What you must know for the test

Note. The Exam will consist of a problem from each of the following parts (five problems in total). Each problem will be worth 10 points.

Part I. Vectors:

- (1) Length of a vector $\vec{v} = a\vec{i} + b\vec{j} + c\vec{k} = ?$
- (2) Unit vector in the direction of the vector $\vec{v} = a\vec{i} + b\vec{j} + c\vec{k} = ?$
- (3) Given two points $P(x_0, y_0, z_0)$ and $Q(x_1, y_1, z_1)$, write the coordinates of the vector \overrightarrow{PQ} .
- (4) Dot product of two vectors $\vec{v} = a_1 \vec{i} + b_1 \vec{j} + c_1 \vec{k}$, $\vec{w} = a_2 \vec{i} + b_2 \vec{j} + c_2 \vec{k}$:
 - (a) What is the dot product $\vec{v} \cdot \vec{w} = ?$
 - (b) What does the dot product of two orthogonal vectors equal to?
 - (c) Is the dot product a scalar (scalar is another word for "number") or is it a vector?
- (5) Vector and scalar projection of a vector \vec{v} onto a vector \vec{w} .

Part II. Cross product:

- (1) Cross product of two vectors $\vec{v} = a_1 \vec{i} + b_1 \vec{j} + c_1 \vec{k}$, $\vec{w} = a_2 \vec{i} + b_2 \vec{j} + c_2 \vec{k}$, write $\vec{v} \times \vec{w}$ as a determinant and then evaluate the determinant.
- (2) Is $\vec{v} \times \vec{w}$ a scalar or is it a vector?
- (3) What is the area of the parallelogram determined by two vectors \vec{v} and \vec{w} ?
- (4) Given \vec{v} and \vec{w} , how can you find a vector which is orthogonal to both of them?
- (5) What is the area of a triangle with vertices P, Q and R in terms of the cross product of two vectors?

Part III. Planes and Lines:

- (1) Planes:
 - (a) Equation of the plane through the point $P(x_0, y_0, z_0)$ with normal vector $\vec{N} = A\vec{i} + B\vec{j} + C\vec{k}$. Warning: you may not be given P or \vec{N} directly, but may have to find them from the data in the problem.
 - (b) Equation of a plane through three points P, Q and R which are not aligned (they form a triangle). This is similar to (5) in Part II in the sense that you have to find the cross product of two vectors in order to find a normal vector to the plane.
 - (c) Given an equation of a plane, sketch it.
- (2) Lines:
 - (a) Write the parametric equation of the line through the point $P(x_0, y_0, z_0)$ aligned to the vector $\vec{v} = a\vec{i} + b\vec{j} + c\vec{k}$.

- (b) If $a, b, c \neq 0$, write the parametric equation of the line through the point $P(x_0, y_0, z_0)$ aligned to the vector $\vec{v} = a\vec{i} + b\vec{j} + c\vec{k}$.
- (c) Find the points of intersection of a line with the coordinate planes.

Part IV. Quadric Surfaces:

- (1) Given the equation of a sphere written as $x^2 + y^2 + z^2 + ax + by + cz + d = 0$, complete squares to write it in the form $(x x_0)^2 + (y y_0)^2 + (z z_0)^2 = r^2$ and then identify the coordinates of the center and the radius.
- (2) Identify the equation and sketch the following:
 - (a) Ellipsoid.
 - (b) Elliptic paraboloid.
 - (c) Parabolic cylinder.

Part V. Distance:

- (1) Between two points.
- (2) Between a point and a plane.
- (3) Between a point and a line.