# A MATHON-TYPE CONSTRUCTION FOR DIGRAPHS AND IMPROVED LOWER BOUNDS FOR RAMSEY NUMBERS

#### DERMOT McCARTHY, CHRIS MONICO

ABSTRACT. We construct an edge-colored digraph analogous to Mathon's construction for undirected graphs. We show that this graph is connected to the k-th power Paley digraphs and we use this connection to produce improved lower bounds for multicolor directed Ramsey numbers.

#### 1. Introduction

In [5], Mathon leveraged properties of generalized Paley graphs to improve lower bounds on diagonal multicolor (undirected) Ramsey numbers. He did this by constructing a multicolored graph which contained monochromatic induced subgraphs isomorphic to the generalized Paley graph. Among his results were  $R(7,7) \geq 205$ ,  $R(9,9) \geq 565$ ,  $R(10,10) \geq 798$  and  $R_3(4) \geq 128$ , which are still the best known lower bounds today [9]. Independently, Shearer [13] produced the same results in the two-color case using an equivalent construction. More recently, Xu and Radziszowski [14] made incremental improvements to Mathon's construction and showed that  $R_3(7) \geq 3214$  (increased from Mathon's 3211), which is the current best known lower bound.

In this paper, we adapt Mathon's construction to digraphs and leverage properties of k-th power Paley digraphs to produce improved lower bounds for diagonal multicolor directed Ramsey numbers. For the remainder of this paper all Ramsey numbers will be directed, and will be denoted  $R_t(m)$ . As such,  $R_t(m)$  is the least positive integer n such that any tournament with n vertices, whose edges have been colored in t colors, contains a monochromatic transitive subtournament of order m. When t = 1 we recover the usual directed Ramsey number R(m), so we drop the subscript in this case. Recall, a tournament is transitive if, whenever  $a \to b$  and  $b \to c$ , then  $a \to c$ . Our main results which improve on the previously best known lower bounds can be summarized as follows.

**Theorem 1.1.**  $R(8) \ge 57$ ,  $R(11) \ge 169$ ,  $R(12) \ge 217$ ,  $R(14) \ge 401$ ,  $R(15) \ge 545$ ,  $R(16) \ge 737$ ,  $R(17) \ge 889$ ,  $R(18) \ge 1241$ ,  $R(19) \ge 1321$  and  $R(20) \ge 1945$ .

Theorem 1.2. For  $t \geq 4$ ,

$$R_t(3) \ge 169 \cdot 3^{t-4} + 1.$$

For  $t \geq 2$ ,

$$R_t(6) \ge 829 \cdot 27^{t-2} + 1$$
 and  $R_t(8) \ge 3320 \cdot 56^{t-2} + 1$ .

2020 Mathematics Subject Classification. Primary: 05C25, 05C55; Secondary: 05C25.

# 2. Preliminaries and Notation

For a graph G, we denote its vertex set by V(G), so the order of G is #V(G). For a vertex v of a digraph G, we will denote the set of vertices which are out-neighbors of v by ON(v) and the set of in-neighbors by IN(v). If the edges of G are colored, we will denote the set of out-neighbors (resp. in-neighbors) of v connected via an edge of color i by  $ON_i(v)$  (resp.  $IN_i(v)$ ). We define the set of neighbors of v as  $N(v) := ON(v) \cap IN(v)$  and the set of color i neighbors as  $N_i(v) := ON_i(v) \cap IN_i(v)$ . We will refer to any collection of vertices in G, which are pairwise connected via two edges oriented in opposite directions, as a clique. Further, if all those edges are of color i, we will refer to it as a color i clique.

We note that a tournament of order m is transitive if and only if the set of out-degrees of its vertices is  $\{0, 1, \ldots, m-1\}$  [7, Ch. 7]. Thus, we can represent a transitive subtournament of order m by the m-tuple of its vertices  $(a_1, a_2, \ldots, a_m)$ , listed in order such that the out-degree of vertex  $a_i$  is m-i, i.e. the corresponding m-tuple of out-degrees is  $(m-1, m-2, \ldots, 1, 0)$ . We let  $\mathcal{K}_m(G)$  denote the number of transitive subtournaments of order m contained in a digraph G.

### 3. Mathon-Type Construction for Digraphs

Let  $k \geq 2$  be an even integer. Let q be a prime power such that  $q \equiv k+1 \pmod{2k}$ . This condition ensures that -1 is not a k-th power in  $\mathbb{F}_q$ , the finite field with q elements, but is a  $\frac{k}{2}$ -th power. Let  $S_k$  be the subgroup of the multiplicative group  $\mathbb{F}_q^*$  of order  $\frac{q-1}{k}$  containing the k-th power residues, i.e., if  $\omega$  is a primitive element of  $\mathbb{F}_q$ , then  $S_k = \langle \omega^k \rangle$ . We define  $S_{k,0} := \{0\}$  and  $S_{k,i} := \omega^{i-1} S_k$ , for  $1 \leq i \leq \frac{k}{2}$ , so that  $S_{k,1} = S_k$ . We note that  $-S_{k,i} = \omega^{\frac{k}{2}} S_{k,i}$  (as  $-1 = \omega^{\frac{q-1}{2}}$  and  $\frac{q-1}{2} \equiv \frac{k}{2} \pmod{k}$ ), yielding the disjoint union

$$\mathbb{F}_q = S_{k,0} \cup \bigcup_{i=1}^{k/2} S_{k,i} \cup \bigcup_{i=1}^{k/2} -S_{k,i}.$$

Let  $X:=(\mathbb{F}_q\times\mathbb{F}_q)\setminus\{(0,0)\}$ . We define an equivalence relation  $\sim$  on X where  $(a,b)\sim(c,d)$  if (c,d)=(ag,bg) for some  $g\in S_k$ . We denote the equivalence class of (a,b) by [a,b]. There are n:=k(q+1) such equivalence classes, each containing  $|S_k|=\frac{q-1}{k}$  elements. Let  $M_k(q)$  be the edge-colored digraph of order n, with vertex set  $X/\sim$ , where  $[a,b]\to[c,d]$  is an edge in color  $i,0\leq i\leq \frac{k}{2}$ , if and only if  $bc-ad\in S_{k,i}$ . We note that this is well-defined as  $gS_{k,i}=S_{k,i}$  for all  $g\in S_k$ . We also note that any pair of vertices of  $M_k(q)$  will either be connected by a single oriented edge in color i, for some  $i\leq i\leq \frac{k}{2}$ , or, connected by two edges of color 0 oriented in opposite directions. For ease of illustration in what follows, we will represent the former case by  $v_1 \xrightarrow{i} v_2$  and the latter case by  $v_1 \xleftarrow{0} v_2$ .

**Proposition 3.1.**  $M_k(q)$  is vertex transitive.

*Proof.* For  $s \in \mathbb{F}_q$ , define the maps  $\rho_s$  and  $\sigma_s$  on  $X/\sim$  by

$$\rho_s : [a, b] \to [a, b + as]$$

$$\sigma_s : [a, b] \to [a + bs, b].$$

It is easy to show that both  $\rho_s$  and  $\sigma_s$  are well-defined automorphisms of  $M_k(q)$ . Let [a, b] and [c, d] be distinct vertices of  $M_k(q)$ . Assume first that  $b, c \neq 0$  and let  $s_1, s_2 \in \mathbb{F}_q$  satisfy

 $a + bs_1 = c$  and  $b + cs_2 = d$ . Then  $\rho_{s_2}(\sigma_{s_1}[a, b]) = [c, d]$ . If b = 0 then  $a \neq 0$ , and we can first apply  $\rho_1[a, 0] = [a, a]$  and then proceed as before. If c = 0 then  $d \neq 0$ , and we can proceed as before to get to [d, d]. Then we apply  $\sigma_{-1}[d, d] = [0, d]$ .

**Proposition 3.2.** For  $0 \le i \le \frac{k}{2}$ , let  $\Gamma_i$  be the subgraph of  $M_k(q)$ , with vertex set  $X/\sim$ , induced by the color i edges of  $M_k(q)$ .

- (1)  $\Gamma_0$  is the disjoint union of q+1 color 0 cliques of order k.
- (2)  $\Gamma_1, \Gamma_2, \ldots, \Gamma_{\frac{k}{2}}$  are pairwise isomorphic.

Proof. (1) The neighbors of [0,1] in  $\Gamma_0$  are  $N_0([0,1]) = \{[0,\omega^j] \mid j=1,2,\ldots,k-1\}$ . All elements of  $N_0([0,1])$  are neighbors of each other in  $\Gamma_0$  and, thus, [0,1] and its neighbors form a clique of order k. As  $M_k(q)$  is vertex transitive, every vertex belongs to such a clique. And, as the elements of  $N_0([0,1])$  are not neighbors of any other vertices in  $\Gamma_0$ , all such cliques are disjoint. Therefore, there must be  $\frac{n}{k} = q+1$  of them. (2)  $\Gamma_i$  is isomorphic to  $\Gamma_{i+1}$ , for all  $1 \leq i \leq \frac{k}{2} - 1$ , via the map  $[a,b] \to [wa,b]$ .

**Proposition 3.3.** Let 
$$v \in V(M_k(q))$$
. Let  $x \in N_0(v)$ . Then for any  $i \in \{1, 2, \dots, \frac{k}{2}\}$ ,  $ON_i(x) \cap ON_i(v) = IN_i(x) \cap IN_i(v) = \emptyset$ .

*Proof.* As  $M_k(q)$  is vertex transitive, it suffices to prove for v = [0, 1]. Then, let  $x \in N_0([0, 1])$ , i.e.,  $x = [0, w^j]$  for some j = 1, 2, ..., k - 1. Now

$$[0,\omega^j] \stackrel{i}{\to} [c,d] \iff \omega^j c \in S_{k,i} \iff c \in \{\omega^{kl+i-j-1} \mid l=0,1,\ldots,\frac{q-1}{k}-1\},$$

and so

$$\mathrm{ON}_i(x) = \mathrm{ON}_i([0,\omega^j]) = \{ [\omega^{i-j-1 \pmod{k}}, d] \mid d \in \mathbb{F}_q \}.$$

Also,

$$ON_i(v) = ON_i([0,1]) = \{ [\omega^{i-1}, d] \mid d \in \mathbb{F}_q \}.$$

As  $j \not\equiv 0 \pmod{k}$ , we get that  $ON_i(x) \cap ON_i(v) = \emptyset$ . Similar arguments produce

$$IN_i(x) = IN_i([0, \omega^j]) = \{ [\omega^{i-j-1+\frac{k}{2} \pmod{k}}, b] \mid b \in \mathbb{F}_q \}$$

and

$$IN_i(v) = IN_i([0,1]) = \{ [\omega^{i-1+\frac{k}{2}}, b] \mid b \in \mathbb{F}_q \}.$$

So, 
$$IN_i(x) \cap IN_i(v) = \emptyset$$
.

# 4. Relation to the k-th power Paley digraphs

Recall from Section 3,  $k \geq 2$  is an even integer and q is a prime power such that  $q \equiv k+1 \pmod{2k}$ .  $S_k$  is the subgroup of  $\mathbb{F}_q^*$  containing the k-th power residues, i.e., if  $\omega$  is a primitive element of  $\mathbb{F}_q$ , then  $S_k = \langle \omega^k \rangle$ , and  $S_{k,i} := \omega^{i-1} S_k$ , for  $1 \leq i \leq \frac{k}{2}$ .

We now recall some definitions and properties from [6] concerning Paley digraphs. We define the k-th power Paley digraph of order q,  $G_k(q)$ , as the graph with vertex set  $\mathbb{F}_q$  where  $a \to b$  is an edge if and only if  $b - a \in S_k$ . We note that  $-1 \notin S_k$  so  $G_k(q)$  is a well-defined oriented graph. For each  $1 \le i \le \frac{k}{2}$ , we define the related directed graph  $G_{k,i}(q)$  with vertex set  $\mathbb{F}_q$  where  $a \to b$  is an edge if and only if  $b - a \in S_{k,i}$ . Each  $G_{k,i}(q)$  is isomorphic to  $G_{k,1}(q) = G_k(q)$ , the k-th power Paley digraph, via the map  $f_i : V(G_k(q)) \to V(G_{k,i}(q))$  given by  $f_i(a) = \omega^{i-1}a$ . Now consider the multicolor k-th power Paley tournament  $P_k(q)$ 

whose vertex set is  $\mathbb{F}_q$  and whose edges are colored in  $\frac{k}{2}$  colors according to  $a \to b$  has color i if  $b-a \in S_{k,i}$ . Note that the induced subgraph of color i of  $P_k(q)$  is  $G_{k,i}(q)$ . Thus,  $P_k(q)$  contains a monochromatic transitive subtournament of order m if and only if  $G_k(q)$  contains a transitive subtournament of order m.

**Proposition 4.1.** Let  $i \in \{1, 2, ..., \frac{k}{2}\}$ . Let  $v \in V(M_k(q))$ . Then the induced subgraph of  $M_k(q)$  with vertex set  $ON_i(v)$  is isomorphic to  $P_k(q)$ .

Proof. As  $M_k(q)$  is vertex transitive, it suffices to prove for v = [0,1]. Let H denote the induced subgraph of  $M_k(q)$  with vertex set  $\mathrm{ON}_i([0,1])$ . In the proof of Proposition 3.3 we saw that  $\mathrm{ON}_i([0,1]) = \{[\omega^{i-1},d] \mid d \in \mathbb{F}_q\}$ . So  $\#V(H) = |\mathrm{ON}_i([0,1])| = q = \#V(P_k(q))$ . Now consider the bijective map  $\phi: V(H) \to V(P_k(q))$  given by  $\phi([\omega^{i-1},d]) = -\omega^{i-1}d$ . It remans to show that  $\phi$  is color-preserving. Let  $[\omega^{i-1},d_1] \in V(H)$  and let  $[\omega^{i-1},d_2] \in \mathrm{ON}_s([\omega^{i-1},d_1])$  for some  $s \in \{1,2,\ldots,\frac{k}{2}\}$  (note that  $s \neq 0$  otherwise  $d_1 = d_2$ ). Now,

$$[\omega^{i-1}, d_1] \stackrel{s}{\to} [\omega^{i-1}, d_2] \iff d_1 \omega^{i-1} - \omega^{i-1} d_2 \in S_{k,s}$$

$$\iff \phi([\omega^{i-1}, d_2]) - \phi([\omega^{i-1}, d_1]) \in S_{k,s}$$

$$\iff \phi([\omega^{i-1}, d_1]) \stackrel{s}{\to} \phi([\omega^{i-1}, d_2]),$$

as required.

Recall that any pair of vertices of  $M_k(q)$  will either be connected by a single oriented edge in color i, for some  $1 \leq i \leq \frac{k}{2}$ , or, connected by two edges of color 0 oriented in opposite directions. We now replace all these pairs of color 0 edges with a single oriented edge of color  $1 \leq i \leq \frac{k}{2}$ , where the new color and orientation are randomly assigned. We call this altered graph  $M_k^*(q)$ , which is a tournament whose edges are colored in  $\frac{k}{2}$  colors.

**Theorem 4.2.** Let  $k \geq 2$  be an even integer and q be a prime power such that  $q \equiv k + 1 \pmod{2k}$ . Let  $m \geq k$ . If  $P_k(q)$  contains no monochromatic transitive subtournament of order m, then  $M_k^*(q)$  contains no monochromatic transitive subtournament of order m+2.

Proof. Let  $T_l^*$  be a monochromatic, in color i,  $1 \le i \le \frac{k}{2}$ , transitive subtournament of  $M_k^*(q)$  of order l. We represent  $T_l^*$  by the l-tuple of its vertices  $(a_1, a_2, \ldots, a_l)$  with the corresponding l-tuple of out-degrees  $(l-1, l-2, \ldots, 1, 0)$ . Let  $T_l$  be the corresponding subgraph of  $M_k(q)$  before the color 0 edges were reassigned, i.e.,  $T_l$  also has vertices  $a_1, a_2, \ldots, a_l$  but some vertices may be connected by two edges of color 0 oriented in opposite directions.

Assume  $a_1 \stackrel{0}{\longleftrightarrow} a_2$  in  $M_k(q)$ . If  $l \geq 2$ , consider  $a_t$  for  $3 \leq t \leq l$ . Then there are four possibilities for the triangle  $(a_1, a_2, a_t)$  in  $M_k(q)$ :



By Proposition 3.3,  $ON_i(a_1) \cap ON_i(a_2) = \emptyset$  so case (1) can't happen. Now consider case

(2). As  $M_k(q)$  is vertex transitive, we can let  $a_2 = [0,1]$ , without loss of generality. Then  $a_1, a_t \in \mathcal{N}_0([0,1]) = \{[0,\omega^j] \mid j=1,2,\ldots,k-1\}$ . If we let  $a_1 = [0,\omega^{j_1}]$  and  $a_t = [0,\omega^{j_2}]$ , for some  $1 \leq j_1 \neq j_2 \leq k-1$ , then  $a_1 \stackrel{i}{\to} a_t$  implies  $0 = \omega^{j_1} \cdot 0 - 0 \cdot \omega^{j_2} \in S_{k,i}$ , which is a contradiction. Case (3) is isomorphic to case (2). So, if  $a_1 \stackrel{0}{\longleftrightarrow} a_2$ , then case (4) is the only possibility, which inductively implies that  $T_l$  is monochromatic in color 0. Thus, by Proposition 3.2 (1),  $T_l$  must be contained in a color 0 clique of  $\Gamma_0$  and so  $l \leq k \leq m$ .

Now assume  $a_1 \stackrel{i}{\to} a_2$  in  $M_k(q)$ . If  $l \ge 2$ , consider  $a_t$  for  $3 \le t \le l$ . Again, we see that there are four possibilities for the triangle  $(a_1, a_2, a_t)$  in  $M_k(q)$ :



Case (ii) can't happen because  $IN_i(a_2) \cap IN_i(a_t) = \emptyset$ , by Proposition 3.3. Case (iv) is isomorphic to case (2) above, which we've seen is not possible. We now examine case (iii). As  $M_k(q)$  is vertex transitive, we can let  $a_1 = [0, 1]$ , without loss of generality. Then  $a_2 \in ON_i([0, 1]) = \{[\omega^{i-1}, d] \mid d \in \mathbb{F}_q\}$  and  $a_t \in N_0([0, 1]) = \{[0, \omega^j] \mid j = 1, 2, \dots, k-1\}$ . Further,

$$a_{2} \xrightarrow{i} a_{t} \iff [\omega^{i-1}, d] \xrightarrow{i} [0, \omega^{j}]$$

$$\iff d \cdot 0 - \omega^{i-1} \cdot \omega^{j} \in S_{k,i}$$

$$\iff \omega^{i+j-1} \in -S_{k,i} = \{\omega^{kv+i-1+\frac{k}{2}} \mid v = 0, 1, \dots, \frac{q-1}{k} - 1\}$$

$$\iff \omega^{j} \in \{\omega^{kv+\frac{k}{2}} \mid v = 0, 1, \dots, \frac{q-1}{k} - 1\}$$

$$\iff j = \frac{k}{2}$$

$$\iff a_{t} = [0, \omega^{\frac{k}{2}}] = [0, -1]$$

So, case (iii) is possible but there is only one possible  $a_t$ , which means there is only one value of  $t \in \{3, ..., l\}$  for which  $a_1 \stackrel{0}{\longleftrightarrow} a_t$ . So assume there is an  $s \in \{3, ..., l\}$  such that



Then  $a_1 \stackrel{i}{\to} a_t$  for all  $t \in \{3, \dots, l\} \setminus \{s\}$  and by previous arguments we must have



Therefore, if  $t_1, t_2 \in \{3, \ldots, l\} \setminus \{s\}$  with  $t_1 < t_2$ , then



is not possible, by Proposition 3.3, and so  $a_{t_1} \stackrel{\imath}{\to} a_{t_2}$ . Thus, if we remove  $a_s$  from  $T_l$  we get a monochromatic, in color i, transitive subtournament of  $M_k(q)$  of order l-1, which we call  $T_{l-1}$ . Furthermore,  $T_{l-1} \setminus \{a_1\}$  is a monochromatic, in color i, transitive subtournament of  $M_k(q)$  of order l-2. If we let H denote the induced subgraph of  $M_k(q)$  with vertex set  $\mathrm{ON}_i([0,1])$ , then by Proposition 4.1,  $T_{l-1} \setminus \{a_1\} \subseteq H \cong P_k(q)$ . So, if  $P_k(q)$  contains no monochromatic transitive subtournament of order m, then l-2 < m.

If there is no  $3 \le t \le l$  for which  $(a_1, a_2, a_t)$  satisfies cases (ii), (ii) or (iv) then all  $a_t$ , for  $3 \le t \le l$ , satisfy case (i). Then  $a_{t_1} \stackrel{i}{\to} a_{t_2}$  for all  $3 \le t_1 < t_2 \le l$  by previous arguments. So, in this case,  $T_l$  itself is a monochromatic, in color i, transitive subtournament of  $M_k(q)$ . Letting H denote the induced subgraph of  $M_k(q)$  with vertex set  $\mathrm{ON}_i(a_1)$  and, again, using Proposition 4.1, we get that  $T_l \setminus \{a_1\} \subseteq H \cong P_k(q)$ . So, if  $P_k(q)$  contains no monochromatic transitive subtournament of order m, then l-1 < m.

Overall, if  $P_k(q)$  contains no monochromatic transitive subtournament of order m, then  $M_k^*(q)$  contains no monochromatic transitive subtournament of order m+2.

Corollary 4.3. Let  $k \ge 2$  be an even integer and q be a prime power such that  $q \equiv k+1 \pmod{2k}$ . If  $\mathcal{K}_m(G_k(q)) = 0$ , for  $m \ge k$ , then  $R_{\frac{k}{2}}(m+2) \ge k(q+1) + 1$ .

Proof. By definition,  $\mathcal{K}_m(G_k(q)) = 0$  means that  $G_k(q)$  contains no transitive subtournaments of order m. By the discussion at the start of this section, this implies  $P_k(q)$  contains no transitive subtournaments of order m [6]. Consequently, by Theorem 4.2,  $M_k^*(q)$  contains no monochromatic transitive subtournament of order m+2. Recall,  $M_k^*(q)$  is a tournament of order n=k(q+1) whose edges are colored in  $\frac{k}{2}$  colors, so  $R_{\frac{k}{2}}(m+2) \geq k(q+1) + 1$ .

## 5. Application of Corollary 4.3

We now examine properties of  $G_k(q)$  and apply Corollary 4.3 to get improved lower bounds for certain directed Ramsey numbers.

We start with the case when k=2. For all appropriate  $q \leq 1583$  we found, by computer search, the order of the largest transitive subtournament of  $G_2(q)$ . Then, from this data, we identified the largest q such that  $\mathcal{K}_m(G_k(q))=0$ , for each  $3\leq m\leq 20$ . Call this  $q_m$ . We then apply Corollary 4.3 which yields  $R(m+2)\geq \max(2(q_m+1)+1,q_{m+2}+1)$ . The results for  $7\leq m\leq 20$  are shown in Table 1. (R(m) for  $3\leq m\leq 6$  are already known.)

The values of  $q_m$  in Table 1, for  $7 \le m \le 18$ , confirm those of Sanchez-Flores [12], and, for m=19, that of Exoo [3]. The best known lower bound for m=7 is  $R(7) \ge 34$ , due to Neiman, Mackey and Heule [8]. For  $8 \le m \le 10$  and  $12 \le m \le 19$  the previously best known lower bound was  $R(m) \ge q_m + 1$  [3]. Also from [3] we have that  $R(11) \ge 112$ . So the values in bold in Table 1 represent an improvement to the previously best known lower bounds and the values in italics equal the best known lower bounds.

| m           | 7  | 8         | 9  | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18   | 19   | 20   |
|-------------|----|-----------|----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| $q_m$       | 27 | 47        | 83 | 107 | 107 | 199 | 271 | 367 | 443 | 619 | 659 | 971  | 1259 | 1571 |
| $R(m) \geq$ | 28 | <b>57</b> | 84 | 108 | 169 | 217 | 272 | 401 | 545 | 737 | 889 | 1241 | 1321 | 1945 |

Table 1. Lower Bounds for R(m).

We also performed a similar exercise for k=4,6,8 and 10, identifying, in each case, the largest q such that  $\mathcal{K}_m(G_k(q))=0$ , for  $3\leq m\leq 10$ . We will denote such q as  $q_{m,k}$ . Table 2 outlines these values. The values in the last row of the table indicate the upper limit for q in our search. Note that values of  $q_{m,k}$  close to this limit will not be optimal.

| $\overline{m}$ | k=4   | k = 6 | k = 8 | k = 10 |
|----------------|-------|-------|-------|--------|
| 3              | 13    | 43    | 169   | 71     |
| 4              | 125   | 343   | 953   | 3331   |
| 5              | 157   | 859   | 2809  | 6791   |
| 6              | 829   | 4339  | 15625 | 33191  |
| 7              | 709   | 4423  | 26153 | 43411  |
| 8              | 1709  | 18523 | 29929 | 58771  |
| 9              | 3517  | 29611 | 29929 | 59951  |
| 10             | 7573  | 29959 | 29929 | 59971  |
| q <            | 10000 | 30000 | 30000 | 60000  |

Table 2. Largest q found such that  $\mathcal{K}_m(G_k(q)) = 0$ .

Now,  $R_{\frac{k}{2}}(m) \ge q_{m,k} + 1$ , and, by Corollary 4.3,  $R_{\frac{k}{2}}(m+2) \ge k(q_{m,k}+1) + 1$  when  $m \ge k$ . We note also that for  $t \ge 2$  [4, Prop. 5]

$$R_t(m) \ge (R_{t-1}(m) - 1)(R(m) - 1) + 1.$$

It is already known that R(3) = 4, R(4) = 8 [2], R(5) = 14 [10], R(6) = 28 [11],  $R(7) \ge 34$  [8],  $R_2(3) = 14$  [1],  $R_2(4) \ge 126$  and  $R_3(3) \ge 44$  [6]. We combine all this information, including values from Table 1, to get lower bounds on the Ramsey numbers  $R_t(m)$  for  $t \ge 2$  and  $3 \le m \le 10$ . The results are shown in Table 3.

| $\boxed{m}$ | t = 2       | t = 3                     | t=4 | $t \ge 5$               |  |  |  |  |
|-------------|-------------|---------------------------|-----|-------------------------|--|--|--|--|
| 3           | 14          | 44                        | 170 | $169 \cdot 3^{t-4} + 1$ |  |  |  |  |
| 4           | 126         | $125 \cdot 7^{t-2} + 1$   |     |                         |  |  |  |  |
| 5           |             | $13^t + 1$                |     |                         |  |  |  |  |
| 6           | 830         | $829 \cdot 27^{t-2} + 1$  |     |                         |  |  |  |  |
| 7           |             | $33^t + 1$                |     |                         |  |  |  |  |
| 8           | 3321        | $3320 \cdot 56^{t-2} + 1$ |     |                         |  |  |  |  |
| 9           | $83^t + 1$  |                           |     |                         |  |  |  |  |
| 10          | $107^t + 1$ |                           |     |                         |  |  |  |  |

Table 3. Lower bounds for  $R_t(m)$ .

The general formulas in the cases m = 3, 6, 8 improve on what was previously known. We note that the m = 8 case is the only one where Corollary 4.3 influences the results.

#### References

- [1] A. Bialostocki, P. Dierker, Some Ramsey numbers for tournaments, Proceedings of the sixteenth Southeastern international conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1985), Congr. Numer. 47 (1985), 119–123.
- [2] P. Erdös, L. Moser, On the representation of directed graphs as unions of orderings, Magyar Tud. Akad. Mat. Kutató Int. Közl. 9 (1964), 125–132.
- [3] G. Exoo, W. Smith, Partial Answer to Puzzle #27: A Ramsey-like quantity, https://rangevoting.org/PuzzRamsey.html.
- [4] Y. Manoussakis, Z. Tuza, *Ramsey numbers for tournaments*, Combinatorics and computer science (Palaiseau, 1997)., Theoret. Comput. Sci. **263** (2001), no.1-2, 75–85.
- [5] R. Mathon, Lower bounds for Ramsey numbers and association schemes, J. Combin. Theory Ser. B 42 (1987), no.1, 122–127.
- [6] D. McCarthy, M. Springfield, Transitive subtournaments of k-th power Paley digraphs and improved lower bounds for Ramsey numbers, Graphs Combin. 40, 71 (2024).
- [7] J.W. Moon, *Topics on Tournament in Graph Theory*, Dover Publications, Mineola, New York (2015); Holt Rinehart and Winston, New York (1968).
- [8] D. Neiman, J. Mackey, M. Heule, Tighter bounds on directed Ramsey number R(7), Graphs Combin. 38 (2022), no.5, Paper No. 156, 17 pp.
- [9] S. P. Radziszowski, *Small Ramsey numbers*, Electron. J. Combin. 1 (1994), Dynamic Survey 1, 30 pp.
- [10] K. B. Reid, E. T. Parker, Disproof of a conjecture of Erdös and Moser on tournaments, J. Combinatorial Theory 9 (1970), 225–238.
- [11] A. Sanchez-Flores, On tournaments and their largest transitive subtournaments, Graphs Combin. 10 (1994), no.4, 367–376.
- [12] A. Sanchez-Flores, On tournaments free of large transitive subtournaments, Graphs Combin. 14 (1998), no.2, 181–200.
- [13] B. Shearer, Lower bounds for small diagonal Ramsey numbers, J. Combin. Theory Ser. A 42 (1986), no.2, 302–304.
- [14] X. Xiaodong, S. P. Radziszowski, An improvement to Mathon's cyclotomic Ramsey colorings, Electron. J. Combin. 16 (2009), no.1, Note 1, 5 pp.

DERMOT McCarthy, Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79410-1042, USA

Email address: dermot.mccarthy@ttu.edu URL: https://www.math.ttu.edu/~mccarthy/

CHRIS MONICO, DEPARTMENT OF MATHEMATICS & STATISTICS, TEXAS TECH UNIVERSITY, LUBBOCK, TX 79410-1042, USA

Email address: C.Monico@ttu.edu

 $\mathit{URL}$ : https://www.math.ttu.edu/~cmonico/