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Abstract. We construct an edge-colored digraph analogous to Mathon’s construction
for undirected graphs. We show that this graph is connected to the k-th power Paley
digraphs and we use this connection to produce improved lower bounds for multicolor
directed Ramsey numbers.

1. Introduction

In [5], Mathon leveraged properties of generalized Paley graphs to improve lower bounds
on diagonal multicolor (undirected) Ramsey numbers. He did this by constructing a multi-
colored graph which contained monochromatic induced subgraphs isomorphic to the gener-
alized Paley graph. Among his results were R(7, 7) ≥ 205, R(9, 9) ≥ 565, R(10, 10) ≥ 798
and R3(4) ≥ 128, which are still the best known lower bounds today [9]. Independently,
Shearer [13] produced the same results in the two-color case using an equivalent con-
struction. More recently, Xu and Radziszowski [14] made incremental improvements to
Mathon’s construction and showed that R3(7) ≥ 3214 (increased from Mathon’s 3211),
which is the current best known lower bound.

In this paper, we adapt Mathon’s construction to digraphs and leverage properties
of k-th power Paley digraphs to produce improved lower bounds for diagonal multicolor
directed Ramsey numbers. For the remainder of this paper all Ramsey numbers will be
directed, and will be denoted Rt(m). As such, Rt(m) is the least positive integer n such
that any tournament with n vertices, whose edges have been colored in t colors, contains
a monochromatic transitive subtournament of order m. When t = 1 we recover the usual
directed Ramsey number R(m), so we drop the subscript in this case. Recall, a tournament
is transitive if, whenever a→ b and b→ c, then a→ c. Our main results, which improve
on the previously best known lower bounds, can be summarized as follows.

Theorem 1.1. R(8) ≥ 57, R(11) ≥ 169, R(12) ≥ 217, R(14) ≥ 401, R(15) ≥ 545, R(16) ≥
737, R(17) ≥ 889, R(18) ≥ 1241, R(19) ≥ 1321 and R(20) ≥ 1945.

Theorem 1.2. For t ≥ 4,

Rt(3) ≥ 169 · 3t−4 + 1.

For t ≥ 2,

Rt(6) ≥ 829 · 27t−2 + 1 and Rt(8) ≥ 3320 · 56t−2 + 1.
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2. Preliminaries and Notation

For a graph G, we denote its vertex set by V (G), so the order of G is #V (G). For
a vertex v of a digraph G, we will denote the set of vertices which are out-neighbors of
v by ON(v) and the set of in-neighbors by IN(v). If the edges of G are colored, we will
denote the set of out-neighbors (resp. in-neighbors) of v connected via an edge of color i by
ONi(v) (resp. INi(v)). We define the set of neighbors of v as N(v) := ON(v) ∩ IN(v) and
the set of color i neighbors as Ni(v) := ONi(v)∩ INi(v). We will refer to any collection of
vertices in G, which are pairwise connected via two edges oriented in opposite directions,
as a clique, i.e., C ⊆ V (G) is a clique if, for all u, v ∈ C, u→ v and v → u are edges of G.
Further, if all those edges are of color i, we will refer to it as a color i clique.

We note that a tournament of order m is transitive if and only if the set of out-degrees
of its vertices is {0, 1, . . . ,m − 1} [7, Ch. 7]. Thus, we can represent a transitive sub-
tournament of order m by the m-tuple of its vertices (a1, a2, . . . , am), listed in order such
that the out-degree of vertex ai is m− i, i.e. the corresponding m-tuple of out-degrees is
(m − 1,m − 2, . . . , 1, 0). We let Km(G) denote the number of transitive subtournaments
of order m contained in a digraph G.

3. Mathon-Type Construction for Digraphs

Let k ≥ 2 be an even integer. Let q be a prime power such that q ≡ k + 1 (mod 2k).
This condition ensures that −1 is not a k-th power in Fq, the finite field with q elements,

but is a k
2 -th power. Let Sk be the subgroup of the multiplicative group F∗

q of order q−1
k

containing the k-th power residues, i.e., if ω is a primitive element of Fq, then Sk = ⟨ωk⟩.
We define Sk,0 := {0} and Sk,i := ωi−1Sk, for 1 ≤ i ≤ k

2 , so that Sk,1 = Sk. We note that

−Sk,i = ω
k
2Sk,i (as −1 = ω

q−1
2 and q−1

2 ≡
k
2 (mod k)), yielding the disjoint union

Fq = Sk,0 ∪
k/2⋃
i=1

Sk,i ∪
k/2⋃
i=1

−Sk,i.

Let X := (Fq × Fq) \ {(0, 0)}. We define an equivalence relation ∼ on X where (a, b) ∼
(c, d) if (c, d) = (ag, bg) for some g ∈ Sk. We denote the equivalence class of (a, b) by [a, b].

There are n := k(q+1) such equivalence classes, each containing |Sk| = q−1
k elements. Let

Mk(q) be the edge-colored digraph of order n, with vertex set X/ ∼, where [a, b]→ [c, d] is
an edge in color i, 0 ≤ i ≤ k

2 , if and only if bc−ad ∈ Sk,i. We note that this is well-defined
as gSk,i = Sk,i for all g ∈ Sk. We also note that any pair of vertices of Mk(q) will either

be connected by a single oriented edge in color i, for some 1 ≤ i ≤ k
2 , or, connected by two

edges of color 0 oriented in opposite directions. For ease of illustration in what follows,

we will represent the former case by v1
i→ v2 and the latter case by v1

0←→ v2.

Proposition 3.1. Mk(q) is vertex transitive.

Proof. For s ∈ Fq, define the maps ρs and σs on X/ ∼ by

ρs : [a, b]→ [a, b+ as]

σs : [a, b]→ [a+ bs, b].
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It is easy to show that both ρs and σs are well-defined automorphisms of Mk(q). Let [a, b]
and [c, d] be distinct vertices of Mk(q). Assume first that b, c ̸= 0 and let s1, s2 ∈ Fq satisfy
a+ bs1 = c and b+ cs2 = d. Then ρs2(σs1 [a, b]) = [c, d]. If b = 0 then a ̸= 0, and we can
first apply ρ1[a, 0] = [a, a] and then proceed as before. If c = 0 then d ̸= 0, and we can
proceed as before to get to [d, d]. Then we apply σ−1[d, d] = [0, d]. □

Proposition 3.2. For 0 ≤ i ≤ k
2 , let Γi be the subgraph of Mk(q), with vertex set X/ ∼,

induced by the color i edges of Mk(q).

(1) Γ0 is the disjoint union of q + 1 color 0 cliques of order k.
(2) Γ1,Γ2, . . . ,Γ k

2
are pairwise isomorphic.

Proof. (1) The neighbors of [0,1] in Γ0 are N0([0, 1]) = {[0, ωj ] | j = 1, 2, . . . , k − 1}. All
elements of N0([0, 1]) are neighbors of each other in Γ0 and, thus, [0, 1] and its neighbors
form a clique of order k. As Mk(q) is vertex transitive, every vertex belongs to such a
clique. And, as the elements of N0([0, 1]) are not neighbors of any other vertices in Γ0, all
such cliques are disjoint. Therefore, there must be n

k = q+1 of them. (2) Γi is isomorphic

to Γi+1, for all 1 ≤ i ≤ k
2 − 1, via the map [a, b]→ [wa, b]. □

Proposition 3.3. Let v ∈ V (Mk(q)). Let x ∈ N0(v). Then for any i ∈ {1, 2, . . . , k2},
ONi(x) ∩ONi(v) = INi(x) ∩ INi(v) = ∅.

Proof. As Mk(q) is vertex transitive, it suffices to prove for v = [0, 1]. Then, let x ∈
N0([0, 1]), i.e., x = [0, wj ] for some j = 1, 2, . . . , k − 1. Now

[0, ωj ]
i→ [c, d]⇐⇒ ωjc ∈ Sk,i ⇐⇒ c ∈ {ωkl+i−j−1 | l = 0, 1, . . . , q−1

k − 1},
and so

ONi(x) = ONi([0, ω
j ]) = {[ωi−j−1 (mod k), d] | d ∈ Fq}.

Also,
ONi(v) = ONi([0, 1]) = {[ωi−1, d] | d ∈ Fq}.

As j ̸≡ 0 (mod k), we get that ONi(x) ∩ONi(v) = ∅. Similar arguments produce

INi(x) = INi([0, ω
j ]) = {[ωi−j−1+ k

2
(mod k), b] | b ∈ Fq}

and
INi(v) = INi([0, 1]) = {[ωi−1+ k

2 , b] | b ∈ Fq}.
So, INi(x) ∩ INi(v) = ∅. □

4. Relation to the k-th power Paley digraphs

Recall from Section 3, k ≥ 2 is an even integer and q is a prime power such that
q ≡ k+1 (mod 2k). Sk is the subgroup of F∗

q containing the k-th power residues, i.e., if ω

is a primitive element of Fq, then Sk = ⟨ωk⟩, and Sk,i := ωi−1Sk, for 1 ≤ i ≤ k
2 .

We now recall some definitions and properties from [6] concerning Paley digraphs. We
define the k-th power Paley digraph of order q, Gk(q), as the graph with vertex set Fq where
a→ b is an edge if and only if b−a ∈ Sk. We note that −1 /∈ Sk so Gk(q) is a well-defined
oriented graph. For each 1 ≤ i ≤ k

2 , we define the related directed graph Gk,i(q) with
vertex set Fq where a→ b is an edge if and only if b− a ∈ Sk,i. Each Gk,i(q) is isomorphic
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to Gk,1(q) = Gk(q), the k-th power Paley digraph, via the map fi : V (Gk(q))→ V (Gk,i(q))
given by fi(a) = ωi−1a. Now consider the multicolor k-th power Paley tournament Pk(q)
whose vertex set is Fq and whose edges are colored in k

2 colors according to a → b has
color i if b− a ∈ Sk,i. Note that the induced subgraph of color i of Pk(q) is Gk,i(q). Thus,
Pk(q) contains a monochromatic transitive subtournament of order m if and only if Gk(q)
contains a transitive subtournament of order m.

Proposition 4.1. Let i ∈ {1, 2, . . . , k2}. Let v ∈ V (Mk(q)). Then the induced subgraph of
Mk(q) with vertex set ONi(v) is isomorphic to Pk(q).

Proof. As Mk(q) is vertex transitive, it suffices to prove for v = [0, 1]. Let H denote the
induced subgraph of Mk(q) with vertex set ONi([0, 1]). In the proof of Proposition 3.3 we
saw that ONi([0, 1]) = {[ωi−1, d] | d ∈ Fq}. So #V (H) = |ONi([0, 1])| = q = #V (Pk(q)).
Now consider the bijective map ϕ : V (H) → V (Pk(q)) given by ϕ([ωi−1, d]) = −ωi−1d.
It remans to show that ϕ is color-preserving. Let [ωi−1, d1] ∈ V (H) and let [ωi−1, d2] ∈
ONs([ω

i−1, d1])] for some s ∈ {1, 2, . . . , k2} (note that s ̸= 0 otherwise d1 = d2). Now,

[ωi−1, d1]
s→ [ωi−1, d2]⇐⇒ d1ω

i−1 − ωi−1d2 ∈ Sk,s

⇐⇒ ϕ([ωi−1, d2])− ϕ([ωi−1, d1]) ∈ Sk,s

⇐⇒ ϕ([ωi−1, d1])
s→ ϕ([ωi−1, d2]),

as required. □

Recall that any pair of vertices of Mk(q) will either be connected by a single oriented
edge in color i, for some 1 ≤ i ≤ k

2 , or, connected by two edges of color 0 oriented in
opposite directions. We now replace all these pairs of color 0 edges with a single oriented
edge of color 1 ≤ i ≤ k

2 , where the new color and orientation are randomly assigned. We

call this altered graph M∗
k (q), which is a tournament whose edges are colored in k

2 colors.

Theorem 4.2. Let k ≥ 2 be an even integer and q be a prime power such that q ≡ k + 1
(mod 2k). Let m ≥ k − 1 be a positive integer. If Pk(q) contains no monochromatic
transitive subtournament of order m, then M∗

k (q) contains no monochromatic transitive
subtournament of order m+ 2.

Proof. Assume Pk(q) contains no monochromatic transitive subtournament of orderm. We

note that 0
i→ ωi−1 is an edge in Pk(q) for all 1 ≤ i ≤ k

2 , and, so, m ≥ 3 necessarily. Let T ∗
l

be a monochromatic, in color i, 1 ≤ i ≤ k
2 , transitive subtournament of M∗

k (q) of order l.
We will show that l < m+2. We can assume l ≥ 4, as, otherwise, l < 4 ≤ m+1, as required.
We represent T ∗

l by the l-tuple of its vertices (a1, a2, . . . , al) with the corresponding l-tuple
of out-degrees (l−1, l−2, . . . , 1, 0). Let Tl be the corresponding subgraph of Mk(q) before
the color 0 edges were reassigned, i.e., Tl also has vertices a1, a2, . . . , al but some vertices
may be connected by two edges of color 0 oriented in opposite directions.

Assume a1
0←→ a2 in Mk(q). Consider at for 3 ≤ t ≤ l. Then there are four possibilities

for the triangle (a1, a2, at) in Mk(q):
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a1 a2

at

0

i i

(1)

a1 a2

at

0

i 0

(2)

a1 a2

at

0

0 i

(3)

a1 a2

at

0

0 0

(4)

By Proposition 3.3, ONi(a1) ∩ ONi(a2) = ∅ so case (1) can’t happen. Now consider case
(2). As Mk(q) is vertex transitive, we can let a2 = [0, 1], without loss of generality. Then
a1, at ∈ N0([0, 1]) = {[0, ωj ] | j = 1, 2, . . . , k − 1}. If we let a1 = [0, ωj1 ] and at = [0, ωj2 ],

for some 1 ≤ j1 ̸= j2 ≤ k − 1, then a1
i→ at implies 0 = ωj1 · 0 − 0 · ωj2 ∈ Sk,i, which is

a contradiction. Case (3) is isomorphic to case (2). So, if a1
0←→ a2, then case (4) is the

only possibility, which inductively implies that Tl is monochromatic in color 0. Thus, by
Proposition 3.2 (1), Tl must be contained in a color 0 clique of Γ0 and so l ≤ k ≤ m+ 1.

Now assume a1
i→ a2 in Mk(q). Consider at for 3 ≤ t ≤ l. Again, we see that there are

four possibilities for the triangle (a1, a2, at) in Mk(q):

a1 a2

at

i

i i

(i)

a1 a2

at

i

i 0

(ii)

a1 a2

at

i

0 i

(iii)

a1 a2

at

i

0 0

(iv)

Case (ii) can’t happen because INi(a2) ∩ INi(at) = ∅, by Proposition 3.3. Case (iv) is
isomorphic to case (2) above, which we’ve seen is not possible. We now examine case
(iii). As Mk(q) is vertex transitive, we can let a1 = [0, 1], without loss of generality. Then
a2 ∈ ONi([0, 1]) = {[ωi−1, d] | d ∈ Fq} and at ∈ N0([0, 1]) = {[0, ωj ] | j = 1, 2, . . . , k − 1}.
Further,

a2
i→ at ⇐⇒ [ωi−1, d]

i→ [0, ωj ]

⇐⇒ d · 0− ωi−1 · ωj ∈ Sk,i

⇐⇒ ωi+j−1 ∈ −Sk,i = {ωkv+i−1+ k
2 | v = 0, 1, . . . , q−1

k − 1}

⇐⇒ ωj ∈ {ωkv+ k
2 | v = 0, 1, . . . , q−1

k − 1}
⇐⇒ j = k

2

⇐⇒ at = [0, ω
k
2 ] = [0,−1]

So, case (iii) is possible but there is only one possible at, which means there is only one

value of t ∈ {3, . . . , l} for which a1
0←→ at. So assume there is an s ∈ {3, . . . , l} such that

a1 a2

as

i

0 i
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Then a1
i→ at for all t ∈ {3, . . . , l} \ {s} and by previous arguments we must have

a1 a2

at

i

i i

Therefore, if t1, t2 ∈ {3, . . . , l} \ {s} with t1 < t2, then

a1 at1

at2

i

i 0

is not possible, by Proposition 3.3, and so at1
i→ at2 . Thus, if we remove as from Tl

we get a monochromatic, in color i, transitive subtournament of Mk(q) of order l − 1,
which we call Tl−1. Furthermore, Tl−1 \ {a1} is a monochromatic, in color i, transitive
subtournament of Mk(q) of order l− 2. If we let H denote the induced subgraph of Mk(q)
with vertex set ONi(a1), then by Proposition 4.1, Tl−1 \ {a1} ⊆ H ∼= Pk(q). So, if Pk(q)
contains no monochromatic transitive subtournament of order m, then l − 2 < m.

If there is no 3 ≤ t ≤ l for which (a1, a2, at) satisfies cases (ii), (ii) or (iv) then all at, for

3 ≤ t ≤ l, satisfy case (i). Then at1
i→ at2 for all 3 ≤ t1 < t2 ≤ l by previous arguments.

So, in this case, Tl itself is a monochromatic, in color i, transitive subtournament of
Mk(q). Letting H denote the induced subgraph of Mk(q) with vertex set ONi(a1) and,
again, using Proposition 4.1, we get that Tl \ {a1} ⊆ H ∼= Pk(q). So, if Pk(q) contains no
monochromatic transitive subtournament of order m, then l − 1 < m.

Overall, if Pk(q) contains no monochromatic transitive subtournament of order m, then
M∗

k (q) contains no monochromatic transitive subtournament of order m+ 2. □

Corollary 4.3. Let k ≥ 2 be an even integer and q be a prime power such that q ≡ k + 1
(mod 2k). If Km(Gk(q)) = 0, for m ≥ k − 1, then R k

2
(m+ 2) ≥ k(q + 1) + 1.

Proof. By definition, Km(Gk(q)) = 0 means that Gk(q) contains no transitive subtour-
naments of order m. By the discussion at the start of this section, this implies Pk(q)
contains no transitive subtournaments of order m [6]. Consequently, by Theorem 4.2,
M∗

k (q) contains no monochromatic transitive subtournament of order m + 2. Recall,

M∗
k (q) is a tournament of order n = k(q + 1) whose edges are colored in k

2 colors, so
R k

2
(m+ 2) ≥ k(q + 1) + 1. □

5. Proofs of Theorems 1.1 and 1.2

We now examine properties of Gk(q) and apply Corollary 4.3 to get improved lower
bounds for certain directed Ramsey numbers, proving Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Theorem 1.1 corresponds to the case when k = 2. For all ap-
propriate q ≤ 1583 we found, by computer search (see Section 6 for details), the order
of the largest transitive subtournament of G2(q). Then, from this data, we identified
the largest q such that Km(Gk(q)) = 0, for each 3 ≤ m ≤ 20. Call this qm. Then,
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by definition, R(m) ≥ qm + 1. Combining with Corollary 4.3, when k = 2, yields
R(m + 2) ≥ max(2(qm + 1) + 1, qm+2 + 1). The results for 7 ≤ m ≤ 20 are shown in
Table 1. (R(m) for 3 ≤ m ≤ 6 are already known, specifically R(3) = 4, R(4) = 8 [2],
R(5) = 14 [10], R(6) = 28 [11].) We note that q6 = 27.

m 7 8 9 10 11 12 13 14 15 16 17 18 19 20

qm 27 47 83 107 107 199 271 367 443 619 659 971 1259 1571
R(m) ≥ 28 57 84 108 169 217 272 401 545 737 889 1241 1321 1945

Table 1. Lower Bounds for R(m).

The values of qm in Table 1, for 7 ≤ m ≤ 18, confirm those of Sanchez-Flores [12], and,
for m = 19, that of Exoo [3]. The best known lower bound for m = 7 is R(7) ≥ 34, due
to Neiman, Mackey and Heule [8]. For 8 ≤ m ≤ 10 and 12 ≤ m ≤ 19 the previously best
known lower bound was R(m) ≥ qm + 1 [3]. Also from [3] we have that R(11) ≥ 112.
So the values in bold in Table 1 represent an improvement to the previously best known
lower bounds, establishing Theorem 1, and the values in italics equal the best known lower
bounds. □

Proof of Theorem 1.2. We also performed a similar exercise for k = 4, 6, 8 and 10, iden-
tifying, in each case, the largest q such that Km(Gk(q)) = 0, for 3 ≤ m ≤ 10. We will
denote such q as qm,k. Table 2 outlines these values. The values in the last row of the
table indicate the upper limit for q in our search. Note that values of qm,k close to this
limit will not be optimal.

m k = 4 k = 6 k = 8 k = 10
3 13 43 169 71
4 125 343 953 3331
5 157 859 2809 6791
6 829 4339 15625 33191
7 709 4423 26153 43411
8 1709 18523 29929 58771
9 3517 29611 29929 59951
10 7573 29959 29929 59971
q < 10000 30000 30000 60000

Table 2. Largest q found such that Km(Gk(q)) = 0.

Now, by definition,

R k
2
(m) ≥ qm,k + 1 (5.1)

and, by Corollary 4.3,

R k
2
(m+ 2) ≥ k(qm,k + 1) + 1 (5.2)

when m ≥ k − 1. We note also that for t ≥ 2 [4, Prop. 5]

Rt(m) ≥ (Rt−1(m)− 1)(R(m)− 1) + 1. (5.3)
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It is already known that R(3) = 4, R(4) = 8 [2], R(5) = 14 [10], R(6) = 28 [11], R(7) ≥ 34
[8], R2(3) = 14 [1], R2(4) ≥ 126 and R3(3) ≥ 44 [6]. We combine all this information,
including values from Table 1, to get lower bounds on the Ramsey numbers Rt(m) for
t ≥ 2 and 3 ≤ m ≤ 10. The results are shown in Table 3.

For example, in the case m = 3, it is already known that R2(3) = 14 [1]. It is also
known that R(3) = 4 [2], so by (5.3) we get that R3(3) ≥ (R2(3)− 1)(R(3)− 1) + 1 = 40.
But, from Table 2, we see that q3,6 = 43 and so R3(3) ≥ 44 by (5.1) which is better. When
t = 4, (5.3) tells us that R4(3) ≥ (R3(3) − 1)(R(3) − 1) + 1 ≥ 130, but (5.1) produces
R4(3) ≥ 170, as q3,8 = 169 from Table 2. For t ≥ 5, (5.3) produces the best bound, i.e.,
Rt(3) ≥ 169 · 3t−4 + 1. We note that, as m = 3, the bound produced by Corollary 4.3,
(5.2), is not applicable for t = k

2 > 2.
In contrast, in the case m = 8, (5.2) produces the best bound when t = 2. From Table

2, we see that q8,4 = 1709 and so (5.1) yields R2(8) ≥ 1710. From Table 1, we get that
R(8) ≥ 57 and so R2(8) ≥ (57− 1)2 + 1 = 3137 by (5.3). Again from Table 2, we see that
q6,4 = 829 and so (5.2) yields R2(8) ≥ 4(829 + 1) + 1 = 3321, which is better than the
bounds coming from both (5.1) and (5.3). For m = 8 and t ≥ 3, (5.3) produces the best
bound, i.e., Rt(8) ≥ 3320 · 56t−2 + 1.

The remainder of Table 3 is produced similarly.

m t = 2 t = 3 t = 4 t ≥ 5

3 14 44 170 169 · 3t−4 + 1
4 126 125 · 7t−2 + 1
5 13t + 1
6 830 829 · 27t−2 + 1
7 33t + 1
8 3321 3320 · 56t−2 + 1
9 83t + 1
10 107t + 1

Table 3. Lower bounds for Rt(m).

The general formulas in the cases m = 3, 6, 8 improve on what was previously known and
establish Theorem 1.2. We note that the m = 8 case is the only one where Corollary 4.3
influences the results. For m ̸= 3, 6, 8, the bounds in Table 3 reflect already known bounds
combined with (5.3). □

6. A note on the computer search

In order to use the results of Section 4 to obtain various lower bounds, the central
problem is to find a maximum length subtournament of a given directed graph G. For this,
we adopt a straightforward recursive approach. Begin with M ← 0 and T ← ∅. Given
a (possibly empty) transitive subtournament T of G, enumerate T = {a1, . . . , aℓ} with

ai → aj for all 1 ≤ i < j ≤ ℓ. Determine the set S =
⋂ℓ

i=1ON(ai) of possible successors
of aℓ, where the empty intersection is taken as V (G). If S is empty, set M ← max{M, ℓ};
otherwise, for each s ∈ S, recursively apply this procedure to T ∪ {s}. Several obvious
optimizations are employed, but this is the essential idea.
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We then appeal to Lemma 4.2(c) from [6]. Let Hk(q) be the subgraph of Gk(q) induced
by Sk, and let H1

k(q) be the subgraph of Hk(q) induced by ON(1). By that lemma,
Gk(q) has a transitive subtournament of order m if and only if H1

k(q) has a transitive
subtournament of order m − 2. We therefore apply the recursive procedure described
above to the smaller directed graph H1

k(q), and use that to determine the maximum
length transitive subtournament of Gk(q). The full source code used to generate the
computational results is available on GitHub1.

References

[1] A. Bialostocki, P. Dierker, Some Ramsey numbers for tournaments, Proceedings of the sixteenth
Southeastern international conference on combinatorics, graph theory and computing (Boca Raton,
Fla., 1985), Congressus Numerantium 47 (1985), 119–123.

[2] P. Erdös, L. Moser, On the representation of directed graphs as unions of orderings, A Magyar
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