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ABSTRACT

We characterize the principal differential ideals of a poly-
nomial ring in 7? indeterminates with coefficients in the ring of
differential polynomials in 7> indeterminates and derivation
given by a “general” element of Lie(GL,) and use this char-
acterization to construct a generic Picard-Vessiot extension
for GL,. In the case when the differential base field has finite
transcendence degree over its field of constants we provide
necessary and sufficient conditions for solving the inverse
differential Galois problem for these groups via specialization
from our generic extension.
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I. INTRODUCTION

Given a differential field F and differential indeterminates Y,
i,j=1,...,n, over F, one writes F{Y;} for the ring of differential poly-
nomials in the Yy, i.e., the ring F[Y;;x] of polynomials in infinitely many
indeteminates Y;;x, i,j=1,...,n, k>0, with derivation extending the
derivation on F by D(Y;;x) = Yiji+1. For convenience, denote Y;; by Y;p
and Y;;o by Yj;. Then one can extend this derivation to the ring R =
F{Y;j}[X;] where the Xj; are algebraically independent over the differential
quotient field F(Y;;) of F{Y;} using the formula D(X;;) = >, YuXy. If we
pass to the above quotient field F(Y;;) and then localize F(Y;)[X;;] at det[X;],
we obtain the coordinate ring of GL, over F(Y};) and D becomes a “gen-
eral” element of Lie(GL,).

In this paper we show that the principal differential ideals of R (i.e.,
the ideals Z = (p) with p dividing D( p)) are the differential ideals generated
by elements of the form det“[X}], with « € IN. A polynomial p that divides
its derivative is called a Darboux polynomial. Our result can be stated as
follows:

Theorem 1. Let R = F{Y;}[X;] and let p be a Darboux polynomial in R. Then
there are ¢ € F and a € N such that p = (det’[X;]. Therefore, the only
principal differential ideals in R are those of the form I = (det’[Xj]).

The proof of Theorem 1 involves some long and delicate computations
that make use of Grobner bases machinery.

Now, suppose that the field C of constants of F'is algebraically closed.
We use Theorem 1 to show that the quotient field F(Y;;)(Xj) of R is a no-
new-constant extension of F(Yj). Similar to the above, F(Y;)(Xj) is the
function field of GL, over F(Yj). This allows us to give an affirmative
answer, for the group GL,(C), to the following

Generic Inverse Differential Galois Problem: For a connected algebraic
group G over C find a generic Picard-Vessiot extension of F with differential
Galois group G.

By generic extension we mean a Picard-Vessiot extension of a generic
field that contains F and such that every Picard-Vessiot extension of F for G
in the usual sense can be obtained from the generic one by specialization.
Conversely, a specialization of the generic extension with no new constants
will produce a Picard-Vessiot extension with differential Galois group
contained in G.

The (non-generic) inverse differential Galois problem for a linear
algebraic group G, given F and C as above, consists in determining what
differential field extensions £ D F are Picard-Vessiot extensions with differ-
ential Galois group G and, in particular, whether there are any. Therefore, if
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there is a generic extension with group G, the solutions to the inverse problem
can be obtained from it by a proper specialization. We prove:

Theorem 2. The differential field extension F(Y;)(X;) D F(Yy) is a generic
Picard-Vessiot extension of F with differential Galois group GL,(C).

Notice that Theorem 2 is a consequence of Theorem 1 but not
equivalent to it: the fact that F(Y;)(X;) D F(Y};) is a no-new-constant
extension does not automatically give information about what the Darboux
polynomials in R are. Darboux polynomials are also interesting in other
related applications such as studying the integrability of differential equa-
tions [2:9-16-18.35]

A more direct proof for Theorem 2 was pointed out to us by Michael
Singer. Singer proves that F(Y;)(X;) D F(Y;) is a no-new-constant exten-
sion by showing that F(Y;)(Xj) is isomorphic to F(Xj). Singer’s proof and
our generalization of it to all connected linear algebraic groups will appear
in a subsequent publication.['”

Now, suppose that F has finite transcendence degree over C say,
F=C(t;)[z], 1 <i<r, 1 <j<s, where the ; are algebraically independent
over C and the z; are algebraic over C(#;). Consider the differential field
F(Xj;) with derivation given by

n
D(Xy) = fuXy,
(=1

and with field of constants C. Let R = F{Y};}[X;] be the differential ring
defined above. For k > 1, write T, for the set of monomials in R which have
total degree less than or equal to k£ and which involve both the ¢; and the Xj;.
Fix a term order on the set T of all monomials in the #; and the Xj; and let
Wi(Y;) denote the wronskian of T relative to that order (the order will
only affect the wronskian by a sign). The following theorem summarizes our
specialization results:

Theorem 3. F(Xj;) D Fis a Picard-Vessiot extension for GL,(C) if and only if
all the wronskians W(Y;;) map to nonzero elements in F(Xj;) via the specia-
lization Yj— fij € F.

The above condition on the wronskians means that all the sets T}, for
k > 1, are linearly independent over C. This is in turn equivalent to the fact
that the set of all the #; and all the X; are algebraically independent over C.
Unfortunately, Theorem 3 gives infinitely many conditions. We do not
know at present how to use these conditions to effectively construct
solutions to the inverse problem, and this constitutes an interesting open
problem.
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A specialization as in Theorem 3, however, is known to exist by a
result of C. Mitschi and M. Singer.*® They give a constructive algebraic
solution to the inverse problem for all connected linear algebraic groups
(and, in particular, for GL,(C)) when F has finite transcendence degree over
C. An interesting direction of research in connection with the previous open
problem is to give a complete description of the solutions (isomorphic and
non-isomorphic) that may arise in this situation.

The work of Mitschi and Singer in'**! makes use of the logarithmic
derivative and an inductive technique developed by Kovacic!"*'! to lift a
solution to the inverse problem from G/R,, where R, is the unipotent
radical of G, to the full group G. Using this machinery Kovacic proved that
it is enough to find a solution to the inverse problem for reductive groups
(observe that G/R, is reductive). A simplified partial proof of the results
in** appears in!>.

In the introduction of®! the authors briefly review previous work on
the inverse problem that appears inl*%7:813715.21.22.26.27.30=331 = A more
extensive survey on the inverse problem can be found in M. Singer’s.l*”’

The constructive algebraic solutions to the inverse differential Galois
problem for connected linear algebraic groups that are currently available
are based on Kolchin’s Main Structure Theorem for Picard-Vessiot exten-
sions (see Theorem A.l below). In particular, a corollary to this theorem
(see Theorem A.2) establishes that if £ D F is Picard-Vessiot and G is, for
example, unipotent or solvable or G = GL, or G =SL,, then E is iso-
morphic as an F-module and as a G-module to the function field of the
group G obtained from G by extension of scalars from C to F. Therefore, to
get a Picard-Vessiot extension £ O F with group G (if it exists) one can begin
by taking E to be the function field of Gr and then the problem reduces to
extending the derivation from F to E in such a way that E D F is Picard-
Vessiot for that derivation. In this paper we use this approach for our
construction.

The idea of tackling the inverse problem by constructing generic
extensions is inpired by the works of E. Noether®¥ for the Galois theory of
algebraic equations. Following her approach, L. Goldman in"” introduced
the notion of a generic differential equation with group G. Goldman explicitly
constructed a generic equation of order n, with group G, for some groups
including GL,,. He used a particular representation of the group G in GL,
and as a consequence his equation required n differential interminates.
Goldman’s generic equation for GL, is equivalent to Magid’s general
equation of order n (Example 5.26 in!').

More work in the spirit of Goldman’s generic equation came some
years later in J. Miller’s dissertation.””) He defined the notion of hilbertian
differential field and gave a sufficient condition for the generic equation with
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group G to specialize to an equation over such a field with group G as well.
However, as pointed out by Mitschi and Singer in®*, his condition was
stronger than the analogous one for algebraic equations and this made the
theory especially difficult to apply for those groups that were not already
known to be Galois groups.

We use the terminology of A. Magid’s book.!'"”! In!'! the reader may
also find definitions and proofs of some results from differential Galois
theory that will be recalled here.

This paper contains the results of the author’s Ph.D. dissertation.!'!)
The author wishes to thank her Ph.D. advisor, Andy Magid, for the many
valuable research meetings. The author is also grateful to Michael Singer for
many enlightening conversations on the inverse problem.

Notation. Throughout this paper F denotes a differential field with
algebraically closed field of constants C.

II. PRINCIPAL DIFFERENTIAL IDEALS IN F{Y;}[X;]
2.1. Darboux Polynomials in F{Y}[Xj]

Definition 2.1.1. Let D be a derivation on the polynomialring A = k|Z,, ..., Z,].
A polyomial p € A'is called a Darboux polynomial if there is a polynomial ¢ € A
such that D(p) = qp. That is, p divides D(p).

An ideal 7 of A is a differential ideal if D(Z) C Z. In particular, 7 =
(p) is a principal differential ideal if p divides D(p). Hence, Darboux
polynomials in 4 correspond to principal differential ideals.

Let F{Y;;} be the ring of differential polynomials in the Y}; and F(Y;;)
its differential quotient field. By that we mean the usual quotient field
endowed with the natural derivation:

D(lé) _ D(p)qq—2 pD(q)

for p,q € F{Y;}, where D is the derivation on F{Y;}.

Consider the differential ring R = F{Y;}[X;] where the Xj
1 <i, j<n, are algebraically independent over F(Y;) and derivation
extending the derivation on F{Y;} by a formula

n
D(Xy) =) YuXy.
=1

An clementary computation shows that an element of the form p =
fdet?[X;] with £ € F and a € N is a Darboux polynomial in R with
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D(p) = (%/ +ad i, Yi)p. The rest of this section is devoted to showing that
all the Darboux polynomials in R are of this form.

The multinomial notation a,Z* will be used to denote a term of the
form ay,..,, 27" --- Z%.

First, we show that there are no non-trivial Darboux polynomials in
the Y;;. For simplicity, if #(Y) € F{Y;}, we write //'(Y) for D(h(Y)). Notice
that this is not the usual meaning /'(Y) = > A, Y*.

Proposition 2.1.2. If h(Y) € F{Y;} satisfies h'(Y)=g(Y)h(Y) for some
g(Y) € F{Y;} then h(Y) € F. That is, there are no non-trivial Darboux
polynomials in F{Y}}.

Proof. Write Yj; for ch) and order the set of subindices {ij, k}, i,j,k € N,
with the lexicographical ordering. That is, {iij1,k1} > {i2j2, k2} if and only if
the first coordinates s; and s, from the left, for s = i,j, k above, which are
different satisfy s; > s5.

Let 7(Y};) and g(Y}) be as in the hypothesis. Denote by {mn, ¢} the
largest subindex such that Y, , occurs in /4(Y) and put

h(Y) = a,¥iy - Yy
;
Then
W(Y) = Z a, Yy Yo 4 Z ayon Y3 YT'll,'llH Yo
; ;
o Y At Vi Yot Yo
= Vit Vo) + (30 @tna Vi Vi) Yo
;
=g(Mh(Y).

Now, for Y41 = Y, , we have {mn,t+ 1} > {mn, t}. Thus it may

mn,t
not occur in A(Y) by the choice of {mn,t}. Also, it does not occur in

hi(Yi, ..., Yun.). Thus, the above equation implies that Y, .1 must occur
in g(Y). Let g,4+1(Y) be its coefficient in g(Y) and write

e — 1
hQ(Y) = E Ao %y, t Y1a1” Y;.;m1,; :
o

We have

h(Y)gt+l ( Y) Ymn,t+1 = h2( Y) Ynm,t+1
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h(Y)g1(Y) = ho(Y).

But the total degree of hy(Y) is strictly less than the total degree of
h(Y). This forces h(Y) € F. O

Next, we proceed to the computations in R. The ring F[X};] is assumed
to be ordered with the degree reverse lexicographical order (degrevlex). That
is, the set

T = (X |X = (X;), f = () € N"'}

of the power products in the Xj; is ordered by X11 > --- > X7, > --- > Xy >
- > lev and

n n n n
DD <y D b
=1 =1 =1 =1

or

X* < Xﬂ n n n n '
Z Zocfj = Z Zﬁii’ and the first coor-
=1 =1 =1 =1

dinates oy, f8;; from the right which are

different satisfy a;; > ;.

We will refer to the leading term of a polynomial with respect to this order
as its leading power product.

Remarks 2.1.3 (Derivative of a power product in the Xj). Let

X% = Xlalll '”Xlxnl” . X%l co X O

nl nn

then

11 11/71 1/+1 7
E E (E o YuX{ - X p X“ D

0>i

V. 11 f/'""l 1'/_1 nn
+§ ocUY,éX‘l’l---XZ. -X;‘/ X§n>

0<i
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2.1.4. For a given o and X* as before, we want find all the power products
X# such that X* occurs in D(XF). If that is the case, X* will appear in D(X")
in a product of the form Y,,X*. By Remark A.3 all such power products are
of the form

11 n+1__. s=1 . Y
Xt — ngl rs X?r/ Xiau; ifr<i
- 011 s—1 st 3
X’II' X?sf X?Cs "'XZn ifr>1

for 1 <r,s <n,t+#r, and X" itself.

2.1.5. Let p € R. Since D(X;) =Y, YuXy, the total degree of p with
respect to the Xj; does not change after differentiation. Therefore, if D(p) =
gp then q € F{Y;}.

Proposition 2.1.6. Let p € R. Write it as p=">_,p,(Y)X*, with p,(Y) €
F{Y;}. Then for any o with p,(Y) # 0, the coefficient of X* in D(p) is

Pa( Jr]’a Z Z%]Yu + Z Z azj Zpat,,[ 1[7

#i

where o is the exponent vector of the power product

Xfllll .. ] 1/+1 XO(// lem Ml < E

nn

XA Xowrl ”X“u“ X0 >

4j nn

X%‘/.{ —

as in Remark A.4.
Proof. This is a direct consequence of Remarks A.3 and A.4. ]

Proposition 2.1.7. Let p € R and suppose that D(p) = qp, for some

Proof. Let p =73, p,(Y)X* Then

D(p) =Y (V)X +p(Y)D(X*) = gp =Y _q(V)pa(V)X".

By Proposition A.6, for each « with p,(Y) #0 the corresponding
coefficient of X* in D(p) is

D(p)a:p;(Y +p1 ZZ“U il
+ZZ (o + 1) Zp,w

U#i
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Since D(p) = gp, it must be D(p), = q(Y)p,(Y) or, equivalently,

(I( Y)pa(Y) :pa( +py Z Z“z/ i

i=

+ Z Z (54 1) poy (Y)Y
=1 j=1

i

This means that for each o, the coefficient p,(Y) of X* in p divides the
expression

n n
LAY o+ 1D pa, (V) Y
=1 j=1 i
Thus, for each o, there is u,(Y) such that
Pu(V)uo(Y) = p(Y) + Z Z (o + 1) ZP%:;(Y) Yi
=1 j=1 i
As in the proof of Proposition A.2, order the triples {ij, k}, i,j,k € N,
with the lexicographical order. Let {mn, t} be the largest subindex such that
Yy, occurs in p. We have D(Y,,) = Y+t and {mn, t + 1} > {mn, t}.

Now, for each « such that Y, occurs in p,(Y) we have that Y, 41
will occur in p/(Y) but not in p,(Y) or in

n
§ E O‘z] Epa,,e
=1 =1

#i

by the choice of {mn, 1}. Therefore, it must occur in p,(¥)u,(Y). Let
N = Sl ol
then

— 1 B mn,t |1 1+1 Bt
—ZaﬂY“ mnt"‘§ :aﬂﬁn 111 Ylmnt
z : B
11 mn,t
+ aﬂﬂmn,t Yllzl annzl mn +1-
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SO Y41 occurs in p/,(Y) only in

-1
Z aﬁ&nn tYB“ e Yﬁ%’z‘ Y1
(Z aﬁﬂmnlYﬁl : Yﬁ;%l; ) Y1 = v(Y) Younit1-

Since Y41 occurs in p,(Y)uy(Y) and not in p,(Y) it must occur in
u,(Y). Let uy+1(Y) be the coefficient of Y, 41 in u,(Y). Then it has to be

poc( Y)uoc,Hl ( Y) Ymn,tJrl = U( Y) Ymn,f+l .

The above equation implies that p,(Y) divides v(Y). But this is
impossible since the total degree of v(Y) is strictly less than the total degree
of p,(Y). This contradiction yields the result. O

Lemma 2.1.8. Let p € F[X;] and suppose that there is q € F{Y;} such that
D(p) = qp. Then q is a linear polynomial in the Y;. If f = (,BU) is such that XP
occurs in p, then for 1 < i <n the coefficient of Y;; in q is Z _1 By In parti-
cular, the sums Z/ 1 By, for 1 < i < n, are independent of the choice of XP.

Proof. We have p =" azXP, with a5 € F.
Thus,

D(p) =Y dXF +ayD(XF) = gp = q(¥)ayXP.
By Proposition A.6, the coefficient of X? in D(p) is

>SRN S ) S e
Hence, it must be
n n n
q(Y)ag = ag + a/ﬁ( B;iYi+ Z (By+1 Z ag,, lé)

=1 j=1 i=1 j=1 (#i

From this,

+ZZWH+ZZ B+ D3 -

1//
i=1 j=1 i=1 j=1 ap
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The coefficient of Y;; in the above expression is Z;’:l By for 1 <i < n.
Since this expression for ¢ is valid for any index f, the “in particular’” part
follows immediately. U

Corollary 2.1.9. Let p be as in Lemma A.8. Let X* be the leading power
product of p. Let XP be any power product with non-zero coefficient in p.
Then >0 By = > o4, for 1 <i<n. Thus p is homogeneous of degree

Z;l:l Dt %

Proof. This is an immediate consequence of the “in particular” part in
Lemma A.8. ]

Corollary 2.1.10. Let p € F[X;| and suppose that D(p) = qp, for some
q € F{Y;}. Let X* be the leading power product of p, and let { € F be its
coefficient. Then

/ n n
q :?+Z ZOCI']‘Y”'.
-

i=

Proof. By Proposition A.6 and since D(p) = gp, the coefficient of X* in
D(p) is

n

&1:[‘*%(22 Yty Z(“U‘Fl)zpm/ﬂ/ié)- (1)
Py =

=1 i

The p,,, are the coefficients of the power products X** in p, with
ik # o, such that D(X**) contains an expression of the form Y,X*. By
Remark A.4, these power products are

rs

D CINEED CUREPED CAREEED G )

ts

1 s—1 nn 1
o {XTIII...XW XLy i <

all of which violate Corollary A.9 for i = r and i = ¢. Therefore it must be
Pay = 0, forall 1 < i, j < n; k # i. But now, substituting back in (1), we see
that

bg=10+ fzn: zn:dg/Yii-
=1 =1

Hence,
A n n
qzz+g;agjyif- O

i=1



6082 JUAN

Our next step in order to show that the Darboux polynomials p € R
have the desired form will be to show that such a p is not reduced with respect
to det[X;]. For that we will show that the leading power product of p is a
power of the leading power product of det[Xj]. First, we have

Lemma 2.1.11. Let p € F[Xj] be such that D(p) = qp,q € F{Y;;}. Let X* be
its leading power product. Then o; =0 for j#n—i+1 and o;p_ip1 > 0,
1 <i<n. That is, X* = ng”l X0

nl
Proof. To prove that a; = 0 for j #n — i+ 1 we first show that a; = 0 for
j>n—k+1,i>k 2<k<n Indeed, fork=2wehavej>n—1,s0j=n
and
n—1
D(X*) = o Z YuXii' - XZ;"-H Xt

nn
k=1
Since ¢ has no Yj; with i # j, each term in D(X”) containing such a Yj;

must be cancelled. In particular we need to cancel the terms containing

o: +1 _
Y”]X?l]l . Lyl

/n nn
for 1 <j<n—1 above. For that we can only use the derivatives of power

products of the form

X — Xolnl] ]1; 1 X?fn“ oL YO __,Xwﬂ Xwn—l

jn nl

for ¢ < n. But these are all strictly greater than X* (the leading power pro-
duct of p), and they may not occur in p. As a consequence, it has to be
o = 0. Now let k > 2 be such that a;, = 0 for i > k. Then

— Xfiﬂll thll,jq . inn llXaA+1| Xa’\+117 [ G

k+1,1 k+ln—1" nn—1
and
o ,,,+1 k- 1n—1 O i1
D(X)_ak1n<§ Yoy X7 Xt X X
i<k—1
- 1 -1 int1 -1
+ E Yi1, ’ X7 ) X;I"l” o XZ,InI—l +-
i>k—1

Likewise, we need to cancel all the terms in D(X*) that contain Yj_;,
for i # k — 1. In particular, we need to cancel

LYol +1 xk 1a—1 1
YT CHETED CAAREIED eu X

in nn—17
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for i < k — 1. For that we can only use the power products of the form

Xt = XA X oyt ...Xf;t;;f[*l ...XZA_—;;’ 1...X::z’:;11
fori<k—1.

But all of them are strictly greater than X* and cannot occur in p.
Thus, it has to be ax_;, = 0. Since this argument is valid for any k > 2, it
follows that ay, = 0, for 2 < k < n. This makes the statement that o;; = 0 for
j>n—k+1,i>k, true for k = 2.

Now assume that & is such that o; =0 forj>n—-k+1,i > k. So

Xo{ _ XO(“ . Xd],, . .Xak.n—k+l X“k-l.l . k+1,n—k+1 . Xan.n—k+l
- 711 In k

n—k4+1 24 k41,1 " k+1,n—k+1" npn—k+1

and fori > k

i BB LD .t D e st SR v Ve o Rl S e 8
%in—k+1 Y’]XTI XOI(n Xz,nf/chl Xi,)?*k‘l’l X:,nkarl

occurs in D(X*). Thus we need to cancel it. For that we can only use the
derivatives of power products of the form

Cijk 1, .. i~ 1 . A n—k1+1 . rijt+1 . jn—k+1—1 . nn—k+1
X7k = X7 XZ]‘ Xien—kt1 X; Xk Xfinfkﬂ

with j <n —k+ 1 since oy; = 0 for all j > n — k + 1 by hypothesis. But all
such power products are strictly greater than X* and therefore they cannot
occur in p. This forces «;,—i4+1 = 0 for i > k. We can repeat this process until
k=nand getoy=0forallj>n—k+1,i>k, 2<k<n,thatis,

X = Xy XX XX XX

Now we show that ay =0forj<n—k+1,1 <k <n—1,i<k The
process is analogous to what we just did. First we show that o;; =0 for
i < n. Indeed, for each i we have for ¢ > i that

o Yig X2 - Xt et
occurs in D(X*). So, in order to cancel it, we need to use the derivatives of
power products of the form

%o — YOI i—1 %41 n+1 =1 nl
X%t = XP- X XX XZ o

il ij
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with j > 1, all of which are strictly greater than X* if £ < n, and for £ = n we

cannot simply have one of those since o,; = 0 for j # 1. Thus such power

products cannot occur in p and it has to be «;; = 0 for i < n.
Let K <n—1 be such that o;; =0 for j <n—k+1, i < k. We have

X(Xln k+1 XO(/m k+1 __Xoc,,l

ln—k+1"" ]n kn—k+1 nl

and for all i < k, £ > i, we have that

X\?‘i.lz—kJrI*l . X“Ln—kﬂ"rl X

1n
%in— kHYzfX?n k1l ikt Cn—k+t1 nl
occurs in D(X*) and in order to cancel it we only have the derivatives of
power products of the form

XO(,/; _ X‘“ln k+1 . X?i.n—kJrl*l . Xicj)g,’/+l X\'x[n A+]+1 . 1[/71 XO(”]

Ln—k+1" in—k+1 lin—k+1 Z/

with j>n—k+1since oy =0fori<k,j<n—k+1.

For ¢ < k, all these power products are strictly greater than X* and
therefore they cannot occur in p. For ¢ > k we cannot simply have such
power products since for £ > k, oy =0 if j > n — k+ 1. Thus it has to be
Oin—tr1 =0 fori<k—1.

We can repeat this process until k=n—-1 and get a; =0,
j<n—k+1,i<k, 1<k <n-—1.This completes the proof of the first part
of the lemma.

To prove that o;,_; 1 # 0, for all 1 < i < n, suppose that there is 7 such
that o;,—;+1 =0 and let j# i be such that a;,_;41 # 0. Then D(X*) will
contain

w1 , e,
CRIITD ¢ CHEEED GHEARIRERED (IS EEED (IR N B

Jon—j+1

or

95'.11741*1 oo .
On—j+1 Y/l)‘/x zn —j+1 IYj,/nf}H o X:'il + .- ifi <]J.

As noted above, since ¢ does not contain any Y; with i # j, we need to
cancel the terms in D( p) involving either of the above. But that is impossible
since o; = 0 for all j and by Corollary A.9 all the power products

Xﬁ'- Xﬁ”- - XPm

nn
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in p must have ; =0 for j=1,...,n. In particular, we cannot have in p
power products of the form X%+ as in Remark A.4. O

Next we show that the exponents oy, of the Xy, in X%, the leading power
product of p, are all equal:

Lemma 2.1.12. Let p € FXjj| be such that D(p) = qp, q € F{Y;;}. Let
X" = XX X

be its leading power product. Then o;,_iy1 = ay,, for i > 1, that is, if a = oy,,
then

X" = (X]nXZA,n—l e Xn])a-
Proof. Let £ be the coefficient of X* in p. We have

DX XEL - X))

1n

n

2.n—1 1

= ( E Ofi,ni+1€Yu‘> Xff,'{’X;n"q X
=1

+ alnfz YlkX“'"‘l ...X°‘kk~"*"+l e X -+ X

In n—k+1" nl
P
. . .o In “ e ’“71+171 ..
+ 14 E :a’s”*”rl E : Y!/Xo](n X:n—i-ﬁ—]
1<i k>i
.. 9/(/‘”7]‘+l .. . DEEEEY “nl
Xk,nflﬁtl ka”_""l XZI
n e, n—k+1
D ineir D YXi e X X
1<i k>i
. Ain—iy1—1 . nl ! 1n v¥*2n—1 (nl
X X XX X

In order to cancel

OtlanIkXT,IfI . k/:;:ﬁl o X Xk #1,
above, we can only use the derivatives of the power product

XAaktth = X7 gy - .X"l‘;*l . XZ"‘”*“”I o Ky - X

n—k+1 nl>»

since for j # n — k + 1 we have a;; = 0.
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Let a,,, ,.,, be the coefficient of X*»#1% in p. Then
Aoy s = =1y (2)
On the other hand, in order to cancel

ke —1
LTRT) D (P SRREED CLETED ANEATIETED ¢ N )

In n—k+1 " Anl o
above, the only power product that we can use is, again,

el — D L N S D SRR v
Xt = Xppgerr - X7, Xin—k1 Xin -+ X3
= X%ln-k+lk
b

since a1; = 0 for j # n. Thus it must be

a“l.n—k—l]{ = 76“1@)‘1—](-{—1 (3)
as well.
From (2) and (3) it follows that, for k # 1, o1, = ot y—k41- O

As a consequence of the above results we obtain the following
expression for ¢:

Corollary 2.1.13. Let p € F[X}j] and suppose that D(p) = qp, q € F{Y};;}. Let
X% be the leading power product of p. Let a € N be such that

X* = (XinXopo1 -+ Xm)“

and let £ € F be the coefficient of X* in p. Then

/ n
q:?+a;Yﬁ.

Proof. This is a consequence of Corollary A.10 and Lemma A.12. O

Corollary 2.1.14. Let p be as in Corollary A.13. Then p is homogeneous of
degree na.

Proof. This is a consequence of Corollary A.8 and Lemma A.12. |

Lemma A.12 implies that p is not reduced with respect to det[Xj].
Since this is a key point in the proof of our main result we restate it as the
following
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Theorem 2.1.15. Let p € F[Xjj] be such that D(p) = qp, g € F{Y};}. Let X* be
its leading power product. Then

X* = (X]nX27n,1 .- .an)a = lp(det[Xij])”.
Thus p is not reduced with respect to det[Xj].

Note. If f'is a polynomial, Ip(f) denotes its leading power product with
respect to a given order.

Proof. This is just a restatement of Lemma A.12. O

Remark 2.1.16. Let p;,p> € F[X;] be two polynomials such that Ip(p;) =
X* =1p(py). Then we can write p; = fp> +r where f € F and r is reduced
with respect to p,. Indeed, since Ip(p;) = Ip(p2), we have that lp(p,) divides
Ip(p1). So p; is not reduced with respect to p,. We may apply the Multi-
variable Division Algorithm (see!') to py and p, to get £, r € F[X;], such that
p1 = fp2 + r, with r reduced with respect to p; and Ip(p;) = Ip(f)lp(p2). The
last equation implies that Ip(f) = 1. Hence, f € F.

We are now ready to prove our main result on the form of the
Darboux polynomials in R:

Theorem 2.1.17. Let p € F|X;;] and q € F{Y};} be polynomials in R that satisfy
the Darboux condition D(p) = qp. Then there is a € N and £ € F such that

p = ﬁdet[X@/]a

and
! n
= Y.
q 7 +a ;

Proof. Let ¢1 = > a Yy, so that,
/A

D(det[X;]") = qidet[X;]* = (q — %) det[X;]".

By Remark A.16 we can write p = ¢det[X;]“ + r, with r reduced with
respect to det[X;]“. Now,

D(p) = D(£det[X;)") + D(r)
=/ det[X,;,-]” + [(C] - %)det[Xij]” + D(}")

= (' det[X;]" + gldet[X;]* — ¢'det[X;]“ + D(r)

= qédet[Xg,»]“ + D(r)
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On the other hand, we have
D(p) = qp = qfdet[X;]" + qr.

Therefore, it has to be D(r) = gr. But r is reduced with respect to
det[X;]“. It follows, by Theorem A.15, that r = 0. The statement about the
form of ¢ is just the content of Corollary A.13. U

2.2. Principal Differential Ideals in F{Y;}[Xj]

As mentioned in the introduction, if we pass to the quotient field F(Y;;)
of F{Y};} and localize F(Y};;)[X;] at det[X}], we get the coordinate ring of
GL, over F(Y};). The derivation D on F(Y;)[X;] defined above can then be
seen as a “‘general” element of Lie(GL,). In particular, D is a linear com-
bination of the basis of Lie(GL,) consisting of the derivations D; given by
multiplication by the matrix E(#j), with 1 in position (i,j) and zero elsewhere
and the coefficient of Dg; in D is Y.

We will show next that the result in Theorem A.17 is true for any other
such element of Lie(GL,). That is, the result does not depend on the par-
ticular basis of Lie(GL,) used.

Theorem 2.2.1. Let Dy, 1 < 5,1 <n, be any basis of Lie(GL,). Define a
derivation in the ring R = F{Y;}[X;] by D= YyDy. Let p and q be
polynomials in R that satisfy the Darboux condition D(p) = gqp. Then there is
a € N and { € F such that p = (det[X;)" and g =% +a 37 | Yy

Proof. Since {Dp ;|1 < i,j < n} is a basis of Lie(GL,(C)) we have

Dy = Z Cst,lj/'DE(ij%

with ¢ ; € C. Thus,

D= Z YSIDSI
5.1
=3 Y cuiDp
5,1 ij
- Z Z Cst,ij Y st D i)

ij st

= Z ZijDp,
i,
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where Z;; = Y, ¢y Ysr. Now, [cy ;] 1s @ matrix of change of basis so it is
invertible. Also the ¢, ; are contants for D, thus the map Z; — Yjx is a
differential bijection. In other words, the differential rings

R = F{Y;}[Xy], D

and

R = F{Z;}[X;],D

are isomorphic and therefore we can apply Theorem A.17 to R'. O

Theorem 2.2.2. Let R = F{Y;}[X;] be a differential ring with derivation
obtained by restriction of a general element of Lie(GL,) in the sense described
above. Then the principal differential ideals in R are those of the form T =
(det?[Xy]) for a € N.

Proof. This is a consequence of Theorems A.17, B.1 and of the obser-
vation that Darboux polynomials correspond to principal differential ideals
in R. O

III. GENERIC PICARD-VESSIOT EXTENSION FOR GL,
3.1. Preliminaries on Differential Galois Theory

As before, F is a differential field with algebraically closed field of
constants C. If £ D F is a differential field extension then the group of
differential automorphisms of E over F is denoted by G(E/F).

If G is a linear algebraic group over C and K is an overfield of C we
denote by Gk the group obtained from G by extending scalars from C to K.

We will show that F(Y;)(Xj) is a generic Picard-Vessiot extension of F
for the group GL,(C). Notice that F(Y;;)(Xj) is the function field of G with
G = GL,(C) and K = F(Y;). The following two results ("**! Theorem 5.12
and Corollary 5.29) will be used:

Theorem 3.1.1 (Kolchin Structure Theorem). Let E D F be a Picard-Vessiot
extension, let G < G(E/F) be a Zariski closed subgroup and let T be the set of all
fin E that satisfy a linear homogeneous differential equation over K = E®. Then
T'is a finitely generated G-stable differential K-algebra with quotient field E, and
if K denotes the algebraic closure of K, then there is a G-algebra isomorphism

Kok T — K®¢ C[G].
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Note that C[G] denotes the affine coordinate ring of G and that the target of
the above isomorphism is the affine coordinate ring of the group Gg obtained
from G by extension of scalars from C to K.

Theorem 3.1.2. Let E D F be a Picard-Vessiot extension, let G < G(E/F) be
a Zariski closed subgroup with E° = F. Let F be an algebraic closure of F, and
suppose the Galois cohomology H'(F/F,G(F)) is a singleton. Let T(E/F) be
the set of all fin E that satisfy a linear homogeneous differential equation over
F. Then there are F- and G-isomorphisms T(E/F) — F|Gf] and E — F(GF).
In particular, this holds if G is unipotent or solvable, or if G = GL,(C) or if
G =SL,.

The following characterization of Picard-Vessiot extension (seel'”,
Proposition 3.9) will be employed:

Theorem 3.1.3. Let E O F be a differential field extension. Then E is a Picard-
Vessiot extension if and only if:

1. E=F(V), where V C E is a finite-dimensional vector space over

C:
2. There is a group G of differential automorphisms of E with G(V) 2
V and E¢ = F;

3. E D F has no new constants.

In particular, if the above conditions hold and if {y1,...,yu} is a C-basis of V,
then E is a Picard-Vessiot extension of F for the linear homogeneous Differ-
ential operator

(Y, R T
L(Y :Vt( y V1, ay)
WVl .oy V)

where w(—) denotes the wronskian determinant and L='(0) = V.

For the base field F(Y;) and group G = GL,(C) we first show that
F(Y;)(X;) D F(Yy;) is a Picard-Vessiot extension with differential Galois
group GL,(C). To that end, we only need to show that F(Y;)(X;) D F(Y})
is a no-new-constant extension. Conditions 1. and 2. in Theorem A.3 are
then easily verified with 7" the C-span of the X;; and G = GL,(C).

3.2. Darboux Polynomials and Constants

We will show that the field of constants C of F(Y;)(Xj) coincides with
the field of constants C of F. We first show (Corollary B.2) that this can be
reduced to proving that the only Darboux polynomials in R are, up to a
scalar multiple in F, powers of det[Xj].
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The following basic proposition (proven in* for A4 as in
Definition A.1) characterizes new constants for the extension F(Y)(Xj) D F
in terms of Darboux polynomials:

Proposition 3.2.1. Let pi,ps» € R = F{Y;;}[X;], p1,p>» # 0, be relatively prime.
Then D(ﬁ—;) =0, if and only if pi and p, are Darboux polynomials. Moreover,
if q1,92 € R are such that D(py) = qip1 and D(p2) = qapa, then q1 = q».

Proof. For the necessity of the condition we have

Y

D(?) _ D)2 —piD(p2) _

2 P
thus D(p1)p> — p1D(p2) =0, that is

D(p1)p2 = p1D(p2). (1)

Since p; and p, are relatively prime, the last equation implies that p; divides
D(p:) and p; divides D(py).

Now, let ¢i,¢q2 € R be such that D(p;) = qip1 and D(p2) = qapa,
respectively. Then it follows from (1) that

q1p1p2 = qQ2P1p2-

Hence, ¢ = ¢>.
The proof of the converse is obvious. O

Corollary 3.2.2. Let f'€ F(Y;)(Xy) be such that D(f) =0 and assume that
f¢ F then there are relatively prime Darboux polynomials py,p, € R which
satisfy the Darboux condition with respect to the same q € R (ie.,
D(p:) = qp;, i = 1,2) and such that = % Therefore, if such relatively prime
Darboux polynomials in R do not exist, the constants of F(Y;)(Xj;) coincide
with the constants of F.

Proof. F(Y;;)(Xj) is the fraction field of R. U

3.3. The Generic Extension

Theorem 3.3.1. F(Y;)(X;) D F(Yy) is a generic Picard-Vessiot extension with
differential Galois group GL,(C).
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Proof. First we need to show that F(Y})(X;) D F(Y;) is a Picard-Vessiot
extension with differential Galois group GL,(C). We will use the char-
acterization of Theorem A.3. We have

1. F<Y,/>(X,) = F<Y,/><V>, where V C F<Y,/>(X,) is the finite
dimensional vector space over C spanned by the X;.

2. The group G = GL,(C) acts as a group of differential auto-
morphisms of F(Y;)(X;) with G(V) C V and F(Yy) (X;)° =
F(Yj). This follows from the fact that F(Y;)(Xj) is the function
field of GL,(C)py,)-

3. F(Y;)(X;) 2 F(Y};) has no new constants. This is a consequence
of Proposition B.1, Corollary B.2 and Theorem A.17.

Now, suppose that £ D F is a Picard-Vessiot extension of F with
differential Galois group GL,(C). By Theorems A.l and A.2, we have that
in this situation E is isomorphic to F(Xj;) (the function field of GL,(C);) as
a GL,(C)-module and as an F-module. Any GL,(C) equivariant derivation
D on F(Xj) extends the derivation on F in such a way that

De(Xy) =Y fuXy
/=1

with f;; € F. Since E D Fis a Picard-Vessiot extension for GL,(C), then so is
C(f;)(X;) D C(fj), the derivation on C(f;)(X;) being the corresponding
restriction of Dg. From this Picard-Vessiot extension one can retrieve
F(Xj;) D F by extension of scalars from C to F. In this way, any Picard-
Vessiot extension E D F with differential Galois group GL,(C) can be
obtained from F(Yy)(X;) D F(Y;) via the specialization Y+ f;. This
means that F(Y;)(X;;) D F(Y}) is a generic Picard-Vessiot extension of F for
GL,(O). O

3.4. Specializing to a Picard-Vessiot Extension of F

In this section we give necessary and sufficient conditions for a spe-
cialization Y — fj;, fi € F, with C(fj;)(Xj;) D C(f;) a Picard-Vessiot exten-
sion, to exist. We restrict ourselves to the case when F has finite
transcendence degree over C.

Our goal is to find fj; € F such that the specialization (homomorphism)
from C{Y;} to F given by Y, f; is such that C(f;)(X;) D C(f;), with
derivation given by D(X;) = >_j_, fuXy;, has no new constants. We have:

Theorem 3.4.1. Let F = C(t;)[zj| where the t;, i =1,...,m, are algebraically
independent over C and the z;, j=1,...,k, are algebraic over C(t;). Assume
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that the derivation on F has field of constants C and that it extends to F(Xy) so
that D(f® X;;) = D(f) @ Xjj +f® >y, fuXy on F®@ C[Xy|. Let C be the
field of constants of F(Xjj). Then C = C if and only if the set of all the t; and all
the Xy are algebraically independent over C.

Proof. (Sufficiency) Suppose that C properly contains C. Let r be the
transcendence degree of C over C. Since C is algebraically closed, r has to be
at least one.

We have the tower of fields

C CCCC(Xy) C FXy)

where the transcendence degree of C C C(Xj) is n* and the transcendence
degree of C C F(Xj) is n*> +m. Since r > 1 the transcendence degree ¢ of
C(Xj) C F(Xj) has to be £ < m and therefore there is an algebraic relation
among the #; over C(Xj). Let g(X}),fi(Xy) € C[X], g(Xy) # 0, be such that

s Jso1(Xg) s
v A S
g(Xy) g(Xy)

Then

X1 + [t (Xy) % + -+ fo(Xy) = 0.

Since the f;(Xj;) and g(X}) are polynomials in the X;; with coefficients in
C, the last equation gives an algebraic relation among the #; and the Xj; over C.
For the necessity we only need to point out that by construction the set
of all the #; and all the X; are algebraically independent over C. ]

Now to check whether the set of all the #; and all the Xj; are algeb-
raically independent over C, we let T, k > 1, denote the set of monomials in
both the ¢; and the Xj; of total degree less than or equal to k. Then the set of
all the #; and all the X; are algebraically independent over C if and only if,
for each k, the set T is linearly independent over C.

Fix a term order on the set T of all monomials in both the ¢; and the
X;; and let W) denote the Wronskian of the set T’y relative to that order.
Then the above condition is equivalent to the fact that W £ 0 for k > 1.
Now go back to C{Y;;}[X;] and extend scalars from C to F. Let W;(Y;) be
the Wronskian of Ty in F @ C{Y;}[X;].

Then, the condition of Theorem D.1. for finding a specialization
Y, f; so that C(f;;)(X;) D C{f;;) has no new constants can be expressed as
follows:
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Theorem 3.4.2. There is a specialization of the Y;; with no new constants if and
only if there are f; € F such that all the wronskians Wi (Yy), k > 1, map to
non-zero elements under Yjj— f;.

3.5. Specialization Results for Connected Linear Algebraic Groups

The proofs of the specialization theorems in D do not make any special use
of the fact that the group under consideration is GL,(C) and can be applied
to arbitray connected linear algebraic groups as follows:

As in the previous section, F = C(t,...,t,)[z1,. .., 2zk] Where the ¢; are
algebraically independent over C and the z; are algebraic over C(ty, ..., 1,).
We let Yq,..., Y, denote differential indeterminates over F and X7,..., X,

algebraically independent elements over F(Y;).

In this section G is assumed to be a connected linear algebraic group
with function field C(G) = C(X;).

If {Di,...,D,} is a basis for Lie(G), Dy=>r,Y;D; is a G-
equivariant derivation on F(Y;)(X;). Let D= fiD; f;€F, be a
specialization of Dy to a G-equivariant derivation on F(X;) with field of
constants C. We have,

Theorem 3.5.1. The field of constant C of F(X;) coincides with C if and only if
the set of all the t; and the X; are algebraically independent over C.

Now, fix an order in the set ' of monomials in both the #; and the X;
and let W) (Y;) be the wronskian (with respect to this order) of the mono-
mials in both the #; and the X; of degree less than or equal to & computed in
F® C{ Y,}[Xl] Then,

Theorem 3.5.2. There is a specialization of the Y; with no new constants if and
only if there are f; € F such that all the wronskians Wi(Y;), k> 1, map to
non-zero elements under Y;+— f;.

For the proofs of Theorems E.1 and E.2 we only need to replace the
X;; with X, the Y;; with ¥; and n? with n in the proofs of Theorems D.1 and
D.2.

Observe that the proofs of Theorems E.1 and E.2 do not use the fact
that C(X;) is the function field of G. However, this hypothesis is used in the
following theorem to show that F(X;) D Fis a Picard-Vessiot extension with
group G.

Under the hypothesis and notation of Theorems E.1 and E.2 we have:

Theorem 3.5.3. F(X;) D F is a Picard-Vessiot extension with Galois group G
if and only if the set of all the t; and all the X; is algebraically independent over
the field of constants C of F(X;).
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Proof. First assume that F(X;) D F is a Picard-Vessiot extension. Then the
field of constants C of F(X;) coincides with C. So we can apply Theorem E.1
and get the result.

Conversely, if the set of all the #; and all the X; are algebraically
independent over C, by Theorem E.l., F(X;) D F is a no-new-constant
extension. On the other hand, F(X;) is obtained from C(X;) by the extension
of scalars:

F(Xi) = q.f-(F®c C(X;))
= q.f.(F®c C[G])

where C[G] is the coordinate ring of G and G acts on F ®¢ C[G] fixing F. So,
G C G(F(X;)/F). Counting dimensions we get that G = G(F(X;)/F) since
C(X;) = C(G), the function field of G. Finally, F(X;) = F(V), where V is the
finite-dimensional vector space over C spanned by the X;. By Theorem A.3,
F(X;) D Fis a Picard-Vessiot extension. O

Applying Theorems E.2 and E.3 we also obtain:

Theorem 3.5.4. There is a specialization of the Y; such that F(X;) D F is a
Picard-Vessiot extension if and only if there are f; € F such that all the
Wi (Y;), k> 1, map to non-zero elements via Y;— f;.

3.6. An Example

The previous Theorem D.1 says that if there is an algebraic relation among
the set of all the #; and all the Xj; over the field of constants C of F(Xj;) then C
properly contains C.

In this section we give an example in which a new constant is produced
from such an algebraic relation. We assume F = C. So, in particular, the
coefficients fj; in the derivation of F are constant. In this situation, since the
transcendence degree of F over C is zero, if CD C, the condition of Theorem
D.1 means that the Xj; are algebraically depéident over C.

We restrict ourselves to the case n =2 and consider the following
particular dependence relation.

Let

2
D(Xy) =) fuXy,
(=1
where the fj; are such that the wronskian

Wi = w(Xi1, X12, X21, X22) = 0.
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That is, the Xj; are linearly dependent over C. Furthermore, assume
that the linear relation among the Xj; is such that there are f,, 8,1, €C
with

X1 = BaXi2 + B Xo1 + BonXn (1)

and that X5, X5; and Xy, are linearly independent. In order to simplify the
computations we will also assume that det[f;;] = 0.

We want to find a,b,c € F such that p =aX; +bXy +cXpp is a
Darboux polynomial in F[Xj], that is D(aXi2 + bXa + cX2) = q(aXin +
bX» + ¢X»,) for certain ¢ € F. We have,

D(a Xy +b Xy +cXn) = alfuiXi2 + f12X2)
+b(f21 X1 + f22X01) + c(f1 X2 + f2X0)
= bfs1 X11 + (af11 + ¢f21) X12 + bfaa Xo1 + (afi2 + cf2) X2
= b1 (BraX12 + By Xo1 + B X2)
+ (@11 + ¢f21) X12 + b2 Xo1 + (afi2 + ¢f22) X
= (afi1 + bf21 By + ¢f21) X12 + b(f22 + f21B12) X2
+ (af12 + bf21Boy + ¢f22) X

= qaXiy + qbXy + qcXn.

Therefore,

la(fi1 — q) + b2 B1n + cfa] X2 + b(f22 + 21812 — @) X
+ (@f12 + bf21 By + ¢(fr2 — ) X2 = 0. (2)

Since we are assuming that X|,, X»; and X,, are linearly independent
their coefficients in (2) must be equal to zero. So we have the following
homogeneous linear system in a, b, c:

(fll _Q)a+f21ﬁ12b+fz1 c=0
(f2+ /1P —q)b=0
froat+fubnb+(fn—q)c=0
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In order for the above system to have non-trivial solutions we need
that

Jii—q f21Bin Ja
det 0 S+ b —q 0 =0.

Ji2 S21B2 Jo—q
But,
Jii—q J21B1 o
det 0 f22 Jrf21,312 —q 0
Ji2 S21B2 Jo—q

fu—q fa

= (f2 +/21B12 — q) det [ o fa

= (/2 + /21812 — @) (det[fj] — <qu> q+4)
=0.
This gives either

S+ /21B—q=0 (3)

or

det[f;] - (22: fi)a+q =0. (4)

From (3)—(4) we get

q=Jn+/i1bn (5)

or

2 o 2 N4 detlfs
qzil.ﬁ,iJ(zélﬁ,) 4detf;] o
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Since we are assuming that det[f;]] = 0, (6) becomes:
2
o= { Zif o )

Choose g = Zf:l i and assume that ¢ # 0, ¢ # f>2 + f>181>. Then the
second equation in the system implies that » = 0 and the system becomes:

—fna+fc=0
Jia—fiic=0

If /55 # 0 then the above system has the general solution

_ S

a="—c¢, whereceC.

[
In particular, if we take ¢ =1 then p :%Xlz + X», satisfies

Ik =\ (f
D(/z—lez —|—X22> = (qu) (/Z—IXlz + X22>-
2 = 2

On the other hand we also have that

D(det[X;]) = (i:f”> det[X].
Let -

g P _%X12+X22

det[X,“] B det [Xl]]

We have,

P
Do) = D<det[ij}>
_ D(p)det[X;] — pD(det]X;))

det[x;]*
B (Zle z,-)p det[X}] —P(Z,il z‘i) det[X;]
B det[X;]?

=0.

That is, 0 is a new constant in F(Xj).
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Now we show that under the restrictions that we imposed on the fj; it is
possible to find a non-zero f7,.

Since we have a linear dependence relation among the Xj, the
wronskian W must be equal to zero. This Wronskian can be expressed, up
to a sign, as the following product of determinants:

1 0 0 1 || X1 X2 0 0
Suu Sz 1 || X X 0 0

Wy =
A B E FI||lO0 0 Xn Xn
C D G HI|l O 0 Xy X»
= M(fy)det[X;]%,
where

A=fy + /i +fiofa,
B = fi, +fifiz + fiaf22,
C=fud+fmB+ A4
= 3fufly + 2nfirfan + 2Af + A1+ Sy i
D = fi2A+fnB+ B
=21 fi2 + fifi2 + fafor + oifo + 2f1af + filfls
+fafry + 115 +fitfiafa,
E=f3, + fufi1 + fafa,
F=f3 +fiofar + /3.
G=MmE+fmF+E
=2 fn St F fafafin + 2fa + fafs
+ /5 + )+ + fafa
H=fnF+fLE+F
= fufiifiz + 2fnfufi2 + 3nfy + 2fofy + /i

+for + 1
and
1 0 o0 1
C D G H



6100 JUAN

We have after simplifying using the hypothesis that det[f;] = 0,

M(fy) = (f2 = i) F1ofa) —fof1a) + (Foy = FL) (Faf2r = fiaf3))
=/ (fn —fn)’ —fufa(fly = f2) s (ufly + /o
=i = firhy + o = A1+ = fiafa) + (i
+fafy = fif2 = fith + 1 — o oot = fiafa)-

Getting the above expression for M(fj;) took long and involved computa-
tions. We first computed the determinant directly and then we checked the
result using Dogson’s method.!®*]

The wronskian W, = 0 if and only if M(f;;) = 0. Now, observe that if
Jf12 = 0 then f{, = 0 which implies that B =0 and D = 0 as well. Therefore
M(f;) = 0. So, if we let M(Y;) be the differential polynomial in the Y7
whose specialization to the fj; is M(fj;) then M(Yj) is in the differential ideal

T = {det[Yy], Y12}
={YuYn—YnYy, Yo}
={Y1Yn, Yo}

of C{Y1, Y12, Y1, Yoo} It is easy to see that Yy, is not in Z. Indeed,
suppose that

Yo=pYuYn+qYn+r, (8)

where p, ¢ € C{Y11, Y12, Y21, Y2},
r=> [pi(yll Yn)" + g YYz)]
ij

with p;,q; € C{Y11, Y12, Y21, Y2}
Now, consider the map

Y C{Y1, Y1, Yoo} — C[Y11, Yo, Y2

given by (Y2) = Yo and y(Yy) = 0 for i, j # 2. Let p = ¥(p), ¢ = ¥(q)s
7= (r). We have that 7 = 0 and (8) becomes

Yy =0.

which is impossible. O
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