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ABSTRACT. We construct an edge-colored digraph analogous to Mathon’s construction
for undirected graphs. We show that this graph is connected to the k-th power Paley
digraphs and we use this connection to produce improved lower bounds for multicolor
directed Ramsey numbers.

1. INTRODUCTION

In [5], Mathon leveraged properties of generalized Paley graphs to improve lower bounds
on diagonal multicolor (undirected) Ramsey numbers. He did this by constructing a multi-
colored graph which contained monochromatic induced subgraphs isomorphic to the gener-
alized Paley graph. Among his results were R(7,7) > 205, R(9,9) > 565, R(10,10) > 798
and R3(4) > 128, which are still the best known lower bounds today [9]. Independently,
Shearer [13] produced the same results in the two-color case using an equivalent con-
struction. More recently, Xu and Radziszowski [14] made incremental improvements to
Mathon’s construction and showed that R3(7) > 3214 (increased from Mathon’s 3211),
which is the current best known lower bound.

In this paper, we adapt Mathon’s construction to digraphs and leverage properties
of k-th power Paley digraphs to produce improved lower bounds for diagonal multicolor
directed Ramsey numbers. For the remainder of this paper all Ramsey numbers will be
directed, and will be denoted R¢(m). As such, R;(m) is the least positive integer n such
that any tournament with n vertices, whose edges have been colored in ¢ colors, contains
a monochromatic transitive subtournament of order m. When t = 1 we recover the usual
directed Ramsey number R(m), so we drop the subscript in this case. Recall, a tournament
is transitive if, whenever a — b and b — ¢, then a — ¢. Our main results which improve
on the previously best known lower bounds can be summarized as follows.

Theorem 1.1. R(8) > 57, R(11) > 169, R(12) > 217, R(14) > 401, R(15) > 545, R(16) >
737, R(17) > 889, R(18) > 1241, R(19) > 1321 and R(20) > 1945,

Theorem 1.2. Fort >4,
Ri(3) >169- 34 +1.
Fort>2,

Ry(6) > 829272 +1 and  Ry(8) > 3320562 + 1.
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2. PRELIMINARIES AND NOTATION

For a graph G, we denote its vertex set by V(G), so the order of G is #V(G). For
a vertex v of a digraph G, we will denote the set of vertices which are out-neighbors of
v by ON(v) and the set of in-neighbors by IN(v). If the edges of G are colored, we will
denote the set of out-neighbors (resp. in-neighbors) of v connected via an edge of color i by
ON;(v) (resp. IN;(v)). We define the set of neighbors of v as N(v) := ON(v) N IN(v) and
the set of color i neighbors as N;(v) := ON;(v) NIN;(v). We will refer to any collection of
vertices in G, which are pairwise connected via two edges oriented in opposite directions,
as a clique. Further, if all those edges are of color 7, we will refer to it as a color i clique.

We note that a tournament of order m is transitive if and only if the set of out-degrees of
its vertices is {0, 1,...,m—1} [7, Ch. 7]. Thus, we can represent a transitive subtournament
of order m by the m-tuple of its vertices (a1, ag, ..., an), listed in order such that the out-
degree of vertex a; is m — i, i.e. the corresponding m-tuple of out-degrees is (m — 1, m —
2,...,1,0). We let K,,,(G) denote the number of transitive subtournaments of order m
contained in a digraph G.

3. MATHON-TYPE CONSTRUCTION FOR DIGRAPHS

Let k > 2 be an even integer. Let ¢ be a prime power such that ¢ = k£ + 1 (mod 2k).
This condition ensures that —1 is not a k-th power in F,, the finite field with ¢ elements,

but is a %—th power. Let Sy be the subgroup of the multiplicative group Fy of order %

containing the k-th power residues, i.e., if w is a primitive element of F,, then S}, = (wh).
We define Sy := {0} and Sk ; := w' 1S, for 1 <i < g, so that Sy 1 = S,. We note that

—Ski = wgS;m- (as —1 = w'z and % = % (mod k)), yielding the disjoint union
k/2 k/2
Fy = Sko U U Sk U U —Sk,i-
i=1 i=1

Let X := (F; x Fy) \ {(0,0)}. We define an equivalence relation ~ on X where (a,b) ~
(c,d) if (¢,d) = (ag, bg) for some g € Si. We denote the equivalence class of (a, b) by [a, b].
There are n := k(g + 1) such equivalence classes, each containing | S| = % elements. Let
Mi(q) be the edge-colored digraph of order n, with vertex set X/ ~, where [a,b] — [c,d] is
an edge in color 7, 0 < i < % if and only if be — ad € Sk,i- We note that this is well-defined
as gSi,; = Sk, for all g € S. We also note that any pair of vertices of Mj(q) will either
be connected by a single oriented edge in color i, for some 7 < i < %, or, connected by two
edges of color 0 oriented in opposite directions. For ease of illustration in what follows,

we will represent the former case by v 2 vy and the latter case by v1 <L> V9.
Proposition 3.1. My(q) is vertezx transitive.
Proof. For s € Fy, define the maps ps and o5 on X/ ~ by

ps : [a,b] = [a,b+ as]

os : [a,b] — [a+ bs, b].

It is easy to show that both ps and o, are well-defined automorphisms of My(q). Let [a, b]
and [c, d| be distinct vertices of M} (q). Assume first that b, c # 0 and let s1, sy € F, satisfy
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a+bs; = c and b+ csa = d. Then pg,(0s,]a,b]) = [¢,d]. If b =0 then a # 0, and we can
first apply pi[a,0] = [a,a] and then proceed as before. If ¢ = 0 then d # 0, and we can
proceed as before to get to [d,d]. Then we apply o_1[d,d] = [0,d]. O

Proposition 3.2. For 0 <i < %, let T'; be the subgraph of My(q), with vertex set X/ ~,
induced by the color i edges of My(q).

(1) T is the disjoint union of ¢+ 1 color 0 cliques of order k.
(2) T1,Ta,...,Tx are pairwise isomorphic.
2

Proof. (1) The neighbors of [0,1] in Ty are No([0,1]) = {[0,w’] | j = 1,2,...,k — 1}. All
elements of No([0, 1]) are neighbors of each other in I'g and, thus, [0, 1] and its neighbors
form a clique of order k. As Mj(q) is vertex transitive, every vertex belongs to such a
clique. And, as the elements of Ny ([0, 1]) are not neighbors of any other vertices in T'¢, all
such cliques are disjoint. Therefore, there must be 3 = ¢+ 1 of them. (2) I'; is isomorphic

to Dypq, for all 1 <i < & — 1, via the map [a,b] — [wa,b). O

Proposition 3.3. Let v € V(My(q)). Let x € No(v). Then for any i € {1,2,..., g},
ON;(z) N ON;(v) = IN;(z) N IN;(v) = 0.

Proof. As My(q) is vertex transitive, it suffices to prove for v = [0,1]. Then, let z €
No([0,1]), i.e., z = [0, w?] for some j =1,2,... .k — 1. Now

[0, ] i c,d] <= wic € Sy <= cc {WMT I 1=0,1,..., qikl — 1},
and so
ON;(x) = ON;([0,w’]) = {[w' /71 (™4 k) d] | d € F,}.
Also,
ON;(v) = ONy([0,1]) = {[w* "', d] | d € Fg}.
As j # 0 (mod k), we get that ON;(z) N ON;(v) = 0. Similar arguments produce

INi(z) = IN;([0, 6]) = {[w 7 ~1F5 (m0d &) 3] | p € T}

and
IN;(v) = INy([0,1]) = {[w""F2,b] | b € F,}.
So, IN;(x) NIN;(v) = 0. O

4. RELATION TO THE k-TH POWER PALEY DIGRAPHS

Recall from Section 3, £ > 2 is an even integer and ¢ is a prime power such that
q =k+1 (mod 2k). S is the subgroup of F; containing the k-th power residues, i.e., if w
is a primitive element of Fy, then S}, = (w*), and Sk =w 1S, for 1 <i < %

We now recall some definitions and properties from [6] concerning Paley digraphs. We
define the k-th power Paley digraph of order ¢, Gi(q), as the graph with vertex set F, where
a — b is an edge if and only if b—a € S;,. We note that —1 ¢ S, so Gi(q) is a well-defined
oriented graph. For each 1 < ¢ < %, we define the related directed graph Gy ;(q) with
vertex set F; where a — b is an edge if and only if b—a € Sy ;. Each G}, ;(¢) is isomorphic
to Gi.1(q) = Gi(q), the k-th power Paley digraph, via the map f; : V(Gx(q)) = V(Gk,i(q))

given by fi(a) = w'~'a. Now consider the multicolor k-th power Paley tournament Py(q)
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whose vertex set is IF, and whose edges are colored in g colors according to a — b has
color i if b — a € Sy ;. Note that the induced subgraph of color i of Py(q) is G (¢q). Thus,
Py(q) contains a monochromatic transitive subtournament of order m if and only if G(q)
contains a transitive subtournament of order m.

Proposition 4.1. Leti € {1,2,...,5}. Let v e V(My(q)). Then the induced subgraph of
My (q) with vertex set ON;(v) is isomorphic to Pi(q).

Proof. As My(q) is vertex transitive, it suffices to prove for v = [0,1]. Let H denote the
induced subgraph of Mj(q) with vertex set ON;([0,1]). In the proof of Proposition 3.3 we
saw that ON;([0,1]) = {[w*"},d] | d € F,}. So #V(H) = |ON;([0,1])| = ¢ = #V (Pi(q))-
Now consider the bijective map ¢ : V(H) — V(Px(q)) given by ¢([w'~!,d]) = —w'td.
It remans to show that ¢ is color-preserving. Let [w'™! di] € V(H) and let [w'™1 dy] €
ON,([w'™t, d1])] for some s € {1,2,...,%} (note that s # 0 otherwise d; = ds). Now,

[wiil,dl] N [wifl,dg] <~ dlwiil — iildg S Sk s
= @' da]) — ¢l i) € S
— (ZS([WI ! dl]) ¢([ - l’dQ])7

as required. O

Recall that any pair of vertices of My(q) will either be connected by a single oriented
edge in color i, for some 1 < ¢ < 3, or, connected by two edges of color 0 oriented in
opposite directions. We now replace all these pairs of color 0 edges with a single oriented
edge of color 1 < i < %, where the new color and orientation are randomly assigned We

call this altered graph M (¢), which is a tournament whose edges are colored in 3 k colors.

Theorem 4.2. Let k > 2 be an even integer and q be a prime power such that ¢ =k + 1
(mod 2k). Let m > k. If Pi(q) contains no monochromatic transitive subtournament of
order m, then M} (q) contains no monochromatic transitive subtournament of order m+-2.

Proof. Let T} be a monochromatic, in color i, 1 < i < %, transitive subtournament of

M} (q) of order I. We represent T} by the I-tuple of its vertices (a1, aq,...,a;) with the
corresponding I-tuple of out-degrees (I — 1,1 — 2,...,1,0). Let T; be the corresponding
subgraph of Mj(q) before the color 0 edges were reassigned, i.e., T; also has vertices
ai,as,...,a; but some vertices may be connected by two edges of color 0 oriented in
opposite directions.

Assume a; <L> ag in Mg(q). If I > 2, consider a; for 3 <t <. Then there are four
possibilities for the triangle (a1, az,a;) in Mg(q):

a\72 GT/Z m\7 @ m\7 @
M @) 3) (1)

By Proposition 3.3, ON;(a1) N ON;(az) = 0 so case (1) can’t happen. Now consider case
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(2). As Mg(q) is vertex transitive, we can let ag = [0, 1], without loss of generality. Then
a,a; € No([0,1]) = {[0,w?] | 1 =1,2,...,k — 1}. If we let a; = [0,w’] and a; = [0, w’?],

for some 1 < j; # jo < k — 1, then a; — a; implies 0 = w/ - 0 — 0w’ € Sk,i» which is

a contradiction. Case (3) is isomorphic to case (2). So, if a; %5 ay, then case (4) is the
only possibility, which inductively implies that 7; is monochromatic in color 0. Thus, by
Proposition 3.2 (1), 7; must be contained in a color 0 clique of 'y and so [ < k < m.

Now assume a; — ap in My (q). If I > 2, consider a; for 3 <t < I. Again, we see that
there are four possibilities for the triangle (al, az, at) in My(q):

o —" 5 ay a —" 5 ay o —" 5 ay a —" 5 ay

NSNS NS N/

(i) (i) (i) (iv)
Case (ii) can’t happen because IN;(az) N IN;(a;) = 0, by Proposition 3.3. Case (iv) is
isomorphic to case (2) above, which we’ve seen is not possible. We now examine case
(iii). As My(q) is vertex transitive, we can let a; = [0, 1], without loss of generality. Then
as € ON;([0,1]) = {[w*"1,d] | d € Fy} and a; € No([0,1]) = {[0,w?] | j = 1,2,...,k — 1}.
Further,

as 5 ap < (W™t d] AN [0, ]

<:>d-0—wi_1-wj65k7i

Wt e _G = WP |y — 0,1, 1)
<:>wj€{wk“+§ |v:0,1,...,q;kl—1}
—=j==t

e ay = [0,w2] = [0,—1]

So, case (iii) is possible but there is only one possible a;, which means there is only one
value of t € {3,...,{} for which a; %5 a;. So assume there is an s € {3,...,1} such that

al%@

N/

Then a s a for all t € {3,...,1} \ {s} and by previous arguments we must have

Gl%@

\,/
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Therefore, if t1,ty € {3,...,1}\ {s} with t; < t2, then

2
ap ———> Gy

\ /

is not possible, by Proposition 3.3, and so ay, 5 at,. Thus, if we remove as from 7;
we get a monochromatic, in color ¢, transitive subtournament of My (q) of order [ — 1,
which we call T;_;. Furthermore, T;_; \ {a;} is a monochromatic, in color i, transitive
subtournament of My (q) of order [ —2. If we let H denote the induced subgraph of M(q)
with vertex set ON;([0,1]), then by Proposition 4.1, T;_; \ {a1} € H = Py(q). So, if Px(q)
contains no monochromatic transitive subtournament of order m, then [ — 2 < m.

If there is no 3 < ¢ <[ for which (a1, as, a;) satisfies cases (ii), (ii) or (iv) then all a;, for

3 <t <1, satisfy case (i). Then as, — as, for all 3 < t; < ty < [ by previous arguments.
So, in this case, T; itself is a monochromatic, in color i, transitive subtournament of
My(q). Letting H denote the induced subgraph of M (q) with vertex set ON;(a1) and,
again, using Proposition 4.1, we get that T; \ {a1} C H = Pi(q). So, if Px(q) contains no
monochromatic transitive subtournament of order m, then | — 1 < m.

Overall, if Py(q) contains no monochromatic transitive subtournament of order m, then
M} (q) contains no monochromatic transitive subtournament of order m + 2. U

Corollary 4.3. Let k > 2 be an even integer and q be a prime power such that ¢ =k + 1
(mod 2k). If K (Gi(q)) =0, for m >k, then Ry (m +2) > k(qg+ 1) + 1.
2

Proof. By definition, K,,(Gk(q)) = 0 means that Gx(q) contains no transitive subtour-

naments of order m. By the discussion at the start of this section, this implies Py(q)

contains no transitive subtournaments of order m [6]. Consequently, by Theorem 4.2,

M} (q) contains no monochromatic transitive subtournament of order m + 2. Recall,
k

M;:(q) is a tournament of order n = k(g + 1) whose edges are colored in 3 colors, so

Ri(m+2) > k(g+1)+1. 0

5. APPLICATION OF COROLLARY 4.3

We now examine properties of Gi(q) and apply Corollary 4.3 to get improved lower
bounds for certain directed Ramsey numbers.

We start with the case when k& = 2. For all appropriate ¢ < 1583 we found, by computer
search, the order of the largest transitive subtournament of G3(q). Then, from this data,
we identified the largest ¢ such that &C,,,(Gk(q)) = 0, for each 3 < m < 20. Call this gy,.
We then apply Corollary 4.3 which yields R(m + 2) > max(2(¢n + 1) + 1, ¢mi2 + 1). The
results for 7 < m < 20 are shown in Table 1. (R(m) for 3 < m < 6 are already known.)

The values of g, in Table 1, for 7 < m < 18, confirm those of Sanchez-Flores [12], and,
for m = 19, that of Exoo [3]. The best known lower bound for m = 7 is R(7) > 34, due
to Neiman, Mackey and Heule [8]. For 8 < m < 10 and 12 < m < 19 the previously best
known lower bound was R(m) > gm, + 1 [3]. Also from [3] we have that R(11) > 112.
So the values in bold in Table 1 represent an improvement to the previously best known
lower bounds and the values in italics equal the best known lower bounds.
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| m [7]8]9]10][11[12]13[14]15]16] 17 ] 18 [ 19 [ 20 |
Gm | 2714783 [ 107 ] 107 | 199 [ 271 [ 367 | 443 | 619 | 659 | 971 [ 1259 | 1571
R(m)>|28[57[84[108 169|217 [ 272|401 | 545|737 | 889 | 1241 | 1321 | 1945

TABLE 1. Lower Bounds for R(m).

We also performed a similar exercise for k£ = 4,6,8 and 10, identifying, in each case,
the largest ¢ such that KC,,(Gk(q)) = 0, for 3 < m < 10. We will denote such ¢ as g, .
Table 2 outlines these values. The values in the last row of the table indicate the upper
limit for ¢ in our search. Note that values of g, j close to this limit will not be optimal.

k=41k=6|k=8|k=10
13 43 169 71
125 343 953 3331
157 859 | 2809 | 6791
829 | 4339 | 15625 | 33191
709 | 4423 | 26153 | 43411
1709 | 18523 | 29929 | 58771
3517 | 29611 | 29929 | 59951
10 | 7573 | 29959 | 29929 | 59971
g < | 10000 | 30000 | 30000 | 60000

TABLE 2. Largest ¢ found such that IC,,(Gr(q)) = 0.

© 00~ U A WS

Now, Rk (m) > gmp + 1, and, by Corollary 4.3, Rx(m + 2) > k(¢mr + 1) + 1 when
m > k. We note also that for ¢ > 2 [4, Prop. 5] ’
Ri(m) = (Ri—1(m) — 1)(R(m) — 1) + 1.
It is already known that R(3) =4, R(4) =8 [2], R(5) = 14 [10], R(6) = 28 [11], R(7) > 34
[8], R2(3) = 14 [1], Ra(4) > 126 and R3(3) > 44 [6]. We combine all this information,

including values from Table 1, to get lower bounds on the Ramsey numbers R;(m) for
t > 2 and 3 <m < 10. The results are shown in Table 3.

m|t=2[t=3[t=4] t>5 |
3] 14 [ 44 [ 170 [169-3""+1
4] 126 125-772 +1

5 13" +1

6 | 830 | 8292777 +1

7 33" +1

8 [ 3321 | 3320 -56' % +1

9 83" +1

10 107" +1

TABLE 3. Lower bounds for R;(m).

The general formulas in the cases m = 3,6, 8 improve on what was previously known. We
note that the m = 8 case is the only one where Corollary 4.3 influences the results.
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