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Abstract. In a recent result of Dawsey and McCarthy, a formula for the number of
complete subgraphs of order four of generalized Paley graphs is given in terms of a
sum of finite field hypergeometric functions. Via known transformation formulas for
finite field hypergeometric functions, many of the summands in their formula are equal.
They construct a group action representing these transformations so that the number of
summands that need to be evaluated is reduced to orbit representatives. In this paper,
we expand the group used by Dawsey and McCarthy, reducing by up to 80% the number
of summands to be evaluated.

1. Introduction

Finite field hypergeometric functions, introduced by Greene [9, 10] as analogues of clas-
sical hypergeometric series, have nice character sum representations and, consequently,
lend themselves naturally to counting problems (see, for example, [1, 2, 8, 11, 13]). Re-
cently, Dawsey and McCarthy [6] provide a formula for the number of complete subgraphs
of order four of generalized k-th power Paley graphs in terms of a sum of 3F2 finite field hy-
pergeometric functions. Using this result, they give lower bounds for multicolor diagonal
Ramsey numbers.

Let Fq denote the finite field with q, a prime power, elements. For a multiplicative
character χ of F∗

q , we extend its domain to Fq by defining χ(0) := 0 (including for the
trivial character). For characters A,B,C,D,E of F∗

q and λ ∈ F∗
q , we define the 3F2 finite

field hypergeometric function [10, Cor. 3.14 (after change of variable)] by

3F2

(
A, B, C

D, E

∣∣∣ λ)
q

=
1

q2

∑
a,b∈Fq

AE(a)CE(1− a)B(b)BD(b− 1)A(a− λb).

Let k ≥ 2 be an integer. Let q be such that q ≡ 1 (mod k) if q is even, or, q ≡ 1 (mod 2k)
if q is odd. These conditions guarantee that −1 is a k-th power in Fq. The generalized
Paley graph of order q, Gk(q), is the graph with vertex set Fq where ab is an edge if and
only if a− b is a k-th power residue [5, 12]. Let χk be a character of F∗

q of order k. For

t⃗ = (t1, t2, t3, t4, t5) ∈ (Zk)
5, we define, for reasons of brevity,

3F2

(
t⃗
∣∣ λ)

q,k
:= 3F2

(
χt1
k , χt2

k , χt3
k

χt4
k , χt5

k

∣∣∣ λ)
q

.

2020 Mathematics Subject Classification. Primary: 11T24, 05C25; Secondary: 05C30, 33C99.
The second author was supported by a grant from the Simons Foundation (#353329, Dermot

McCarthy).

1



2 DERMOT McCARTHY, MASON SPRINGFIELD

Then, the number of complete subgraphs of order four contained in Gk(q), K4(Gk(q)), is
given by [6, Thm 2.1]

K4(Gk(q)) =
q3(q − 1)

24 · k6
∑

t⃗∈(Zk)
5

3F2

(
t⃗
∣∣ 1)

q,k
. (1.1)

Evaluating K4(Gk(q)), using (1.1), we can find lower bounds for the multicolor diagonal
Ramsey numbers Rk(4) = R(4, 4, · · · , 4). Specifically, for a given k, if K4(Gk(q)) = 0
for some q, then q < Rk(4). Key to evaluating K4(Gk(q)) is being able to simplify and
evaluate the hypergeometric functions in (1.1).

Certain summands in (1.1) can be simplified using known reduction formulae for finite
field hypergeometric functions. After splitting off these terms [6, Thm 2.2], the remaining
hypergeometric terms are ∑

t⃗∈Xk

3F2

(
t⃗
∣∣ 1)

q,k
. (1.2)

where Xk := {(t1, t2, t3, t4, t5) ∈ (Zk)
5 | t1, t2, t3 ̸= 0, t4, t5 ; t1 + t2 + t3 ̸= t4 + t5}.

Many of the hypergeometric summands that still remain in (1.2) are equal. A group
action on Xk, such that the value of 3F2

(
t⃗
∣∣ 1)

q,k
is invariant in each orbit, is described

in [6]. Consequently, the number of hypergeometric terms that need to be evaluated
is reduced to orbit representatives. This technique and action has since been used by
Bhowmik and Barman in relation to Peisert [3] and Peisert-like [4] graphs.

In this paper, we show that a larger group acts on Xk with the same effects and so
the number of orbits, and, hence, the number of hypergeometric terms that need to be
evaluated, can be reduced even further. Table 1 below outlines the level of this reduction.
Let Nk be the number of orbits for a given k.

k |Xk| Nk from [6] Nk from this paper Reduction
2 1 1 1 0%
3 12 1 1 0%
4 93 11 6 45%
5 424 28 12 57%
6 1425 92 33 64%
7 3876 207 63 70%
8 9037 466 131 72%
∞ 80%

Table 1. Reduction in Number of Orbits

So, as a result of this work, as k becomes large, the number of hypergeometric terms in
(1.2) that need to be evaluated will be automatically up to 80% less.

In the next section, we describe in detail the group action and give a formula for the
number of orbits. In the appendix, we give Python code which returns the orbits for a
given k.
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2. Orbits of Xk

An important feature of finite field hypergeometric functions is transformation formulae
relating the values of functions with different parameters (analogous to those for classical
hypergeometric series). Seven such transformations, applicable to 3F2(·|1), are identified
in [6, (3.15)-(3.21)], having originally appearing in [9, 10]. For example [10, Thm 4.2],

3F2

(
A, B, C

D, E

∣∣∣ 1)
q

= 3F2

(
BD, AD, CD

D, ED

∣∣∣ 1)
q

. (2.1)

To each such transformation we can associate a map on Xk. For example, applying (2.1)
we get that

3F2

(
χt1
k , χt2

k , χt3
k

χt4
k , χt5

k

∣∣∣ 1)
q

= 3F2

(
χt2−t4
k , χt1−t4

k , χt3−t4
k

χ−t4
k , χt5−t4

k

∣∣∣ 1)
q

.

This induces a map T1 : Xk → Xk given by

T1(t1, t2, t3, t4, t5) = (t2 − t4, t1 − t4, t3 − t4,−t4, t5 − t4),

where the addition in each component takes place in Zk. Similarly, to the other transfor-
mations [6, (3.16)-(3.21)] we can associate the maps

T2(t1, t2, t3, t4, t5) = (t1, t1 − t4, t1 − t5, t1 − t2, t1 − t3);

T3(t1, t2, t3, t4, t5) = (t2 − t4, t2, t2 − t5, t2 − t1, t2 − t3);

T4(t1, t2, t3, t4, t5) = (t1, t2, t5 − t3, t1 + t2 − t4, t5);

T5(t1, t2, t3, t4, t5) = (t1, t4 − t2, t3, t4, t1 + t3 − t5);

T6(t1, t2, t3, t4, t5) = (t4 − t1, t2, t3, t4, t2 + t3 − t5); and

T7(t1, t2, t3, t4, t5) = (t4 − t1, t4 − t2, t3, t4, t4 + t5 − t1 − t2)

respectively. We form the group generated by T1, T2, · · · , T7, with operation composition
of functions, and call it Tk. We have that

Tk = ⟨T1, T2, T3, T4, T5, T6, T7⟩
= {T0, Ti, Tj ◦ Tℓ, T4 ◦ T1, T6 ◦ T2, T5 ◦ T3, T1 ◦ T4 ◦ T1|1 ≤ i ≤ 7, 1 ≤ j ≤ 3, 4 ≤ ℓ ≤ 7},

where T0 is the identity map, is a group of order 24 isomorphic to the permutation group
S4. So, in fact, Tk = ⟨T2, T1◦T6⟩. Tk acts on Xk. Furthermore, the value of 3F2

(
t⃗
∣∣ 1)

q,k
is

constant for all t⃗ in each orbit. Therefore, the evaluation of the hypergeometric summands
in (1.2) can be reduced to orbit representatives.
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Tk is the group introduced in [6] and the following formula for the number of orbits for
a given k, NTk

, is also provided therein, which is calculated using Burnside’s theorem.

NTk
=

1

24

[
k5 − 10k4 + 54k3 − 162k2 + 245k − 128

+



0 if k ≡ 1, 5, 7, 11 (mod 12),

16k − 64 if k ≡ 3, 9 (mod 12),

45k − 84 if k ≡ 2, 10 (mod 12),

45k − 96 if k ≡ 4, 8 (mod 12),

61k − 148 if k ≡ 6 (mod 12),

61k − 160 if k ≡ 0 (mod 12).


(2.2)

We note also that [6, (6.2)]

|Xk| = (k − 1)(k4 − 9k3 + 36k2 − 69k + 51). (2.3)

It is easy to see from their definition that the value of finite field hypergeometric func-
tions is invariant under permuting columns of parameters, and so

3F2

(
χt1
k , χt2

k , χt3
k

χt4
k , χt5

k

∣∣∣ 1)
q

= 3F2

(
χt1
k , χt3

k , χt2
k

χt5
k , χt4

k

∣∣∣ 1)
q

,

3F2

(
χt1
k , χt2

k , χt3
k

χ0
k, χt5

k

∣∣∣ 1)
q

= 3F2

(
χt2
k , χt1

k , χt3
k

χ0
k, χt5

k

∣∣∣ 1)
q

and

3F2

(
χt1
k , χt2

k , χt3
k

χt4
k , χ0

k

∣∣∣ 1)
q

= 3F2

(
χt3
k , χt2

k , χt1
k

χt4
k , χ0

k

∣∣∣ 1)
q

.

These transformations induce the following maps on Xk:

T8(t1, t2, t3, t4, t5) = (t1, t3, t2, t5, t4);

T9(t1, t2, t3, 0, t5) = (t2, t1, t3, 0, t5); and

T10(t1, t2, t3, t4, 0) = (t3, t2, t1, t4, 0),

where the domain must be restricted for T9 and T10. The purpose of this paper is to
incorporate these maps in to the group acting on Xk. This larger group reduces the
number of orbits, and, consequently, automatically reduces the number of hypergeometric
terms in (1.2) that need to be evaluated. We start by adding T8. Let

Gk = ⟨Tk, T8⟩
= ⟨T1, T2, T3, T4, T5, T6, T7, T8⟩
= ⟨T2, T1 ◦ T6, T8⟩.

Using a computer, we generate Gk (see Appendix A) and find that it is a group of order
120 isomorphic to the permutation group S5. Consider the maps

G1(t1, t2, t3, t4, t5) = (t1, t2, t5 − t3, t1 + t2 − t4, t5); and

G2(t1, t2, t3, t4, t5) = (t5 − t1, t3, t3 − t4, t3 − t1, t2 + t3 − t4).
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Then G1 = T1 ◦ T6 ◦ T1 ◦ T6 ◦ T2 ◦ T1 ◦ T6 ◦ T2 and G2 = T1 ◦ T6 ◦ T1 ◦ T6 ◦ T1 ◦ T6 ◦ T2 ◦ T8

are elements of Gk, and, the maps (12) → G1, (12345) → G2 determine an isomorphism
with S5. So, in fact, Gk = ⟨G1, G2⟩ as S5 = ⟨(12), (12345)⟩. As before, Gk acts on Xk and
the value of 3F2

(
t⃗
∣∣ 1)

q,k
is constant for all t⃗ in each orbit. Therefore, we can reduce the

evaluation of the hypergeometric summands in (1.2) to Gk orbit representatives.
We can calculate explicitly the number of orbits in Xk under the action of Gk, for a

given k, NGk
. For T ∈ Gk, let XT := {t⃗ ∈ Xk | T (⃗t ) = t⃗ }. Then, by Burnside’s theorem,

the number of orbits is given by

NGk
=

1

120

∑
T∈Gk

|XT |.

We note that |XT | = |XS−1◦T◦S | for any S, T ∈ Gk, i.e., |XT | is constant within each
conjugacy class of Gk. Based on the isomorphism between Gk and the permutation group
S5, we have the following conjugacy class representatives (see Table 2). We denote the
identity map as T0.

Class Class Rep. Correspondent in S5 Class size

0 T0 Identity 1

1 T2 (23) 10

2 T1 (14)(23) 15

3 T2 ◦ T4 (132) 20

4 T1 ◦ T4 (1324) 30

5 G2 (12345) 24

6 T6 ◦ T1 ◦G2 (13)(245) 20

Table 2. Conjugacy Classes of Gk

We now evaluate |XT | for each class. Of course, |XT0 | = |Xk| = (k − 1)(k4 − 9k3 +
36k2 − 69k + 51) from (2.3). Classes 1 to 4 have been dealt with in [6]. Specifically,

|XT2 | =

{
(k − 1)(k − 3)2 if k odd,

(k − 1)(k − 3)2 + 6(k − 2) if k even,

|XT1 | =

{
k3 − 5k2 + 9k − 5 if k odd,

k3 − 5k2 + 10k − 7 if k even,

|XT2◦T4 | =

{
k − 1 if 3 ∤ k,
3(k − 3) if 3 | k,

and

|XT1◦T4 | =


0 if k odd,

(k − 1) if k ≡ 2 (mod 4),

(k − 3) if k ≡ 0 (mod 4).
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We saw G2(t1, t2, t3, t4, t5) = (t5 − t1, t3, t3 − t4, t3 − t1, t2 + t3 − t4). Hence, G2(⃗t ) =
t⃗ ⇐⇒ t1 = t2 = t3, t4 = 0, t5 = 2t1. Therefore, XG2 = {(a, a, a, 0, 2a) | a ∈ Zk; a ̸= 0} and
so |XG2 | = k − 1.

Now, T6 ◦ T1 ◦ G2(t1, t2, t3, t4, t5) = (−t3, t5 − t3, t1 − t4, t1 − t3,−t2 − t3 + t5). Hence
T6 ◦ T1 ◦ G2(⃗t ) = t⃗ ⇐⇒ t1 = t2 = −t3, t4 = 2t1, t5 = 0. Therefore, XT6◦T1◦G2 =
{(a, a,−a, 2a, 0) | a ∈ Zk; 3a ̸= 0} and so

|XT6◦T1◦G2 | =

{
k − 1 if 3 ∤ k,
k − 3 if 3 | k.

So, the number of orbits, by Burnside’s theorem, is

NGk
=

1

120

[
(k − 1)(k4 − 9k3 + 61k2 − 189k + 280)

+



0 if k ≡ 1, 5, 7, 11 (mod 12),

40k − 200 if k ≡ 3, 9 (mod 12),

105k − 180 if k ≡ 2, 10 (mod 12),

105k − 240 if k ≡ 4, 8 (mod 12),

145k − 380 if k ≡ 6 (mod 12),

145k − 440 if k ≡ 0 (mod 12).


(2.4)

Table 3 compares NTk
and NGk

, as calculated by (2.2) and (2.4) respectively, for small k
and outlines the percentage reduction in the number of orbits as a result of the action of
the bigger group Gk instead of Tk.

k |Xk| NTk
NGk

Reduction
2 1 1 1 0%
3 12 1 1 0%
4 93 11 6 45%
5 424 28 12 57%
6 1425 92 33 64%
7 3876 207 63 70%
8 9037 466 131 72%
∞ 80%

Table 3. Reduction in Number of Orbits

We now want to incorporate T9 and T10. However, T9 and T10 are actually redundant
and do not reduce the number of orbits any further. We first note that T1(t1, t2, t3, 0, t5) =
(t2, t1, t3, 0, t5) = T9(t1, t2, t3, 0, t5). So T9 is a special case of T1 and is already included
in the action of Tk. Similarly, if we consider the map f = T2 ◦ T1 ◦ T6 ◦ T1 ◦ T6 ◦ T1 ◦ T6 ◦
T2 ◦T8 ◦T1 ◦T6 ∈ Gk, then f(t1, t2, t3, t4, t5) = (t3 − t5, t2 − t5, t1 − t5, t4 − t5,−t5). Hence,
f(t1, t2, t3, t4, 0) = (t3, t2, t1, t4, 0) = T10(t1, t2, t3, t4, 0). So T10 is a special case of f and is
already included in the action of Gk.
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3. Concluding Remarks

Values of finite field hypergeometric functions have also been related to Fourier coeffi-
cients of modular forms (see [7] for a survey of these connections). A curious byproduct of
the work in [6] is the discovery of new such (conjectural) relations. All these new relations
were found by searching the orbits for 3F2’s whose bottom line arguments were trivial
characters and whose complex conjugate was in the same orbit. See [7] for full details.
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Appendix A. Python Code

The following Python code generates the group Gk and returns, in separate text files,
the orbits for each k in the input range. It is also available on the first author’s webpage.

import sympy as sym
from sympy import poly

a = sym.Symbol(’a’)
b = sym.Symbol(’b’)
c = sym.Symbol(’c’)
d = sym.Symbol(’d’)
e = sym.Symbol(’e’)

def make_T(Fpair): #Subfunction for the group builder
def T(L):

return Fpair[0][0](Fpair[1][0](L))
return T

#Takes in a specific set of maps and genereates the group G_k using those maps as a base.
#The 120 benchmark is an optimization made with foresight that this group only gets that big,
#removing the constraint has no effect other than making group generation longer
def Build_Group(S, base):

G = []
out = set()
i = 0
for x in S:

out.add(tuple(x[1]))
G.append(x)

while i < len(G) and len(G) < 120:
for f in G:

T = make_T([G[i], f])
res = T(base)
if not(tuple(res) in out):

out.add(tuple(res))
G.append([T, res])

T = make_T([f, G[i]])
res = T(base)
if not(tuple(res) in out):

out.add(tuple(res))
G.append([T, res])

i += 1
return G

def genXk(k): #Generates the set G_k will act upon
X_k = set()
for m in range(1,k):

for n in range(1,k):
for l in range(1,k):

for p in [t for t in range(0,k) if t not in [m,n,l]]:
for q in [t for t in range(0,k) if t not in [m,n,l, (m+n+l - p) %k]]:

X_k.add((m,n,l,p,q))
return X_k

#Takes in G_k and an integer k >= 2 and determines the orbits of the action of G_k on X_k
def genorbits(G, k):

X_k = genXk(k)
Y = genXk(k)
orbits = set()
while len(Y) > 0:

for x in X_k:
if not(x in Y):

continue
orbitx = set()
for f in G:

y = tuple([l % k for l in f[0](list(x))])
if(y != x and not(y in orbitx)):

orbitx.add(y)
Y.discard(y)

orbitx.add(x)
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orbits.add(tuple(orbitx))
Y.discard(x)

return orbits

#Handler for large scale orbit generation
def orbit_lists(G, n, m):

for k in range(n, m+1):
print(f"Generating orbit file for k = {k}...")
O = genorbits(G, k)
with open("Orbits_k=" + str(k) + ".txt", mode = "w") as file:

if len(O) == 1:
file.write(f"The 1 orbit of the action of G_k on X_k for k = {k} is,\n\n")

else:
file.write(f"The {len(O)} orbits of the action of G_k on X_k for k = {k} are,\n\n")

for orb in O:
file.write(f"The orbit generated by {orb[len(orb)-1]} is listed below and is of size {len(orb)}\n")
for x in orb:

file.write(str(x) + "\n")
file.write("\n")

return 1

#main
def main():

def T_1(L):
NL = [L[1] - L[3], L[0] - L[3], L[2] - L[3], -L[3], L[4] - L[3]]
return NL

def T_2(L):
NL = [L[0], L[0] - L[3], L[0] - L[4], L[0] - L[1], L[0] - L[2]]
return NL

def T_6(L):
NL = [L[3] - L[0], L[1], L[2], L[3], L[1] + L[2] - L[4]]
return NL

def T_8(L):
NL = [L[0], L[2], L[1], L[4], L[3]]
return NL

def T_16(L):
return T_1(T_6(L))

base = [a, b, c, d, e]

S = [[T_2, T_2(base)], [T_16, T_16(base)], [T_8, T_8(base)]]

G = Build_Group(S, base)
print("This program will generate orbit files for the action of G_k on X_k for all integers k >=2 in a user given range")
print("These files will be saved as ’orbit_k=i.txt’ as they are generated")
print("Warning: This code may take exceedingly long to run on some machines for large values of k")
n = int(input("Enter a starting integer n (this number must be >= 2): "))
m = int(input("Enter a finishing integer m (only one file will be generated if m = n): "))
orbit_lists(G, n, m)

main()
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