prime power and χk ∈ F̂∗
q be a

character of order k, then for b ∈ F∗
q , we have the orthogonal relation [5, p11]

1

k

k−1∑
t=0

χt
k(b) =

{
1 if b is a k-th power,

0 if b is not a k-th power.
(3.1)

We now develop some preliminary results for later use. In addition to Rk(q), Sk(q) and
S−k (q) defined in Theorem 2.2, we define

R−
k (q) :=

k−1∑
s,t=1

s+t̸≡0 (k)

(−1)s+tJ
(
χs
k, χ

t
k

)
.

In Section 5, we will simplify many expressions involving Jacobi sums. Many of these
expressions appear multiple times so we name them and list their simplifications here for
ease of reference.

Proposition 3.4. Let k ≥ 2 be an even integer, q be a prime power such that q ≡ k + 1

(mod 2k) and χk ∈ F̂∗
q be a character of order k.

(a) J0(q, k) :=
k−1∑
s,t=0

J
(
χs
k, χ

t
k

)
= Rk(q) + q − 2k + 1;

(b) J−0 (q, k) :=
k−1∑
s,t=0

(−1)s+tJ
(
χs
k, χ

t
k

)
= R−

k (q) + q + 1;

(c) JJ0(q, k) :=
k−1∑

s,t,v=0

J
(
χs
k, χ

t
k

)
J (χk

s, χv
k) = Sk(q)− 4Rk(q) + q2 + q(k2 − 5k) + k2 +

4k − 3;
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(d) JJ−0 (q, k) :=
k−1∑

s,t,v=0

(−1)s+tJ
(
χs
k, χ

t
k

)
J (χk

s, χv
k) = S−k (q)− R−

k (q)− 3Rk(q) + q2 −

2kq + 3(k − 1);

(e)
k−1∑
s,t=0

(−1)sJ
(
χs
k, χ

t
k

)
= J0(q, k);

(f)

k−1∑
s,t,v=0

(−)t+vJ
(
χs
k, χ

t
k

)
J (χk

s, χv
k) = JJ0(q, k) + k2(q − 1);

(g)
k−1∑

s,t,v=1
s+t,v+t,v−s̸≡0 (k)

(−1)t+vJ
(
χs
k, χ

t
k

)
J (χk

s, χv
k) = Sk(q) + qk(k − 2);

Proof. All are a relatively straightforward consequence of Propositions 3.1-3.3. □

Lemma 3.5 ([9, 23]). Let q = pr ≡ 1 (mod 4) for a prime p. Write q = x2 + y2 for
integers x and y, such that x ≡ 1 (mod 4), and p ∤ x when p ≡ 1 (mod 4). Then

(1) J(χ4, χ4) + J(χ4, χ4) = −2x; and
(2) J(χ4, χ4)

2 + J(χ4, χ4)
2 = 2x2 − 2y2 = 4x2 − 2q = 2q − 4y2.

3.2. Properties of Finite Field Hypergeometric Functions. Our most general re-
sults from Section 2 are given in terms of Greene’s finite field hypergeometric functions.
These functions can be expressed as character sums in a simple way [14, Def 3.5 (after
change of variable), Cor 3.14]. For characters A,B,C,D,E of F∗

q ,

q 2F1

(
A, B

C

∣∣∣ λ)
q

=
∑
b∈Fq

AC(b)BC(1− b)A(b− λ) (3.2)

and

q2 3F2

(
A, B, C

D, E

∣∣∣ λ)
q

=
∑

a,b∈Fq

AE(a)CE(1− a)B(b)BD(b− 1)A(a− λb) (3.3)

The following reduction formulae [14, Thms 3.15 & 4.35] will play an important part in
proving Theorem 2.2.

3F2

(
ε, B, C

D, E

∣∣∣ 1)
q

=− 1

q
2F1

(
BD, CD

ED

∣∣∣ 1)
q

+

(
B

D

)(
C

E

)
; (3.4)

3F2

(
A, ε, C

D E

∣∣∣ 1)
q

=A(−1)

(
D

A

)
2F1

(
AD, CD

ED

∣∣∣ 1)
q

− D(−1)

q

(
C

E

)
; (3.5)

3F2

(
A, B, C

A, E

∣∣∣ 1)
q

=

(
B

A

)
2F1

(
B, C

E

∣∣∣ 1)
q

− A(−1)

q

(
CA

EA

)
; (3.6)

3F2

(
A, B, C

B, E

∣∣∣ 1)
q

=− 1

q
2F1

(
A, C

E

∣∣∣ 1)
q

+

(
AB

B

)(
CB

EB

)
; (3.7)
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3F2

(
A, B, C

D, B

∣∣∣ 1)
q

=

(
CD

BD

)
2F1

(
A, C

D

∣∣∣ 1)
q

− BD(−1)

q

(
AB

B

)
; and (3.8)

3F2

(
A, B, C

D, ABCD

∣∣∣ 1)
q

= BC(−1)

(
C

DA

)(
B

DC

)
− BD(−1)

q

(
DB

A

)
. (3.9)

We can further reduce the 2F1(·|1)’s that appear in (3.4)-(3.8) via [14, Theorem 4.9],

2F1

(
A, B

C

∣∣∣ 1)
q

= A(−1)

(
B

AC

)
. (3.10)

And, we have the following relation which easily follows from their definition,

3F2

(
A, B, C

D, E

∣∣∣ 1)
q

= 3F2

(
A, C, B

E, D

∣∣∣ 1)
q

. (3.11)

We also have transformation formulae for finite field hypergeometric functions that
relate 3F2(·|1) functions with different parameters [13, Thms 5.14, 5.18 & 5.20].

3F2

(
A, B, C

D, E

∣∣∣ 1)
q

= 3F2

(
BD, AD, CD

D, ED

∣∣∣ 1)
q

; (3.12)

3F2

(
A, B, C

D, E

∣∣∣ 1)
q

= ABCDE(−1) 3F2

(
A, AD, AE

AB, AC

∣∣∣ 1)
q

; (3.13)

3F2

(
A, B, C

D, E

∣∣∣ 1)
q

= ABCDE(−1) 3F2

(
BD, B, BE

BA, BC

∣∣∣ 1)
q

; (3.14)

3F2

(
A, B, C

D, E

∣∣∣ 1)
q

= AE(−1) 3F2

(
A, B, CE

ABD, E

∣∣∣ 1)
q

; (3.15)

3F2

(
A, B, C

D, E

∣∣∣ 1)
q

= AD(−1) 3F2

(
A, DB, C

D, ACE

∣∣∣ 1)
q

; (3.16)

3F2

(
A, B, C

D, E

∣∣∣ 1)
q

= B(−1) 3F2

(
AD, B, C

D, BCE

∣∣∣ 1)
q

; and (3.17)

3F2

(
A, B, C

D, E

∣∣∣ 1)
q

= AB(−1) 3F2

(
AD, BD, C

D, ABDE

∣∣∣ 1)
q

. (3.18)

4. Induced subgraphs of Gk(q) and Proofs of Theorems 2.1 and 2.6

In this section, we induce two subgraphs of the k-th power Paley digraph Gk(q) and
relate the number of transitive subtournaments of a given order for each graph, which we
use to prove Theorems 2.1 and 2.6. For a graph G, we denote its vertex set by V (G) and
its edge set by E(G), so the order of G is #V (G) and the size of G is #E(G). For a
given vertex a of G we denote the in-degree and out-degree of a in G by indegG(a) and
outdegG(a) respectively.
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It is easy to see from its definition that #V (Gk(q)) = q, indegGk(q)
(a) = outdegGk(q)

(a) =
q−1
k for all vertices a, and, consequently, #E(Gk(q)) =

q(q−1)
k .

Let Hk(q) be the induced subgraph of Gk(q) whose vertex set is Sk, the set of k-th power
residues of Fq, which are the out-neighbors of zero in Gk(q). Therefore, #V (Hk(q)) =

|Sk| = q−1
k . Now

a→ b ∈ E(Hk(q)) ⇐⇒ χk(a) = χk(b) = χk(b− a) = 1.

So, for a ∈ V (Hk(q)), using (3.1), we get that

outdegHk(q)
(a) =

1

k2

∑
b∈F∗

q\{a}

k−1∑
s=0

χs
k(b)

k−1∑
t=0

χt
k(b− a)

=
1

k2

k−1∑
s,t=0

χt
k(−1)χs+t

k (a)J(χs
k, χ

t
k)

=
1

k2
J0(q, k)

=
1

k2
(Rk(q) + q − 2k + 1) (by Prop. 3.4).

Similarly, indegHk(q)
(a) = outdegHk(q)

(a). These degrees are independent of a so

#E(Hk(q)) = #V (Hk(q)) · outdegHk(q)
(a)

=
q − 1

k3
J0(q, k)

=
q − 1

k3
(Rk(q) + q − 2k + 1).

Let H1
k(q) be the induced subgraph of Hk(q) whose vertex set is the set of out-neighbors

of 1 in Hk(q). Therefore

#V (H1
k(q)) = outdegHk(q)

(1) =
1

k2
J0(q, k) =

1

k2
(Rk(q) + q − 2k + 1),

and

a→ b ∈ E(H1
k(q)) ⇐⇒ χk(a) = χk(b) = χk(a− 1) = χk(b− 1) = χk(b− a) = 1.

Again using (3.1), and noting that χk(−1) = −1, we get that for a ∈ V (H1
k(q)),

outdegH1
k(q)

(a) =
1

k3

∑
b∈F∗

q\{1,a}

k−1∑
t1=0

χt1
k (b)

k−1∑
t2=0

χt2
k (b− 1)

k−1∑
t3=0

χt3
k (b− a)

=
1

k3

k−1∑
t1,t2,t3=0

∑
b∈F∗

q\{1,a}

χt1−t3
k (b)χt3−t2

k (b− 1)χ−t1
k (b− a)

=
1

k3

k−1∑
t1,t2,t3=0

(−1)t2+t3 q 2F1

(
χt1
k , χt2

k

χt3
k

∣∣∣ a)
q

, (using (3.2)),
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where we have used a change of variables to get the second line. Finally, we get that

#E(H1
k(q)) =

∑
a∈V (H1

k(q))

outdegH1
k(q)

(a)

=
1

k3

∑
a∈Fq

χk(a)=χk(a−1)=1

k−1∑
t1,t2,t5=0

∑
b∈F∗

q\{1,a}

χt1
k (b)χ

t2
k (b− 1)χt5

k (b− a)

=
1

k5

k−1∑
t1,t2,t3,t4,t5=0

∑
a,b∈F∗

q\{1}
a̸=b

χt1
k (b)χ

t2
k (b− 1)χt3

k (a)χ
t4
k (a− 1)χt5

k (b− a)

=
1

k5

k−1∑
t1,t2,t3,t4,t5=0

∑
a,b∈Fq

χt1−t5
k (b)χt5−t3

k (b− 1)χt2
k (a)χ

t4−t2
k (a− 1)χ−t1

k (b− a)

=
1

k5

k−1∑
t1,t2,t3,t4,t5=0

(−1)t3+t5 q2 3F2

(
χt1
k , χt2

k , χt3
k

χt4
k , χt5

k

∣∣∣ 1)
q

, (using (3.3)).

So we have proved the following proposition.

Proposition 4.1. Let k ≥ 2 be an even integer. Let q be a prime power such that q ≡ k+1
(mod 2k). Let Hk(q) be the induced subgraph of the k-th power Paley digraph Gk(q) whose
vertex set is the set of k-th power residues of Fq. Let H1

k(q) be the induced subgraph of
Hk(q) whose vertex set is the set of out-neighbors of 1 in Hk(q). Then

(a) #V (Hk(q)) =
q−1
k ;

(b) For a ∈ V (Hk(q)), indegHk(q)
(a) = outdegHk(q)

(a) = 1
k2

J0(q, k) = 1
k2
(Rk(q) + q −

2k + 1);

(c) #E(Hk(q)) =
q−1
k3

J0(q, k) = q−1
k3

(Rk(q) + q − 2k + 1);

(d) #V (H1
k(q)) =

1
k2

J0(q, k) = 1
k2
(Rk(q) + q − 2k + 1);

(e) For a ∈ V (H1
k(q)), degH1

k(q)
(a) =

1

k3

k−1∑
t1,t2,t3=0

(−1)t2+t3 q 2F1

(
χt1
k , χt2

k

χt3
k

∣∣∣ a)
q

; and

(f) #E(H1
k(q)) =

1

k5

k−1∑
t1,t2,t3,t4,t5=0

(−1)t3+t5 q23F2

(
χt1
k , χt2

k , χt3
k

χt4
k , χt5

k

∣∣∣ 1)
q

.

Next we relate the number of transitive subtournaments of a certain order of Gk(q) to
those of Hk(q) and H

1
k(q).

Lemma 4.2. Let k, q,Gk(q), Hk(q) and H
1
k(q) be defined as in Proposition 4.1. Then, for

m a positive integer,

(a) Km+1(Gk(q)) = qKm(Hk(q)); and

(b) Km+1(Hk(q)) =
q−1
k Km(H1

k(q)).
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So for m ≥ 2

(c) Km+1(Gk(q)) =
q(q−1)

k Km−1(H
1
k(q)).

Proof. A tournament of order m is transitive if and only if the set of out-degrees of its
vertices is {0, 1, . . . ,m − 1}. We represent a transitive subtournament of order m by the
m-tuple of its vertices (a1, a2, · · · , am), listed in order such that the out-degree of vertex ai
is m− i, i.e. the corresponding m-tuple of out-degrees is (m− 1,m− 2, · · · , 1, 0). And we
will call this a transitive subtournament originating from a1. For a graph G, we let SG,m

denote the set of transitive subtournaments of G of order m and we let SG,m,a denote the
set of transitive subtournaments of G of order m originating from a.

(a) For a ∈ V (Gk(q)), the map fa(λ) = λ + a is an automorphism of Gk(q). Thus,
|SG,m+1,a| = |SG,m+1,0| for all a ∈ V (Gk(q)). Also,

(0, a1, a2, · · · , am) ∈ SG,m+1,0 ⇐⇒ (a1, a2, · · · , am) ∈ SH,m

so |SG,m+1,0| = |SH,m|. Therefore,

Km+1(Gk(q)) =
∑

a∈V (Gk(q))

|SG,m+1,a| = q |SG,m+1,0| = q |SH | = qKm(Hk(q)).

(b) For a ∈ V (Hk(q)), the map fa(λ) = aλ is an automorphism ofHk(q), so |SH,m+1,a| =
|SH,m+1,1| for all a ∈ V (Hk(q)). Also

(1, a1, a2, · · · , am) ∈ SH,m+1,1 ⇐⇒ (a1, a2, · · · , am) ∈ SH1,m.

So |SH,m+1,1| = |SH1,m|. Therefore,

Km+1(Hk(q)) =
∑

a∈V (Hk(q))

|SH,m+1,a| = #V (Hk(q))|SH1,m| = q−1
k Km(H1

k(q)).

(c) Follows immediately from combining (a) and (b). □

Taking m = 3 in Lemma 4.2 (c) yields Corollary 4.3.

Corollary 4.3. Let k ≥ 2 be an even integer. Let q be a prime power such that q ≡ k+1
(mod 2k). Then

K4(Gk(q)) =
q(q − 1)

k
#E(H1

k(q)).

Combining Corollary 4.3 and Proposition 4.1 (f) proves Theorem 2.1.
Taking m = 2 in Lemma 4.2 (a) yields Corollary 4.4.

Corollary 4.4. Let k ≥ 2 be an even integer. Let q be a prime power such that q ≡ k+1
(mod 2k). Then

K3(Gk(q)) = q#E(Hk(q)).

Combining Corollary 4.4 and Proposition 4.1 (c) proves Theorem 2.6.
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5. Proof of Theorem 2.2

We prove Theorem 2.2 by using the reduction formulae (3.4)-(3.9) on the relevant
summands in

q2
∑

t⃗∈(Zk)
5

3F2

(
t⃗
∣∣ 1)

q,k
(5.1)

from Theorem 2.1. Combining each of (3.4)-(3.9) with (3.11) yields ten distinct cases.

Case 1 (t1 = 0): Using (3.4), we reduce the summands in (5.1) which have t1 = 0.

q2
k−1∑

t2,t3,t4,t5=0

(−1)t3+t5
3F2

(
ε, χt2

k , χt3
k

χt4
k , χt5

k

∣∣∣ 1)
q

= q2
k−1∑

t2,t3,t4,t5=0

(−1)t3+t5

−1

q
2F1

(
χt2−t4
k , χt3−t4

k

χt5−t4
k

∣∣∣ 1)
q

+

(
χt2
k

χt4
k

)(
χt3
k

χt5
k

)
= −q

k−1∑
t2,t3,t4,t5=0

(−1)t3+t5
2F1

(
χt2−t4
k , χt3−t4

k

χt5−t4
k

∣∣∣ 1)
q

+

k−1∑
t2,t3,t4,t5=0

(−1)t3+t4J(χt2
k , χk

t4) J(χt3
k , χk

t5)

= −q
k−1∑

t2,t3,t4,t5=0

(−1)t3+t5
2F1

(
χt2
k , χt3

k

χt5
k

∣∣∣ 1)
q

+ J0(q, k)2

= −qk
k−1∑

t2,t3,t5=0

(−1)t3+t2+t5

(
χt3
k

χt5−t2
k

)
+ J0(q, k)2 (using (3.10))

= −k
k−1∑

t2,t3,t5=0

(−1)t3J(χt3
k , χ

t2−t5
k ) + J0(q, k)2

= −k
k−1∑

t2,t3,t5=0

(−1)t3J(χt3
k , χ

t2
k ) + J0(q, k)2

= J0(q, k)2 − k2 J0(q, k),

where we have used the fact that χk(−1) = −1 in many of the steps.

Case 2 (t2 = 0): Next, using (3.5), we reduce the summands which have t2 = 0, excluding
those with t1 = 0, as they have already been accounted for in Case 1.
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q2
k−1∑

t1,t3,t4,t5=0
t1 ̸=0

(−1)t3+t5
3F2

(
χt1
k , ε, χt3

k

χt4
k , χt5

k

∣∣∣ 1)
q

= q2
k−1∑

t1,t3,t4,t5=0
t1 ̸=0

(−1)t3+t5

(−1)t1
(
χt4
k

χt1
k

)
2F1

(
χt1−t4
k , χt3−t4

k

χt5−t4
k

∣∣∣ 1)
q

− (−1)t4

q

(
χt3
k

χt5
k

)

=

k−1∑
t1,t3,t4,t5=0

t1 ̸=0

(−1)t3+t4
[
J(χt4

k , χk
t1) J(χt3−t4

k , χt1−t5
k )− J(χt3

k , χk
t5)
]

(using (3.10))

=
k−1∑

t1,t4=0
t1 ̸=0

(−1)t4J(χt4
k , χk

t1)
k−1∑

t3,t5=0

(−1)t3J(χt3−t4
k , χt1−t5

k )− 0

=

k−1∑
t1,t4=0
t1 ̸=0

J(χt4
k , χk

t1)

k−1∑
t3,t5=0

(−1)t3J(χt3
k , χ

t5
k )

=

[
J0(q, k)−

k−1∑
t=0

J(χt
k, ε)

]
J0(q, k)

= [J0(q, k)− (q − 2) + (k − 1)] J0(q, k) (using Prop 3.1)

= J0(q, k)2 − (q − k − 1) J0(q, k).
We evaluate the remaining cases in a similar manner, using only basic properties of Jacobi
sums and hypergeometric functions from Sections 3.1 and 3.2. However, these evaluations
do become more tedious, as we have to exclude successively more previous cases. We omit
the details, for brevity. These remaining cases summarize as follows.

Case 3 (t3 = 0):

q2
k−1∑

t1,t2,t4,t5=0
t1,t2 ̸=0

(−1)t53F2

(
χt1
k , χt2

k , ε

χt4
k , χt5

k

∣∣∣ 1)
q

= J0(q, k)2 − (q + k(k − 2)) J0(q, k)− JJ0(q, k) + (q − 1)(q − k − 1).
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Case 4 (t4 = t1):

q2
k−1∑

t1,t2,t3,t5=0
t1,t2,t3 ̸=0

(−1)t3+t5
3F2

(
χt1
k , χt2

k , χt3
k

χt1
k , χt5

k

∣∣∣ 1)
q

= J0(q, k)2 − (2q − 4k + 1) J0(q, k) + (q − k − 1)(q − 2k + 1).

Case 5 (t5 = t1):

q2
k−1∑

t1,t2,t3,t4=0
t1,t2,t3 ̸=0

t1 ̸=t4

(−1)t3+t1
3F2

(
χt1
k , χt2

k , χt3
k

χt4
k , χt1

k

∣∣∣ 1)
q

= J0(q, k)2−(2q−3k+3) J0(q, k)−JJ−0 (q, k)−J−0 (q, k)+2q2−2(2k−1)q+(k−1)(k+2).

Case 6 (t4 = t2):

q2
k−1∑

t1,t2,t3,t5=0
t1,t2,t3 ̸=0
t1 ̸=t2,t5

(−1)t3+t5
3F2

(
χt1
k , χt2

k , χt3
k

χt2
k , χt5

k

∣∣∣ 1)
q

= J0(q, k)2−(q+k2−5k+7) J0(q, k)−2 JJ0(q, k)+2q2+(k2−8k+4)q−(k−1)(k2−4k−2).

Case 7 (t5 = t3):

q2
k−1∑

t1,t2,t3,t4=0
t1,t2,t3 ̸=0
t1 ̸=t3,t4
t2 ̸=t4

3F2

(
χt1
k , χt2

k , χt3
k

χt4
k , χt3

k

∣∣∣ 1)
q

= J0(q, k)2−(2q−5k+9) J0(q, k)−2 JJ−0 (q, k)−J−0 (q, k)+3q2−8(k−1)q+5k2−10k+1.

Case 8 (t5 = t2):

q2
k−1∑

t1,t2,t3,t4=0
t1,t2,t3 ̸=0
t1 ̸=t2,t4
t2 ̸=t3,t4

(−1)t3+t2
3F2

(
χt1
k , χt2

k , χt3
k

χt4
k , χt2

k

∣∣∣ 1)
q

= J0(q, k)2−(2q−2k+9) J0(q, k)−JJ0(q, k)−2 JJ−0 (q, k)−3 J−0 (q, k)+4q2−(8k−10)q+k2−6k+2.
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Case 9 (t4 = t3):

q2
k−1∑

t1,t2,t3,t5=0
t1,t2,t3 ̸=0
t1,t2 ̸=t3,t5

t3 ̸=t5

(−1)t3+t5
3F2

(
χt1
k , χt2

k , χt3
k

χt3
k , χt5

k

∣∣∣ 1)
q

= J0(q, k)2−(2q+k2−8k+18) J0(q, k)−3 JJ0(q, k)+4q2+2(k−1)(k−8)q−2(k−2)(k2−6k+2).

Case 10 (t1 + t2 + t3 = t4 + t5):

q2
k−1∑

t1,t2,t3,t4=0
t1,t2,t3 ̸=0
t4 ̸=t1,t2,t3

t4 ̸=t1+t2,t1+t3,t2+t3

(−1)t1+t2+t4
3F2

(
χt1
k , χt2

k , χt3
k

χt4
k , χt1+t2+t3−t4

k

∣∣∣ 1)
q

= J0(q, k)2−(2q+k2−10k+24) J0(q, k)−3 JJ0(q, k)+4q2+2(k2−10k+11)q−2(k3−10k2+21k−7).

The total of these ten reducible cases is

q2
∑

t⃗∈(Zk)
5\Xk

3F2

(
t⃗
∣∣ 1)

q,k
= 10 J0(q, k)2 − 5(3q + k2 − 8k + 14) J0(q, k)

− 10 JJ0(q, k)− 5 J−0 (q, k)− 5 JJ−0 (q, k)

+ 21q2 + 5(k2 − 14k + 12)q − 5k3 + 50k2 − 85k + 21.

Applying Proposition 3.4 yields

q2
∑

t⃗∈(Zk)
5\Xk

3F2

(
t⃗
∣∣ 1)

q,k
= 10Rk(q)

2 + 5Rk(q)
(
q − k2 + 1

)
− 10Sk(q)

− 5 S−k (q) + q2 − 10(k − 1)2q + 5k2(k − 1) + 1.

which completes the proof of Theorem 2.2.

6. Orbits of Xk and Proofs of Corollaries 2.3, 2.4, 2.7 & 2.8

We now want to use Theorem 2.2 to evaluate K4(Gk(q)) for specific k, which requires
evaluating the hypergeometric terms in

q2
∑
t⃗∈Xk

3F2

(
t⃗
∣∣ 1)

q,k
, (6.1)

where Xk := {(t1, t2, t3, t4, t5) ∈ (Zk)
5 | t1, t2, t3 ̸= 0, t4, t5 ; t1 + t2 + t3 ̸= t4 + t5}. Many

of the hypergeometric function summands in (6.1) can be related via the transforma-
tion formulae (3.11), (3.12)-(3.18). In fact, any two summands related via one of these
transformations will be equal, up to sign. For example, applying (3.15) we get that

3F2

(
(t1, t2, t3, t4, t5)

∣∣ 1)
q,k

= (−1)t13F2

(
(t1, t2, t5 − t3, t1 + t2 − t4, t5)

∣∣ 1)
q,k
. (6.2)
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If we ignore the sign (for now), then, to the change in parameters associated to each
transformation (3.11), (3.12)-(3.18), we can associate a map on Xk. Continuing the above
example, the relation (6.2) induces the map T4 : Xk → Xk given by

T4(t1, t2, t3, t4, t5) = (t1, t2, t5 − t3, t1 + t2 − t4, t5),

where the addition in each component takes place in Zk. Similarly, to the other transfor-
mations in (3.12)-(3.18) and (3.11), we can associate the maps

T1(t1, t2, t3, t4, t5) = (t2 − t4, t1 − t4, t3 − t4,−t4, t5 − t4);

T2(t1, t2, t3, t4, t5) = (t1, t1 − t4, t1 − t5, t1 − t2, t1 − t3);

T3(t1, t2, t3, t4, t5) = (t2 − t4, t2, t2 − t5, t2 − t1, t2 − t3);

T5(t1, t2, t3, t4, t5) = (t1, t4 − t2, t3, t4, t1 + t3 − t5);

T6(t1, t2, t3, t4, t5) = (t4 − t1, t2, t3, t4, t2 + t3 − t5);

T7(t1, t2, t3, t4, t5) = (t4 − t1, t4 − t2, t3, t4, t4 + t5 − t1 − t2); and

T8(t1, t2, t3, t4, t5) = (t1, t3, t2, t5, t4).

We form the group generated by T1, T2, · · · , T8, with operation composition of functions,
and call it Gk. Then Gk acts on Xk. Furthermore, the values of 3F2

(
t⃗
∣∣ 1)

q,k
within an

orbit are equal, up to sign. The group Gk and this action has been fully described in [21]
(extending the work in [9]) and includes python code to generate all the orbits for a given
k. In particular, Gk is a group of order 120 isomorphic to the permutation group S5 and
the number of orbits, NGk

, is given by

NGk
=

1

120

[
(k − 1)(k4 − 9k3 + 61k2 − 189k + 280)

+



0 if k ≡ 1, 5, 7, 11 (mod 12),

40k − 200 if k ≡ 3, 9 (mod 12),

105k − 180 if k ≡ 2, 10 (mod 12),

105k − 240 if k ≡ 4, 8 (mod 12),

145k − 380 if k ≡ 6 (mod 12),

145k − 440 if k ≡ 0 (mod 12).


We note also that

|Xk| =
k−1∑

t1,t2,t3=1

k−1∑
t4,t5=0

t4,t5 ̸=t1,t2,t3
t4+t5 ̸=t1+t2+t3

1 = (k − 1)(k4 − 9k3 + 36k2 − 69k + 51).

We now incorporate the signs associated to the transformations (3.11), (3.12)-(3.18). We
illustrate how to do this using k = 4 as a case study. When k = 4, there are |X4| = 93 sum-
mands in (6.1) but only NG4 = 6 orbits, with representatives (1, 1, 1, 0, 0)10, (3, 3, 3, 0, 0)10,
(1, 3, 2, 0, 0)30, (1, 2, 2, 0, 0)30, (1, 1, 3, 0, 0)12, and (2, 2, 2, 0, 0)1, where the superscript rep-
resents the number of elements in the orbit. Within each orbit, we now consider the sign
associated to the transformations linking the elements. For example, the orbit represented
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by (1, 2, 2, 0, 0) contains the elements (3, 2, 2, 0, 0), via T6, and (2, 2, 2, 1, 0), via T3. The
corresponding transformation of 3F2

(
t⃗
∣∣ 1)

q,k
, via (3.17) and (3.14) respectively, yields

3F2

(
(1, 2, 2, 0, 0)

∣∣ 1)
q,k

= + 3F2

(
(3, 2, 2, 0, 0)

∣∣ 1)
q,k

and

3F2

(
(1, 2, 2, 0, 0)

∣∣ 1)
q,k

= − 3F2

(
(2, 2, 2, 1, 0)

∣∣ 1)
q,k
.

Therefore, the net contribution to the sum in (6.1) for t⃗ = (3, 2, 2, 0, 0) and t⃗ = (2, 2, 2, 1, 0)
is zero. We can relate the values of 3F2

(
t⃗
∣∣ 1)

q,k
for all t⃗ in the orbit in a similar

way, and we find that the net contribution to the sum in (6.1) for all 30 elements in
the orbit by (1, 2, 2, 0, 0) is +10. Doing this for each orbit we find that the six orbits
of X4 are (1, 1, 1, 0, 0)0, (3, 3, 3, 0, 0)0, (1, 3, 2, 0, 0)0, (1, 2, 2, 0, 0)+10, (1, 1, 3, 0, 0)0, and
(2, 2, 2, 0, 0)+1, where, now, the superscripts represent the net contribution of the orbit to
the overall sum after signs have been taken into account.

In general, we apply this approach for any k. In fact, we can automate the process by
modifying the code provided in [21] to track the signs and to output the net contribution
associated to each orbit. This code can be found on the first author’s webpage.

We now prove Corollaries 2.3 and 2.4.

Proof of Corollary 2.3. We apply Theorem 2.2 with k = 2. Now R2(q) = S2(q) = S−2 (q) =
0 as there are no indices that satisfy the conditions of the sum in each case. Also, t⃗ =

(1, 1, 1, 0, 0) is the only element of X2. Therefore, letting φ ∈ F̂∗
q denote the character of

order two,

K4(G2(q)) =
q(q − 1)

26

[
q2 − 10q + 21− q23F2

(
φ, φ, φ

ε, ε

∣∣∣ 1)
q

]
.

By [14, Thm 4.37] we find that, when q ≡ 3 (mod 4),

q23F2

(
φ, φ, φ

ε, ε

∣∣∣ 1)
q

= 0,

which yields the result. □

Proof of Corollary 2.4. Using Proposition 3.2 and Lemma 3.5(1) we get that

R4(q) = −J(χ4, χ4)− J(χ4, χ4) = 2x. (6.3)

Using Propositions 3.2 & 3.3 and Lemma 3.5(2) we have

S4(q) = −4q + J(χ4, χ4)
2 + J(χ4, χ4)

2 = 4x2 − 6q. (6.4)

and

S−4 (q) = −J(χ4, χ4)
2 − J(χ4, χ4)

2 = 2q − 4x2. (6.5)

As described above, X4 contains six orbits with representatives (1, 1, 1, 0, 0)0, (3, 3, 3, 0, 0)0,
(1, 3, 2, 0, 0)0, (1, 2, 2, 0, 0)+10, (1, 1, 3, 0, 0)0, and (2, 2, 2, 0, 0)+1, where the superscripts
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represent the net contribution of the orbit to the overall sum after signs have been taken
into account. Therefore, taking k = 4 in Theorem 2.2 and accounting for (6.3)-(6.5) yields

K4(G4(q)) =
q(q − 1)

212
.

[
q2 + 2q(5x− 20) + 20x2 − 150x+ 241

+ 10 q23F2

(
χ4, φ, φ

ε, ε

∣∣∣ 1)
q

+ q23F2

(
φ, φ, φ

ε, ε

∣∣∣ 1)
q

]
.

From [9, (6.4)] we get that, when q ≡ 1 (mod 4),

q23F2

(
φ, φ, φ

ε, ε

∣∣∣ 1)
q

= 4x2 − 2q.

which completes the proof. □

We now also have all the ingredients to prove Corollaries 2.7 and 2.8.

Proof of Corollaries 2.7 and 2.8. We’ve seen above that R2(q) = 0, R4(q) = 2x. Taking
k = 2, 4 in Theorem 2.6 yields the results. □

7. Lower bounds for multicolor directed Ramsey numbers

Let t ≥ 2 and n1, n2, · · · , nt be positive integers. Let Tm denote a tournament of order
m. The multicolor directed Ramsey number R(n1, n2, · · · , nt) is the smallest integer m,
such that any Tm, whose edges have been colored with t colors, contains a transitive
subtournament Tni in color i, for some 1 ≤ i ≤ t. These numbers exist [18] and, when
t = 1, we recover the usual Ramsey numbers for tournaments. If n1 = n2 = · · · = nt,
then we use the abbreviated Rt(n1) to denote the multicolor directed Ramsey number
R(n1, n2, · · · , nt). We note that [18, Prop. 5]

(Rt−1(m)− 1)(R(m)− 1) + 1 ≤ Rt(m) (7.1)

Combining with the facts that R(3) = 4, R(3, 3) = 14 [6, 18] and R(4) = 8 [11], we get
that, for t ≥ 2,

13 · 3t−2 + 1 ≤ Rt(3) and 7t + 1 ≤ Rt(4) (7.2)

Recall, Sk is the subgroup of the multiplicative group F∗
q of order q−1

k containing the

k-th power residues, i.e., if ω is a primitive element of Fq, then Sk = ⟨ωk⟩. And, our k-th
power Paley digraph of order q, Gk(q), for q a prime power such that q ≡ k+1 (mod 2k),
is the graph with vertex set Fq where a → b is an edge if and only if b − a ∈ Sk. Recall
also, due to the conditions imposed on q, that −1 /∈ Sk.

We now define subsets of F∗
q , Sk,i := ωiSk, for 0 ≤ i ≤ k

2 − 1, and the related directed
graphs Gk,i(q) with vertex set Fq where a → b is an edge if and only if b − a ∈ Sk,i.
Each Gk,i(q) is isomorphic to Gk,0(q) = Gk(q), the k-th power Paley digraph, via the map
f : V (Gk(q)) → V (Gk,i(q)) given by f(a) = ωia. Now consider the multicolor k-th power
Paley tournament Pk(q) whose vertex set is taken to be Fq and whose edges are colored

in k
2 colors according to a→ b has color i if b− a ∈ Sk,i. Note that the induced subgraph

of color i of Pk(q) is Gk,i(q). Thus, Pk(q) has a transitive subtournament Tm in a single
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color if and only if the k-th power Paley digraph contains a transitive subtournament Tm.
Therefore, if Km(Gk(q1)) = 0 for some q1, then q1 < R k

2
(m).

So, for m = 3, 4 and a given k, we can use Theorems 2.6 and 2.2, respectively, to search
for the greatest q such that Km(Gk(q)) = 0, thus establishing that q < R k

2
(m). The k = 2

and k = 4 cases for both m = 3 and m = 4 can easily be derived from Corollaries 2.3, 2.4,
2.7 and 2.8, as discussed in Section 2. For higher k, our search, of all q < 10000, yielded
the lower bounds shown in Table 1. Improvements on known bounds are marked in bold.

t = k
2 ≤ Rt(3) ≤ Rt(4)

1 4 8
2 14 126
3 44 344
4 42 954
5 72 3332

Table 1. Lower Bounds for R k
2
(3) and R k

2
(4).

It is already known that R(3) = 4, R(3, 3) = 14 and R(4) = 8. 44 ≤ R3(3) and
126 ≤ R2(4) improve on the bounds from (7.2). The remaining bounds in Table 1 either
equal or fall short of those implied by (7.2). However, we can combine the bounds in
bold with the multiplicative relation (7.1) to improve the bounds in (7.2), which proves
Corollaries 2.5 and 2.9.
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