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ABSTRACT

We characterize the principal differential ideals of a poly-
nomial ring in n2 indeterminates with coefficients in the ring of
differential polynomials in n2 indeterminates and derivation
given by a ‘‘general’’ element of LieðGLnÞ and use this char-
acterization to construct a generic Picard-Vessiot extension
for GLn. In the case when the differential base field has finite
transcendence degree over its field of constants we provide
necessary and sufficient conditions for solving the inverse
differential Galois problem for these groups via specialization
from our generic extension.
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I. INTRODUCTION

Given a differential field F and differential indeterminates Yij,
i; j ¼ 1; . . . ; n, over F, one writes FfYijg for the ring of differential poly-
nomials in the Yij, i.e., the ring F½Yi;j;k� of polynomials in infinitely many
indeteminates Yi; j ;k, i; j ¼ 1; . . . ; n, k � 0, with derivation extending the
derivation on F by DðYi;j;kÞ ¼ Yi;j;kþ1. For convenience, denote Yi;j;k by Y ðkÞi;j
and Yi;j;0 by Yij. Then one can extend this derivation to the ring R ¼
FfYijg½Xij� where the Xij are algebraically independent over the differential
quotient field FhYiji of FfYijg using the formula DðXijÞ ¼

Pn
‘¼1 Yi‘X‘j. If we

pass to the above quotient field FhYiji and then localize FhYiji½Xij� at det½Xij�,
we obtain the coordinate ring of GLn over FhYiji and D becomes a ‘‘gen-
eral’’ element of LieðGLnÞ.

In this paper we show that the principal differential ideals of R (i.e.,
the ideals I ¼ ð pÞ with p dividing Dð pÞ) are the differential ideals generated
by elements of the form deta½Xij�, with a 2 N. A polynomial p that divides
its derivative is called a Darboux polynomial. Our result can be stated as
follows:

Theorem 1. Let R ¼ FfYijg½Xij� and let p be a Darboux polynomial in R. Then
there are ‘ 2 F and a 2 N such that p ¼ ‘ deta½Xij�. Therefore, the only
principal differential ideals in R are those of the form I ¼ ðdeta½Xij�Þ.

The proof of Theorem 1 involves some long and delicate computations
that make use of Gröbner bases machinery.

Now, suppose that the field C of constants of F is algebraically closed.
We use Theorem 1 to show that the quotient field FhYijiðXijÞ of R is a no-
new-constant extension of FhYiji. Similar to the above, FhYijiðXijÞ is the
function field of GLn over FhYiji. This allows us to give an affirmative
answer, for the group GLnðCÞ, to the following

Generic Inverse Differential Galois Problem: For a connected algebraic
group G over C find a generic Picard-Vessiot extension of F with differential
Galois group G.

By generic extension we mean a Picard-Vessiot extension of a generic
field that contains F and such that every Picard-Vessiot extension of F for G
in the usual sense can be obtained from the generic one by specialization.
Conversely, a specialization of the generic extension with no new constants
will produce a Picard-Vessiot extension with differential Galois group
contained in G.

The (non-generic) inverse differential Galois problem for a linear
algebraic group G, given F and C as above, consists in determining what
differential field extensions E � F are Picard-Vessiot extensions with differ-
ential Galois group G and, in particular, whether there are any. Therefore, if
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there is a generic extension with group G, the solutions to the inverse problem
can be obtained from it by a proper specialization. We prove:

Theorem 2. The differential field extension FhYijiðXijÞ � FhYiji is a generic
Picard-Vessiot extension of F with differential Galois group GLnðCÞ.

Notice that Theorem 2 is a consequence of Theorem 1 but not
equivalent to it: the fact that FhYijiðXijÞ � FhYiji is a no-new-constant
extension does not automatically give information about what the Darboux
polynomials in R are. Darboux polynomials are also interesting in other
related applications such as studying the integrability of differential equa-
tions.[2,9,16718,35]

A more direct proof for Theorem 2 was pointed out to us by Michael
Singer. Singer proves that FhYijiðXijÞ � FhYiji is a no-new-constant exten-
sion by showing that FhYijiðXijÞ is isomorphic to FhXiji. Singer’s proof and
our generalization of it to all connected linear algebraic groups will appear
in a subsequent publication.[12]

Now, suppose that F has finite transcendence degree over C say,
F ¼ CðtiÞ½zj�, 1 � i � r, 1 � j � s, where the ti are algebraically independent
over C and the zj are algebraic over CðtiÞ. Consider the differential field
FðXijÞ with derivation given by

DðXijÞ ¼
Xn
‘¼1

fi‘X‘j;

and with field of constants C. Let R ¼ FfYijg½Xij� be the differential ring
defined above. For k � 1; write Tk for the set of monomials in R which have
total degree less than or equal to k and which involve both the ti and the Xij.
Fix a term order on the set T of all monomials in the ti and the Xij and let
WkðYijÞ denote the wronskian of Tk relative to that order (the order will
only affect the wronskian by a sign). The following theorem summarizes our
specialization results:

Theorem 3. FðXijÞ � F is a Picard-Vessiot extension forGLnðCÞ if and only if
all the wronskians WkðYijÞ map to nonzero elements in FðXijÞ via the specia-
lization Yij 7! fij 2 F.

The above condition on the wronskians means that all the sets Tk, for
k � 1, are linearly independent over C. This is in turn equivalent to the fact
that the set of all the ti and all the Xij are algebraically independent over C.
Unfortunately, Theorem 3 gives infinitely many conditions. We do not
know at present how to use these conditions to effectively construct
solutions to the inverse problem, and this constitutes an interesting open
problem.
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A specialization as in Theorem 3, however, is known to exist by a
result of C. Mitschi and M. Singer.[23] They give a constructive algebraic
solution to the inverse problem for all connected linear algebraic groups
(and, in particular, for GLnðCÞ) when F has finite transcendence degree over
C. An interesting direction of research in connection with the previous open
problem is to give a complete description of the solutions (isomorphic and
non-isomorphic) that may arise in this situation.

The work of Mitschi and Singer in[23] makes use of the logarithmic
derivative and an inductive technique developed by Kovacic[14,15] to lift a
solution to the inverse problem from G=Ru, where Ru is the unipotent
radical of G, to the full group G. Using this machinery Kovacic proved that
it is enough to find a solution to the inverse problem for reductive groups
(observe that G=Ru is reductive). A simplified partial proof of the results
in[23] appears in[25].

In the introduction of [23] the authors briefly review previous work on
the inverse problem that appears in[3,4,7,8,13715,21,22,26,27,30733]. A more
extensive survey on the inverse problem can be found in M. Singer’s.[29]

The constructive algebraic solutions to the inverse differential Galois
problem for connected linear algebraic groups that are currently available
are based on Kolchin’s Main Structure Theorem for Picard-Vessiot exten-
sions (see Theorem A.1 below). In particular, a corollary to this theorem
(see Theorem A.2) establishes that if E � F is Picard-Vessiot and G is, for
example, unipotent or solvable or G ¼ GLn or G ¼ SLn, then E is iso-
morphic as an F-module and as a G-module to the function field of the
group GF obtained from G by extension of scalars from C to F. Therefore, to
get a Picard-Vessiot extension E � F with group G (if it exists) one can begin
by taking E to be the function field of GF and then the problem reduces to
extending the derivation from F to E in such a way that E � F is Picard-
Vessiot for that derivation. In this paper we use this approach for our
construction.

The idea of tackling the inverse problem by constructing generic
extensions is inpired by the works of E. Noether[24] for the Galois theory of
algebraic equations. Following her approach, L. Goldman in[10] introduced
the notion of a generic differential equation with group G. Goldman explicitly
constructed a generic equation of order n, with group G, for some groups
including GLn. He used a particular representation of the group G in GLn
and as a consequence his equation required n differential interminates.
Goldman’s generic equation for GLn is equivalent to Magid’s general
equation of order n (Example 5.26 in[19]).

More work in the spirit of Goldman’s generic equation came some
years later in J. Miller’s dissertation.[20] He defined the notion of hilbertian
differential field and gave a sufficient condition for the generic equation with
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group G to specialize to an equation over such a field with group G as well.
However, as pointed out by Mitschi and Singer in[23], his condition was
stronger than the analogous one for algebraic equations and this made the
theory especially difficult to apply for those groups that were not already
known to be Galois groups.

We use the terminology of A. Magid’s book.[19] In[19] the reader may
also find definitions and proofs of some results from differential Galois
theory that will be recalled here.

This paper contains the results of the author’s Ph.D. dissertation.[11]

The author wishes to thank her Ph.D. advisor, Andy Magid, for the many
valuable research meetings. The author is also grateful to Michael Singer for
many enlightening conversations on the inverse problem.

Notation. Throughout this paper F denotes a differential field with
algebraically closed field of constants C.

II. PRINCIPAL DIFFERENTIAL IDEALS IN FfYijg½Xij�

2.1. Darboux Polynomials in FfYijg½Xij�

Definition 2.1.1. LetDbe a derivation on the polynomial ringA ¼ k½Z1; . . . ;Zs�.
A polyomial p 2 A is called aDarboux polynomial if there is a polynomial q 2 A
such that Dð pÞ ¼ qp. That is, p divides Dð pÞ.

An ideal I of A is a differential ideal if DðIÞ � I . In particular, I ¼
ð pÞ is a principal differential ideal if p divides Dð pÞ. Hence, Darboux
polynomials in A correspond to principal differential ideals.

Let FfYijg be the ring of differential polynomials in the Yij and FhYiji
its differential quotient field. By that we mean the usual quotient field
endowed with the natural derivation:

D p

q

� �
¼ Dð pÞq� pDðqÞ

q2
:

for p; q 2 FfYijg, where D is the derivation on FfYijg.
Consider the differential ring R ¼ FfYijg½Xij� where the Xij,

1 � i; j � n, are algebraically independent over FhYiji and derivation
extending the derivation on FfYijg by a formula

DðXijÞ ¼
Xn
‘¼1

Yi‘X‘j:

An elementary computation shows that an element of the form p ¼
‘deta½Xij� with ‘ 2 F and a 2 N is a Darboux polynomial in R with
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Dð pÞ ¼ ð‘0‘ þ a
Pn

i¼1 YiiÞp. The rest of this section is devoted to showing that
all the Darboux polynomials in R are of this form.

The multinomial notation aaZ
a will be used to denote a term of the

form aa1���asZ
a1
1 � � �Zas

s :
First, we show that there are no non-trivial Darboux polynomials in

the Yij. For simplicity, if hðYÞ 2 FfYijg, we write h0ðYÞ for DðhðYÞÞ. Notice
that this is not the usual meaning h0ðYÞ ¼P h0aY

a.

Proposition 2.1.2. If hðYÞ 2 FfYijg satisfies h0ðYÞ ¼ gðYÞhðYÞ for some
gðYÞ 2 FfYijg then hðYÞ 2 F. That is, there are no non-trivial Darboux
polynomials in FfYijg.
Proof. Write Yij;k for Y

ðkÞ
ij and order the set of subindices fij; kg, i; j; k 2 N,

with the lexicographical ordering. That is, fi1j1; k1g > fi2j2; k2g if and only if
the first coordinates s1 and s2 from the left, for s ¼ i; j; k above, which are
different satisfy s1 > s2.

Let hðYijÞ and gðYijÞ be as in the hypothesis. Denote by fmn; tg the
largest subindex such that Ymn;t occurs in hðYÞ and put

hðYÞ ¼
X
a

aaY
a11
11 � � �Yamn;t

mn;t:

Then

h0ðYÞ ¼
X
a

a0aY
a11
11 � � �Yamn;t

mn;t þ
X
a

aaa11Y
a11�1
11 Y

a11;1þ1
11;1 � � �Yamn;t

mn;t

þ � � � þ
X
a

aaamn;tY
a11
11 � � �Yamn;t�1

mn;t Ymn;tþ1

¼ h1ðY11; . . . ;Ymn;tÞ þ
�X

a

aaamn;tY
a11
11 � � �Yamn;t�1

mn;t

�
Ymn;tþ1

¼ gðYÞhðYÞ:

Now, for Ymn;tþ1 ¼ Y0mn;t we have fmn; tþ 1g > fmn; tg. Thus it may
not occur in hðYÞ by the choice of fmn; tg. Also, it does not occur in
h1ðY11; . . . ; Ymn;tÞ. Thus, the above equation implies that Ymn;tþ1 must occur
in gðYÞ. Let gtþ1ðYÞ be its coefficient in gðYÞ and write

h2ðYÞ ¼
X
a

aaamn;tY
a11
11 . . .Y

amn;t�1
mn;t :

We have

hðYÞgtþ1ðYÞYmn;tþ1 ¼ h2ðYÞYmn;tþ1
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or

hðYÞgtþ1ðYÞ ¼ h2ðYÞ:

But the total degree of h2ðYÞ is strictly less than the total degree of
hðYÞ. This forces hðYÞ 2 F: u

Next, we proceed to the computations in R. The ring F½Xij� is assumed
to be ordered with the degree reverse lexicographical order (degrevlex). That
is, the set

Tn2 ¼ fXb jX ¼ ðXijÞ; b ¼ ðbijÞ 2 Nn2g
of the power products in the Xij is ordered by X11 > � � � > X1n > � � � > Xn1 >
� � � > Xnn; and

Xa < Xb ()

Xn
j¼1

Xn
i¼1

aij <
Xn
j¼1

Xn
i¼1

bij

orXn
j¼1

Xn
i¼1

aij ¼
Xn
j¼1

Xn
i¼1

bij; and the first coor-

dinates aij; bij from the right which are

different satisfy aij > bij:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

We will refer to the leading term of a polynomial with respect to this order
as its leading power product.

Remarks 2.1.3 (Derivative of a power product in the Xij). Let

Xa ¼ X a11
11 � � �X a1n

1n � � �X an1
n1 � � �X ann

nn ;

then

DðXaÞ ¼
Xn
i¼1

Xn
j¼1

aijYii

 !
Xa

þ
Xn
i¼1

Xn
j¼1

X
‘>i

aijYi‘X
a11
11 � � �Xaij�1

ij � � �Xa‘jþ1
‘j � � �Xann

nn

 

þ
X
‘<i

aijYi‘X
a11
11 � � �Xa‘jþ1

‘j � � �Xaij�1
ij � � �Xann

nn

!
:
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2.1.4. For a given a and Xa as before, we want find all the power products
Xb such that Xa occurs in DðXbÞ. If that is the case, Xa will appear in DðXbÞ
in a product of the form YrtX

a: By Remark A.3 all such power products are
of the form

Xars;t ¼ Xa11
11 � � �Xarsþ1

rs � � �Xats�1
ts � � �Xann

nn if r < t

Xa11
11 � � �Xats�1

ts � � �Xarsþ1
rs � � �Xann

nn if r > t

(

for 1 � r; s � n, t 6¼ r, and Xa itself.

2.1.5. Let p 2 R. Since DðXijÞ ¼
Pn

‘¼1 Yi‘X‘j; the total degree of p with
respect to the Xij does not change after differentiation. Therefore, if Dð pÞ ¼
qp then q 2 FfYijg.
Proposition 2.1.6. Let p 2 R. Write it as p ¼Pa paðYÞXa, with paðYÞ 2
FfYijg. Then for any a with paðYÞ 6¼ 0, the coefficient of Xa in Dð pÞ is

p0aðYÞ þ paðYÞ
Xn
i¼1

Xn
j¼1

aijYii þ
Xn
i¼1

Xn
j¼1
ðaij þ 1Þ

X
‘ 6¼i
paij;‘ðYÞYi‘;

where aij;‘ is the exponent vector of the power product

Xaij;‘ ¼
Xa11
11 � � �Xijaijþ1 � � �Xa‘j�1

‘j � � �Xann
nn if i < ‘

Xa11
11 � � �Xa‘j�1

‘j � � �Xaijþ1
ij � � �Xann

nn if ‘ > i

8<
:

as in Remark A.4.

Proof. This is a direct consequence of Remarks A.3 and A.4. u

Proposition 2.1.7. Let p 2 R and suppose that Dð pÞ ¼ qp, for some
q 2 FfYijg. Then p 2 F½Xij�.
Proof. Let p ¼Pa paðYÞXa: Then

Dð pÞ ¼
X
a

p0aðYÞXa þ paðYÞDðXaÞ ¼ qp ¼
X
a

qðYÞpaðYÞXa:

By Proposition A.6, for each a with paðYÞ 6¼ 0 the corresponding
coefficient of Xa in Dð pÞ is

Dð pÞa ¼ p0aðYÞ þ paðYÞ
Xn
i¼1

Xn
j¼1

aijYii

þ
Xn
i¼1

Xn
j¼1
ðaij þ 1Þ

X
‘ 6¼i
paij;‘ðYÞYi‘:
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Since Dð pÞ ¼ qp, it must be Dð pÞa ¼ qðYÞpaðYÞ or, equivalently,

qðYÞpaðYÞ ¼ p0aðYÞ þ paðYÞ
Xn
i¼1

Xn
j¼1

aijYii

þ
Xn
i¼1

Xn
j¼1
ðaij þ 1Þ

X
‘ 6¼i
paij;‘ðYÞYi‘:

This means that for each a, the coefficient paðYÞ of Xa in p divides the
expression

p0aðYÞ þ
Xn
i¼1

Xn
j¼1
ðaij þ 1Þ

X
‘ 6¼i
paij;‘ðYÞYi‘:

Thus, for each a, there is uaðYÞ such that

paðYÞuaðYÞ ¼ p0aðYÞ þ
Xn
i¼1

Xn
j¼1
ðaij þ 1Þ

X
‘ 6¼i
paij;‘ðYÞYi‘:

As in the proof of Proposition A.2, order the triples fij; kg, i; j; k 2 N,
with the lexicographical order. Let fmn; tg be the largest subindex such that
Ymn;t occurs in p. We have DðYmn;tÞ ¼ Ymn;tþ1 and fmn; tþ 1g > fmn; tg.

Now, for each a such that Ymn;t occurs in paðYÞ we have that Ymn;tþ1
will occur in p0aðYÞ but not in paðYÞ or in

Xn
i¼1

Xn
j¼1
ðaij þ 1Þ

X
‘ 6¼i
paij;‘ðYÞYi‘

by the choice of fmn; tg. Therefore, it must occur in paðYÞuaðYÞ. Let

paðYÞ ¼
X

abY
b11
11 Y

b12
12 � � �Y

bmn;t
mn;t

then

p0aðYÞ ¼
X

a0bY
b11
11 � � �Y

bmn;t
mn;t þ

X
abb11Y

b11�1
11 Y

b11;1þ1
11;1 � � �Ybmn;t

mn;t þ . . .

þ
X

abbmn;tY
b11
11 � � �Y

bmn;t�1
mn;t Ymn;tþ1:
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So Ymn;tþ1 occurs in p0aðYÞ only in

X
abbmn;tY

b11
11 � � �Y

bmn;t�1
mn;t Ymn;tþ1

¼
X

abbmn;tY
b11
11 � � �Y

bmn;t�1
mn;t

� �
Ymn;tþ1 ¼ vðYÞYmn;tþ1:

Since Ymn;tþ1 occurs in paðYÞuaðYÞ and not in paðYÞ it must occur in
uaðYÞ. Let ua;tþ1ðYÞ be the coefficient of Ymn;tþ1 in uaðYÞ. Then it has to be

paðYÞua;tþ1ðYÞYmn;tþ1 ¼ vðYÞYmn;tþ1:

The above equation implies that paðYÞ divides vðYÞ. But this is
impossible since the total degree of vðYÞ is strictly less than the total degree
of paðYÞ. This contradiction yields the result. u

Lemma 2.1.8. Let p 2 F½Xij� and suppose that there is q 2 FfYijg such that
Dð pÞ ¼ qp: Then q is a linear polynomial in the Yij. If b ¼ ðbijÞ is such that Xb

occurs in p, then for 1 � i � n the coefficient of Yii in q is
Pn

j¼1 bij. In parti-
cular, the sums

Pn
j¼1 bij, for 1 � i � n, are independent of the choice of Xb.

Proof. We have p ¼P abX
b; with ab 2 F:

Thus,

Dð pÞ ¼
X

a0bX
b þ abDðXbÞ ¼ qp ¼

X
qðYÞabXb:

By Proposition A.6, the coefficient of Xb in Dð pÞ is

a0b þ ab
Xn
i¼1

Xn
j¼1

bijYii þ
Xn
i¼1

Xn
j¼1
ðbij þ 1Þ

X
‘ 6¼i
abij;‘Yi‘:

Hence, it must be

qðYÞab ¼ a0b þ ab
�Xn
i¼1

Xn
j¼1

bijYii þ
Xn
i¼1

Xn
j¼1
ðbij þ 1Þ

X
‘ 6¼i
abij;‘Yi‘

�
:

From this,

qðYÞ ¼ a
0
b

ab
þ
Xn
i¼1

Xn
j¼1

bijYii þ
Xn
i¼1

Xn
j¼1
ðbij þ 1Þ

X
‘ 6¼i

abij;‘
ab
Yi‘:
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The coefficient of Yii in the above expression is
Pn

j¼1 bij, for 1 � i � n.
Since this expression for q is valid for any index b, the ‘‘in particular’’ part
follows immediately. u

Corollary 2.1.9. Let p be as in Lemma A:8: Let Xa be the leading power
product of p. Let Xb be any power product with non-zero coefficient in p.
Then

Pn
j¼1 bij ¼

Pn
j¼1 aij, for 1 � i � n. Thus p is homogeneous of degreePn

j¼1
Pn

i¼1 aij:

Proof. This is an immediate consequence of the ‘‘in particular’’ part in
Lemma A.8. u

Corollary 2.1.10. Let p 2 F½Xij� and suppose that Dð pÞ ¼ qp, for some
q 2 FfYijg. Let Xa be the leading power product of p, and let ‘ 2 F be its
coefficient. Then

q ¼ ‘0

‘
þ
Xn
i¼1

Xn
j¼1

aijYii:

Proof. By Proposition A.6 and since Dð pÞ ¼ qp, the coefficient of Xa in
Dð pÞ is

‘q ¼ ‘0 þ ‘
Xn
i¼1

Xn
j¼1

aijYii þ
Xn
i¼1

Xn
j¼1
ðaij þ 1Þ

X
‘ 6¼i
paij;‘Yi‘

 !
: ð1Þ

The paij;k are the coefficients of the power products Xaij;k in p, with
aij;k 6¼ a, such that DðXaij;kÞ contains an expression of the form YstX

a. By
Remark A.4, these power products are

Xars;t ¼ Xa11
11 � � �Xarsþ1

rs � � �Xats�1
ts � � �Xann

nn if r < t

Xa11
11 � � �Xats�1

ts � � �Xarsþ1
rs � � �Xann

nn if r > t;

(

all of which violate Corollary A.9 for i ¼ r and i ¼ t. Therefore it must be
paij;k ¼ 0, for all 1 � i; j � n; k 6¼ i. But now, substituting back in (1), we see
that

‘q ¼ ‘0 þ ‘
Xn
i¼1

Xn
j¼1

aijYii:

Hence,

q ¼ ‘0

‘
þ
Xn
i¼1

Xn
j¼1

aijYii: &
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Our next step in order to show that the Darboux polynomials p 2 R
have the desired form will be to show that such a p is not reduced with respect
to det½Xij�. For that we will show that the leading power product of p is a
power of the leading power product of det½Xij�. First, we have
Lemma 2.1.11. Let p 2 F½Xij� be such that Dð pÞ ¼ qp; q 2 FfYijg. Let Xa be
its leading power product. Then aij ¼ 0 for j 6¼ n� iþ 1 and ai;n�iþ1 > 0,
1 � i � n. That is, Xa ¼ Xa1n

1n X
a2;n�1
2;n�1 � � �Xan1

n1 .

Proof. To prove that aij ¼ 0 for j 6¼ n� iþ 1 we first show that aij ¼ 0 for
j > n� kþ 1; i � k; 2 � k � n. Indeed, for k ¼ 2 we have j > n� 1, so j ¼ n
and

DðXaÞ ¼ ann
Xn�1
k¼1

YnkX
a11
11 � � �Xaknþ1

kn � � �Xann�1
nn þ � � �

Since q has no Yij with i 6¼ j, each term in DðXaÞ containing such a Yij
must be cancelled. In particular we need to cancel the terms containing

YnjX
a11
11 � � �Xajnþ1

jn � � �Xann�1
nn

for 1 � j � n� 1 above. For that we can only use the derivatives of power
products of the form

Xanl; j ¼ Xa11
11 � � �Xaj‘�1

j‘ � � �Xajnþ1
jn � � �Xan1

n1 � � �Xan‘þ1
n‘ � � �Xann�1

nn ;

for ‘ < n. But these are all strictly greater than Xa (the leading power pro-
duct of p), and they may not occur in p. As a consequence, it has to be
ann ¼ 0. Now let k > 2 be such that ain ¼ 0 for i � k. Then

Xa ¼ Xa11
11 � � �Xak�1;n

k�1;n � � �Xak;n�1
k;n�1X

akþ1;1
kþ1;1 � � �Xakþ1;n�1

kþ1;n�1 � � �Xan;n�1
n;n�1

and

DðXaÞ ¼ ak�1;n
X
i<k�1

Yk�1;iXa11
11 � � �Xainþ1

in � � �Xak�1;n�1
k�1;n � � �Xan;n�1

n;n�1

 

þ
X
i>k�1

Yk�1;iXa11
11 � � �Xak�1;n�1

k�1;n � � �Xainþ1
in � � �Xan;n�1

n;n�1

!
þ � � �

Likewise, we need to cancel all the terms in DðXaÞ that contain Yk�1;i,
for i 6¼ k� 1. In particular, we need to cancel

Yk�1;iXa11
11 � � �Xainþ1

in � � �Xak�1;n�1
k�1;n � � �Xan;n�1

n;n�1;
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for i < k� 1. For that we can only use the power products of the form

Xak�1;‘;i ¼ Xa11
11 � � �Xai‘�1

i‘ � � �Xainþ1
in � � �Xak�1;‘þ1

k�1;‘ � � �Xak�1;n�1
k�1;n � � �Xan;n�1

n;n�1

for i < k� 1.
But all of them are strictly greater than Xa and cannot occur in p.

Thus, it has to be ak�1;n ¼ 0. Since this argument is valid for any k > 2, it
follows that akn ¼ 0, for 2 � k � n. This makes the statement that aij ¼ 0 for
j > n� kþ 1, i � k, true for k ¼ 2.

Now assume that k is such that aij ¼ 0 for j > n� kþ 1; i � k. So

Xa ¼ Xa11
11 � � �Xa1n

1n � � �Xak;n�kþ1
k;n�kþ1X

akþ1;1
kþ1;1 � � �Xakþ1;n�kþ1

kþ1;n�kþ1 � � �Xan;n�kþ1
n;n�kþ1

and for i > k

ai;n�kþ1YijXa11
11 � � �Xa1n

1n � � �Xak;n�kþ1þ1
k;n�kþ1 � � �Xai;n�kþ1�1

i;n�kþ1 � � �Xan;n�kþ1
n;n�kþ1

occurs in DðXaÞ. Thus we need to cancel it. For that we can only use the
derivatives of power products of the form

Xaij;k ¼ Xa11
11 � � �Xakj�1

kj � � �Xak;n�kþ1þ1
k;n�kþ1 � � �Xaijþ1

ij � � �Xai;n�kþ1�1
i;n�kþ1 � � �Xan;n�kþ1

n;n�kþ1

with j < n� kþ 1 since akj ¼ 0 for all j > n� kþ 1 by hypothesis. But all
such power products are strictly greater than Xa and therefore they cannot
occur in p. This forces ai;n�kþ1 ¼ 0 for i > k. We can repeat this process until
k ¼ n and get aij ¼ 0 for all j > n� kþ 1, i � k, 2 � k � n, that is,

Xa ¼ Xa11
11 � � �Xa1n

1n X
a21
21 � � �Xa2;n�1

2;n�1X
a31
31 � � �Xan�1;2

n�1;2X
an1
n1 :

Now we show that aij ¼ 0 for j < n� kþ 1, 1 � k � n� 1, i � k. The
process is analogous to what we just did. First we show that ai1 ¼ 0 for
i < n. Indeed, for each i we have for ‘ > i that

ai1Yi‘X
a11
11 � � �Xai1�1

i1 � � �Xa‘1þ1
‘1 � � �Xan1

n1

occurs in DðXaÞ. So, in order to cancel it, we need to use the derivatives of
power products of the form

Xaij;‘ ¼ Xa11
11 � � �Xai1�1

i1 � � �Xaijþ1
ij � � �Xa‘1þ1

‘1 � � �Xa‘j�1
‘j � � �Xan1

n1
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with j > 1, all of which are strictly greater than Xa if ‘ < n, and for ‘ ¼ n we
cannot simply have one of those since anj ¼ 0 for j 6¼ 1. Thus such power
products cannot occur in p and it has to be ai1 ¼ 0 for i < n.

Let k � n� 1 be such that aij ¼ 0 for j < n� kþ 1, i � k. We have

Xa ¼ Xa1;n�kþ1
1;n�kþ1 � � �Xa1n

1n � � �Xak;n�kþ1
k;n�kþ1 � � �Xan1

n1

and for all i < k, ‘ > i, we have that

ai;n�kþ1Yi‘X
a1;n�kþ1
1;n�kþ1 � � �Xai;n�kþ1�1

i;n�kþ1 � � �Xa‘;n�kþ1þ1
‘;n�kþ1 � � �Xan1

n1

occurs in DðXaÞ and in order to cancel it we only have the derivatives of
power products of the form

Xaij;‘ ¼ Xa1;n�kþ1
1;n�kþ1 � � �Xai;n�kþ1�1

i;n�kþ1 � � �Xijaijþ1 � � �Xa‘;n�kþ1þ1
‘;n�kþ1 � � �Xa‘j�1

‘j � � �Xan1
n1

with j > n� kþ 1 since aij ¼ 0 for i � k, j < n� kþ 1.
For ‘ < k, all these power products are strictly greater than Xa and

therefore they cannot occur in p. For ‘ � k we cannot simply have such
power products since for ‘ � k, a‘j ¼ 0 if j > n� kþ 1. Thus it has to be
ai;n�kþ1 ¼ 0 for i � k� 1.

We can repeat this process until k ¼ n� 1 and get aij ¼ 0,
j < n� kþ 1, i � k, 1 � k � n� 1. This completes the proof of the first part
of the lemma.

To prove that ai;n�iþ1 6¼ 0, for all 1 � i � n, suppose that there is i such
that ai;n�iþ1 ¼ 0 and let j 6¼ i be such that aj;n�jþ1 6¼ 0. Then DðXaÞ will
contain

aj;n�jþ1YjiXa1n
1n � � �Xaj;n�jþ1�1

j;n�jþ1 � � �Xi;n�jþ1 � � �Xan1
n1 þ � � � if i > j

or

aj;n�jþ1YjiXa1n
1n � � �Xi;n�jþ1 � � �Xaj;n�jþ1�1

j;n�jþ1 � � �Xan1
n1 þ � � � if i < j:

As noted above, since q does not contain any Yij with i 6¼ j, we need to
cancel the terms in Dð pÞ involving either of the above. But that is impossible
since aij ¼ 0 for all j and by Corollary A.9 all the power products

X
b11
11 � � �X

bij
ij � � �Xbnn

nn
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in p must have bij ¼ 0 for j ¼ 1; . . . ; n. In particular, we cannot have in p
power products of the form Xaj;n�jþ1;i as in Remark A.4. u

Next we show that the exponents ast of the Xst in Xa, the leading power
product of p, are all equal:

Lemma 2.1.12. Let p 2 F½Xij� be such that Dð pÞ ¼ qp, q 2 FfYijg. Let

Xa ¼ Xa1n
1n X

a2;n�1
2;n�1 � � �Xan1

n1

be its leading power product. Then ai;n�iþ1 ¼ a1n, for i > 1, that is, if a ¼ a1n,
then

Xa ¼ ðX1nX2;n�1 � � �Xn1Þa:

Proof. Let ‘ be the coefficient of Xa in p. We have

Dð‘Xa1n
1n X

a2;n�1
2;n�1 � � �Xan1

n1 Þ

¼
Xn
i¼1

ai;n�iþ1‘Yii

 !
Xa1n
1n X

a2;n�1
2;n�1 � � �Xan1

n1

þ a1n‘
X
k6¼1

Y1kX
a1n�1
1n � � �Xak;n�kþ1

k;n�kþ1 � � �Xkn � � �Xan1
n1

þ ‘
X
1<i

ai;n�iþ1
X
k>i

YijX
a1n
1n � � �Xai;n�iþ1�1

i;n�iþ1 � � �

� � �Xak;n�kþ1
k;n�kþ1 � � �Xk;n�iþ1 � � �Xan1

n1

þ ‘
X
1<i

ai;n�iþ1
X
k>i

YijX
a1n
1n � � �Xk;n�iþ1 � � �Xak;n�kþ1

k;n�kþ1 � � �

� � �Xai;n�iþ1�1
i;n�iþ1 � � �Xan1

n1 þ ‘0Xa1n
1n X

a2;n�1
2;n�1 � � �Xan1

n1 :

In order to cancel

a1n‘Y1kX
a1n�1
1n � � �Xak;n�kþ1

k;n�kþ1 � � �Xkn � � �Xan1
n1 ; k 6¼ 1;

above, we can only use the derivatives of the power product

Xa1;n�kþ1;k ¼ X1;n�kþ1 � � �Xa1n�1
1n � � �Xak;n�kþ1�1

k;n�kþ1 � � �Xkn � � �Xan1
n1 ;

since for j 6¼ n� kþ 1 we have akj ¼ 0.
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Let aa1;n�kþ1;k be the coefficient of X
a1;n�kþ1;k in p. Then

aa1;n�kþ1;k ¼ �‘a1n ð2Þ

On the other hand, in order to cancel

ak;n�kþ1‘Yk1X1;n�kþ1 � � �Xa1n
1n � � �Xak;n�kþ1�1

k;n�kþ1 � � �Xan1
n1 ; k 6¼ 1

above, the only power product that we can use is, again,

Xakn;1 ¼ X1;n�kþ1 � � �Xa1n�1
1n � � �Xak;n�kþ1�1

k;n�kþ1 � � �Xkn � � �Xan1
n1

¼ Xa1;n�kþ1;k ;

since a1j ¼ 0 for j 6¼ n. Thus it must be

aa1;n�kþ1;k ¼ �‘ak;n�kþ1 ð3Þ

as well.
From (2) and (3) it follows that, for k 6¼ 1, a1n ¼ ak;n�kþ1. u

As a consequence of the above results we obtain the following
expression for q:

Corollary 2.1.13. Let p 2 F½Xij� and suppose that Dð pÞ ¼ qp, q 2 FfYijg. Let
Xa be the leading power product of p. Let a 2 N be such that

Xa ¼ ðX1nX2;n�1 � � �Xn1Þa

and let ‘ 2 F be the coefficient of Xa in p. Then

q ¼ ‘0

‘
þ a

Xn
i¼1
Yii:

Proof. This is a consequence of Corollary A.10 and Lemma A.12. u

Corollary 2.1.14. Let p be as in Corollary A:13. Then p is homogeneous of
degree na.

Proof. This is a consequence of Corollary A.8 and Lemma A.12. u

Lemma A.12 implies that p is not reduced with respect to det½Xij�.
Since this is a key point in the proof of our main result we restate it as the
following
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Theorem 2.1.15. Let p 2 F½Xij� be such that Dð pÞ ¼ qp, q 2 FfYijg. Let Xa be
its leading power product. Then

Xa ¼ ðX1nX2;n�1 � � �Xn1Þa ¼ lpðdet½Xij�Þa:
Thus p is not reduced with respect to det½Xij�.

Note. If f is a polynomial, lpð f Þ denotes its leading power product with
respect to a given order.

Proof. This is just a restatement of Lemma A.12. u

Remark 2.1.16. Let p1; p2 2 F½Xij� be two polynomials such that lpðp1Þ ¼
Xa ¼ lpðp2Þ. Then we can write p1 ¼ f p2 þ r where f 2 F and r is reduced
with respect to p2. Indeed, since lpðp1Þ ¼ lpðp2Þ, we have that lpðp2Þ divides
lpðp1Þ. So p1 is not reduced with respect to p2. We may apply the Multi-
variable Division Algorithm (see[1]) to p1 and p2, to get f; r 2 F½Xij�, such that
p1 ¼ f p2 þ r, with r reduced with respect to p2 and lpðp1Þ ¼ lpð f Þlpðp2Þ. The
last equation implies that lpðfÞ ¼ 1. Hence, f 2 F.

We are now ready to prove our main result on the form of the
Darboux polynomials in R:

Theorem 2.1.17. Let p 2 F½Xij� and q 2 FfYijg be polynomials in R that satisfy
the Darboux condition Dð pÞ ¼ qp. Then there is a 2 N and ‘ 2 F such that

p ¼ ‘det½Xij�a

and

q ¼ ‘0

‘
þ a

Xn
i¼1
Yii:

Proof. Let q1 ¼
Pn

i¼1 aYii; so that,

Dðdet½Xij�aÞ ¼ q1det½Xij�a ¼ q� ‘0

‘

� �
det½Xij�a:

By Remark A.16 we can write p ¼ ‘ det½Xij�a þ r, with r reduced with
respect to det½Xij�a. Now,

Dð pÞ ¼ Dð‘ det½Xij�aÞ þDðrÞ
¼ ‘0 det½Xij�a þ ‘

�
q� ‘0

‘

�
det½Xij�a þDðrÞ

¼ ‘0 det½Xij�a þ q‘det½Xij�a � ‘0det½Xij�a þDðrÞ
¼ q‘ det½Xij�a þDðrÞ:
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On the other hand, we have

Dð pÞ ¼ qp ¼ q‘det½Xij�a þ qr:

Therefore, it has to be DðrÞ ¼ qr. But r is reduced with respect to
det½Xij�a. It follows, by Theorem A.15, that r ¼ 0. The statement about the
form of q is just the content of Corollary A.13. u

2.2. Principal Differential Ideals in FfYijg½Xij�

As mentioned in the introduction, if we pass to the quotient field FhYiji
of FfYijg and localize FhYiji½Xij� at det½Xij�, we get the coordinate ring of
GLn over FhYiji. The derivation D on FhYiji½Xij� defined above can then be
seen as a ‘‘general’’ element of LieðGLnÞ. In particular, D is a linear com-
bination of the basis of LieðGLnÞ consisting of the derivations DEðijÞ given by
multiplication by the matrix EðijÞ, with 1 in position (i,j) and zero elsewhere
and the coefficient of DEðijÞ in D is Yij.

We will show next that the result in Theorem A.17 is true for any other
such element of LieðGLnÞ. That is, the result does not depend on the par-
ticular basis of LieðGLnÞ used.
Theorem 2.2.1. Let Dst, 1 � s; t � n, be any basis of LieðGLnÞ. Define a
derivation in the ring R ¼ FfYijg½Xij� by D ¼

P
YstDst. Let p and q be

polynomials in R that satisfy the Darboux condition Dð pÞ ¼ qp. Then there is
a 2 N and ‘ 2 F such that p ¼ ‘ det½Xij�a and q ¼ ‘0

‘ þ a
Pn

i¼1Yii.

Proof. Since fDEðijÞj 1 � i; j � ng is a basis of LieðGLnðCÞÞ we have

Dst ¼
X

cst;ijDEðijÞ;

with cst;ij 2 C. Thus,

D ¼
X
s;t

YstDst

¼
X
s;t

Yst
X
i;j

cst;ijDEðijÞ

¼
X
i;j

X
s;t

cst;ijYstDEðijÞ

¼
X
i; j

Zi jDEðijÞ;
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where Zi j ¼
P

s;t cst;ijYst. Now, ½cst;ij� is a matrix of change of basis so it is
invertible. Also the cst;ij are contants for D, thus the map Zij;k ! Yij;k is a
differential bijection. In other words, the differential rings

R ¼ FfYijg½Xij�;D

and

R0 ¼ FfZijg½Xij�;D

are isomorphic and therefore we can apply Theorem A.17 to R0: u

Theorem 2.2.2. Let R ¼ FfYijg½Xij� be a differential ring with derivation
obtained by restriction of a general element of LieðGLnÞ in the sense described
above. Then the principal differential ideals in R are those of the form I ¼
ðdeta½Xij�Þ for a 2 N.

Proof. This is a consequence of Theorems A.17, B.1 and of the obser-
vation that Darboux polynomials correspond to principal differential ideals
in R. u

III. GENERIC PICARD-VESSIOT EXTENSION FOR GLn

3.1. Preliminaries on Differential Galois Theory

As before, F is a differential field with algebraically closed field of
constants C. If E � F is a differential field extension then the group of
differential automorphisms of E over F is denoted by GðE=F Þ.

If G is a linear algebraic group over C and K is an overfield of C we
denote by GK the group obtained from G by extending scalars from C to K.

We will show that FhYijiðXijÞ is a generic Picard-Vessiot extension of F
for the group GLnðCÞ. Notice that FhYijiðXijÞ is the function field of GK with
G ¼ GLnðCÞ and K ¼ FhYiji. The following two results ([19] Theorem 5.12
and Corollary 5.29) will be used:

Theorem 3.1.1 (Kolchin Structure Theorem). Let E � F be a Picard-Vessiot
extension, letG � GðE=F Þ be aZariski closed subgroup and let T be the set of all
f in E that satisfy a linear homogeneous differential equation over K ¼ EG. Then
T is a finitely generated G-stable differential K-algebra with quotient field E, and
if �K denotes the algebraic closure of K, then there is a G-algebra isomorphism

�K	K T! �K	C C½G�:
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Note that C½G� denotes the affine coordinate ring of G and that the target of
the above isomorphism is the affine coordinate ring of the group G �K obtained
from G by extension of scalars from C to �K.

Theorem 3.1.2. Let E � F be a Picard-Vessiot extension, let G � GðE=FÞ be
a Zariski closed subgroup with EG ¼ F. Let �F be an algebraic closure of F, and
suppose the Galois cohomology H1ð �F=F;Gð �FÞÞ is a singleton. Let TðE=FÞ be
the set of all f in E that satisfy a linear homogeneous differential equation over
F. Then there are F- and G-isomorphisms TðE=FÞ ! F½GF� and E! FðGFÞ.
In particular, this holds if G is unipotent or solvable, or if G ¼ GLnðCÞ or if
G ¼ SLn.

The following characterization of Picard-Vessiot extension (see[19],
Proposition 3.9) will be employed:

Theorem 3.1.3. Let E � F be a differential field extension. Then E is a Picard-
Vessiot extension if and only if:

1: E ¼ FhV i, where V � E is a finite-dimensional vector space over
C;

2: There is a group G of differential automorphisms of E with GðVÞ �
V and EG ¼ F;

3: E � F has no new constants.
In particular, if the above conditions hold and if fy1; . . . ; yng is a C-basis of V,
then E is a Picard-Vessiot extension of F for the linear homogeneous Differ-
ential operator

LðYÞ ¼ wðY; y1; . . . ; ynÞ
wðy1; . . . ; ynÞ

where wð�Þ denotes the wronskian determinant and L�1ð0Þ ¼ V.
For the base field FhYiji and group G ¼ GLnðCÞ we first show that

FhYijiðXijÞ � FhYiji is a Picard-Vessiot extension with differential Galois
group GLnðCÞ. To that end, we only need to show that FhYijiðXijÞ � FhYiji
is a no-new-constant extension. Conditions 1. and 2. in Theorem A.3 are
then easily verified with V the C-span of the Xij and G ¼ GLnðCÞ.

3.2. Darboux Polynomials and Constants

We will show that the field of constants C of FhYijiðXijÞ coincides with
the field of constants C of F. We first show (Corollary B.2) that this can be
reduced to proving that the only Darboux polynomials in R are, up to a
scalar multiple in F, powers of det½Xij�.
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The following basic proposition (proven in[34] for A as in
Definition A.1) characterizes new constants for the extension FhYijiðXijÞ � F
in terms of Darboux polynomials:

Proposition 3.2.1. Let p1; p2 2 R ¼ FfYijg½Xij�, p1; p2 6¼ 0, be relatively prime.
Then Dðp1p2Þ ¼ 0, if and only if p1 and p2 are Darboux polynomials. Moreover,
if q1; q2 2 R are such that Dðp1Þ ¼ q1p1 and Dðp2Þ ¼ q2p2, then q1 ¼ q2.
Proof. For the necessity of the condition we have

D
p1
p2

� �
¼ Dðp1Þp2 � p1Dðp2Þ

p22
¼ 0;

thus Dðp1Þp2 � p1Dðp2Þ ¼ 0, that is

Dðp1Þp2 ¼ p1Dðp2Þ: ð1Þ

Since p1 and p2 are relatively prime, the last equation implies that p1 divides
Dðp1Þ and p2 divides Dðp2Þ.

Now, let q1; q2 2 R be such that Dðp1Þ ¼ q1p1 and Dðp2Þ ¼ q2p2,
respectively. Then it follows from (1) that

q1p1p2 ¼ q2p1p2:

Hence, q1 ¼ q2.
The proof of the converse is obvious. u

Corollary 3.2.2. Let f 2 FhYijiðXijÞ be such that Dð f Þ ¼ 0 and assume that
f =2 F then there are relatively prime Darboux polynomials p1; p2 2 R which
satisfy the Darboux condition with respect to the same q 2 R ði.e.,
DðpiÞ ¼ qpi, i ¼ 1; 2Þ and such that f ¼ p1

p2
. Therefore, if such relatively prime

Darboux polynomials in R do not exist, the constants of FhYijiðXijÞ coincide
with the constants of F.

Proof. FhYijiðXijÞ is the fraction field of R. u

3.3. The Generic Extension

Theorem 3.3.1. FhYijiðXijÞ � FhYiji is a generic Picard-Vessiot extension with
differential Galois group GLnðCÞ.
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Proof. First we need to show that FhYijiðXijÞ � FhYiji is a Picard-Vessiot
extension with differential Galois group GLnðCÞ. We will use the char-
acterization of Theorem A.3. We have

1. FhYijiðXijÞ ¼ FhYijihVi, where V � FhYijiðXijÞ is the finite
dimensional vector space over C spanned by the Xij.

2. The group G ¼ GLnðCÞ acts as a group of differential auto-
morphisms of FhYijiðXijÞ with GðVÞ 
 V and FhYijiðXijÞG ¼
FhYiji. This follows from the fact that FhYijiðXijÞ is the function
field of GLnðCÞFhYiji.

3. FhYijiðXijÞ � FhYiji has no new constants. This is a consequence
of Proposition B.1, Corollary B.2 and Theorem A.17.

Now, suppose that E � F is a Picard-Vessiot extension of F with
differential Galois group GLnðCÞ. By Theorems A.1 and A.2, we have that
in this situation E is isomorphic to FðXijÞ (the function field of GLnðCÞF) as
a GLnðCÞ-module and as an F-module. Any GLnðCÞ equivariant derivation
DE on FðXijÞ extends the derivation on F in such a way that

DEðXijÞ ¼
Xn
‘¼1

fi‘X‘j

with fij 2 F. Since E � F is a Picard-Vessiot extension for GLnðCÞ, then so is
ChfijiðXijÞ � Ch fiji, the derivation on ChfijiðXijÞ being the corresponding
restriction of DE. From this Picard-Vessiot extension one can retrieve
FðXijÞ � F by extension of scalars from C to F. In this way, any Picard-
Vessiot extension E � F with differential Galois group GLnðCÞ can be
obtained from FhYijiðXijÞ � FhYiji via the specialization Yij 7! fij. This
means that FhYijiðXijÞ � FhYiji is a generic Picard-Vessiot extension of F for
GLnðCÞ. u

3.4. Specializing to a Picard-Vessiot Extension of F

In this section we give necessary and sufficient conditions for a spe-
cialization Yij 7! fij, fij 2 F, with Ch fijiðXijÞ � Ch fiji a Picard-Vessiot exten-
sion, to exist. We restrict ourselves to the case when F has finite
transcendence degree over C.

Our goal is to find fij 2 F such that the specialization (homomorphism)
from CfYijg to F given by Yij 7! fij is such that ChfijiðXijÞ � Ch fiji, with
derivation given by DðXijÞ ¼

Pn
‘¼1 fi‘X‘j, has no new constants. We have:

Theorem 3.4.1. Let F ¼ CðtiÞ½zj� where the ti, i ¼ 1; . . . ;m, are algebraically
independent over C and the zj, j ¼ 1; . . . ; k, are algebraic over CðtiÞ. Assume
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that the derivation on F has field of constants C and that it extends to FðXijÞ so
that Dð f	 XijÞ ¼ Dð f Þ 	 Xij þ f	

Pn
‘¼1 fi‘X‘j on F	 C½Xij�. Let C be the

field of constants of FðXijÞ. Then C ¼ C if and only if the set of all the ti and all
the Xij are algebraically independent over C.
Proof. (Sufficiency) Suppose that C properly contains C. Let r be the
transcendence degree of C over C. Since C is algebraically closed, r has to be
at least one.

We have the tower of fields

C � C � CðXijÞ � FðXijÞ

where the transcendence degree of C � CðXijÞ is n2 and the transcendence
degree of C � FðXijÞ is n2 þm. Since r � 1 the transcendence degree ‘ of
CðXijÞ � FðXijÞ has to be ‘ < m and therefore there is an algebraic relation
among the ti over CðXijÞ. Let gðXijÞ; fiðXijÞ 2 C½Xij�, gðXijÞ 6� 0, be such that

tds þ fs�1ðXijÞ
gðXijÞ t

ds�1 þ � � � þ f0ðXijÞ
gðXijÞ ¼ 0:

Then

gðXijÞtds þ fs�1ðXijÞtds�1 þ � � � þ f0ðXijÞ ¼ 0:

Since the fiðXijÞ and gðXijÞ are polynomials in the Xij with coefficients in
C, the last equation gives an algebraic relation among the ti and theXij over C.

For the necessity we only need to point out that by construction the set
of all the ti and all the Xij are algebraically independent over C. u

Now to check whether the set of all the ti and all the Xij are algeb-
raically independent over C, we let Tk, k � 1, denote the set of monomials in
both the ti and the Xij of total degree less than or equal to k. Then the set of
all the ti and all the Xij are algebraically independent over C if and only if,
for each k, the set Tk is linearly independent over C.

Fix a term order on the set T of all monomials in both the ti and the
Xij and let Wk denote the Wronskian of the set Tk relative to that order.
Then the above condition is equivalent to the fact that Wk 6¼ 0 for k � 1.
Now go back to CfYijg½Xij� and extend scalars from C to F. Let WkðYijÞ be
the Wronskian of Tk in F	 CfYijg½Xij�.

Then, the condition of Theorem D.1. for finding a specialization
Yij 7! fij so that ChfijiðXijÞ � Chfiji has no new constants can be expressed as
follows:
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Theorem 3.4.2. There is a specialization of the Yij with no new constants if and
only if there are fij 2 F such that all the wronskians WkðYijÞ, k � 1, map to
non-zero elements under Yij 7! fij.

3.5. Specialization Results for Connected Linear Algebraic Groups

The proofs of the specialization theorems in D do not make any special use
of the fact that the group under consideration is GLnðCÞ and can be applied
to arbitray connected linear algebraic groups as follows:

As in the previous section, F ¼ Cðt1; . . . ; tmÞ½z1; . . . ; zk� where the ti are
algebraically independent over C and the zi are algebraic over Cðt1; . . . ; tmÞ.
We let Y1; . . . ;Yn denote differential indeterminates over F and X1; . . . ;Xn
algebraically independent elements over FhYii.

In this section G is assumed to be a connected linear algebraic group
with function field CðGÞ ¼ CðXiÞ.

If fD1; . . . ;Dng is a basis for LieðGÞ, DY ¼
Pn

i¼1Yi Di is a G-
equivariant derivation on FhYiiðXiÞ. Let D ¼Pn

i¼1 fi Di, fi 2 F, be a
specialization of DY to a G-equivariant derivation on FðXiÞ with field of
constants C. We have,

Theorem 3.5.1. The field of constant C of FðXiÞ coincides with C if and only if
the set of all the ti and the Xi are algebraically independent over C.

Now, fix an order in the set T of monomials in both the ti and the Xi
and let WkðYiÞ be the wronskian (with respect to this order) of the mono-
mials in both the ti and the Xi of degree less than or equal to k computed in
F	 CfYig½Xi�. Then,
Theorem 3.5.2. There is a specialization of the Yi with no new constants if and
only if there are fi 2 F such that all the wronskians WkðYiÞ, k � 1, map to
non-zero elements under Yi 7! fi.

For the proofs of Theorems E.1 and E.2 we only need to replace the
Xij with Xi, the Yij with Yi and n

2 with n in the proofs of Theorems D.1 and
D.2.

Observe that the proofs of Theorems E.1 and E.2 do not use the fact
that CðXiÞ is the function field of G. However, this hypothesis is used in the
following theorem to show that FðXiÞ � F is a Picard-Vessiot extension with
group G.

Under the hypothesis and notation of Theorems E.1 and E.2 we have:

Theorem 3.5.3. FðXiÞ � F is a Picard-Vessiot extension with Galois group G
if and only if the set of all the ti and all the Xi is algebraically independent over
the field of constants C of FðXiÞ.
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Proof. First assume that FðXiÞ � F is a Picard-Vessiot extension. Then the
field of constants C of FðXiÞ coincides with C. So we can apply Theorem E.1
and get the result.

Conversely, if the set of all the ti and all the Xi are algebraically
independent over C, by Theorem E.1., FðXiÞ � F is a no-new-constant
extension. On the other hand, FðXiÞ is obtained from CðXiÞ by the extension
of scalars:

FðXiÞ ¼ q:f:ðF	C CðXiÞÞ
¼ q:f:ðF	C C½G�Þ

where C½G� is the coordinate ring of G and G acts on F	C C½G� fixing F. So,
G 
 GðFðXiÞ=FÞ. Counting dimensions we get that G ¼ GðFðXiÞ=FÞ since
CðXiÞ ¼ CðGÞ, the function field of G. Finally, FðXiÞ ¼ FhVi, where V is the
finite-dimensional vector space over C spanned by the Xi. By Theorem A.3,
FðXiÞ � F is a Picard-Vessiot extension. u

Applying Theorems E.2 and E.3 we also obtain:

Theorem 3.5.4. There is a specialization of the Yi such that FðXiÞ � F is a
Picard-Vessiot extension if and only if there are fi 2 F such that all the
WkðYiÞ, k � 1, map to non-zero elements via Yi 7! fi.

3.6. An Example

The previous Theorem D.1 says that if there is an algebraic relation among
the set of all the ti and all the Xij over the field of constants C of FðXijÞ then C
properly contains C.

In this section we give an example in which a new constant is produced
from such an algebraic relation. We assume F ¼ C. So, in particular, the
coefficients fij in the derivation of F are constant. In this situation, since the
transcendence degree of F over C is zero, if C�

=¼C, the condition of Theorem
D.1 means that the Xij are algebraically dependent over C.

We restrict ourselves to the case n ¼ 2 and consider the following
particular dependence relation.

Let

DðXijÞ ¼
X2
‘¼1

fi‘X‘j;

where the fij are such that the wronskian

W1 ¼ wðX11;X12;X21;X22Þ ¼ 0:
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That is, the Xij are linearly dependent over C. Furthermore, assume
that the linear relation among the Xij is such that there are b12; b21; b22 2 C
with

X11 ¼ b12X12 þ b21X21 þ b22X22 ð1Þ

and that X12;X21 and X22 are linearly independent. In order to simplify the
computations we will also assume that det½fij� ¼ 0.

We want to find a; b; c 2 F such that p ¼ aX12 þ bX21 þ cX22 is a
Darboux polynomial in F½Xij�, that is DðaX12 þ bX21 þ cX22Þ ¼ qðaX12 þ
bX21 þ cX22Þ for certain q 2 F. We have,

DðaX12 þ bX21 þ cX22Þ ¼ aðf11X12 þ f12X22Þ
þ bðf21X11 þ f22X21Þ þ cðf21X12 þ f22X22Þ

¼ bf21X11 þ ðaf11 þ cf21ÞX12 þ bf22X21 þ ðaf12 þ cf22ÞX22

¼ bf21ðb12X12 þ b21X21 þ b22X22Þ
þ ðaf11 þ cf21ÞX12 þ bf22X21 þ ðaf12 þ cf22ÞX22

¼ ðaf11 þ bf21b12 þ cf21ÞX12 þ bðf22 þ f21b12ÞX21

þ ðaf12 þ bf21b22 þ cf22ÞX22

¼ qaX12 þ qbX21 þ qcX22:

Therefore,

½aðf11 � qÞ þ bf21b12 þ cf21�X12 þ bðf22 þ f21b12 � qÞX21

þ ðaf12 þ bf21b22 þ cðf22 � qÞX22 ¼ 0: ð2Þ

Since we are assuming that X12;X21 and X22 are linearly independent
their coefficients in (2) must be equal to zero. So we have the following
homogeneous linear system in a; b; c:

ðf11 � qÞ aþ f21b12 bþ f21 c ¼ 0

ðf22 þ f21b12 � qÞ b ¼ 0

f12 aþ f21b22 bþ ðf22 � qÞ c ¼ 0
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In order for the above system to have non-trivial solutions we need
that

det
f11 � q f21b12 f21

0 f22 þ f21b12 � q 0
f12 f21b22 f22 � q

2
4

3
5 ¼ 0:

But,

det

f11 � q f21b12 f21

0 f22 þ f21b12 � q 0

f12 f21b22 f22 � q

2
64

3
75

¼ ðf22 þ f21b12 � qÞ det
f11 � q f21

f12 f22 � q

" #

¼ ðf22 þ f21b12 � qÞðdet½ fij� �
X2
i¼1
fii

 !
qþ q2Þ

¼ 0:

This gives either

f22 þ f21b12 � q ¼ 0 ð3Þ

or

det½ fij� �
�X2
i¼1
fii

�
qþ q2 ¼ 0: ð4Þ

From (3)�(4) we get

q ¼ f22 þ f21b12 ð5Þ

or

q ¼
P2

i¼1 fii �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2

i¼1 fii
� �2

�4 det½fij�
r

2
ð6Þ
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Since we are assuming that det½fij� ¼ 0, (6) becomes:

q ¼
P2

i¼1 fii; or
0

�
ð7Þ

Choose q ¼P2
i¼1 fii and assume that q 6¼ 0, q 6¼ f22 þ f21b12. Then the

second equation in the system implies that b ¼ 0 and the system becomes:

�f22aþ f21 c ¼ 0

f12a� f11 c ¼ 0

If f22 6¼ 0 then the above system has the general solution

a ¼ f21
f22
c; where c 2 C:

In particular, if we take c ¼ 1 then p ¼ f21
f22
X12 þ X22 satisfies

D
f21
f22
X12 þ X22

� �
¼

X2
i¼1
fii

 !
f21
f22
X12 þ X22

� �
:

On the other hand we also have that

Dðdet½Xij�Þ ¼
X2
i¼1
fii

 !
det½Xij�:

Let

y ¼ p

det½Xij� ¼
f21
f22
X12 þ X22

det½Xij� :

We have,

DðyÞ ¼ D p

det½Xij�
� �

¼ Dð pÞdet½Xij� � pDðdet½Xij�Þ
det½Xij�2

¼
P2

i¼1 fii
� �

p det½Xij� � p
P2

i¼1 fii
� �

det½Xij�
det½Xij�2

¼ 0:

That is, y is a new constant in FðXijÞ.
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Now we show that under the restrictions that we imposed on the fij it is
possible to find a non-zero f22.

Since we have a linear dependence relation among the Xij, the
wronskian W1 must be equal to zero. This Wronskian can be expressed, up
to a sign, as the following product of determinants:

W1 ¼

1 0 0 1

f11 f12 f21 f22

A B E F

C D G H

���������

���������

X11 X12 0 0

X21 X22 0 0

0 0 X11 X12

0 0 X21 X22

���������

���������
¼MðfijÞdet½Xij�2;

where

A ¼ f 011 þ f 211 þ f12f21;
B ¼ f 012 þ f11f12 þ f12f22;
C ¼ f11Aþ f21Bþ A0

¼ 3f11f
0
11 þ 2f11f12f21 þ 2f 012f21 þ f 0011 þ f12f 021 þ f 311;

D ¼ f12Aþ f22Bþ B0

¼ 2f 011f12 þ f 211f12 þ f 212f21 þ f21f 222 þ 2f 012f22 þ f11f 012
þ f12f 022 þ f 0012 þ f11f12f22;

E ¼ f 021 þ f21f11 þ f22f21;
F ¼ f 022 þ f12f21 þ f 222;
G ¼ f11Eþ f21Fþ E 0

¼ 2f 021f11 þ f21f 211 þ f22f21f11 þ 2f 022f21 þ f12f 221
þ f 222f21 þ f 0021 þ f21f 011 þ f22f 021;

H ¼ f22Fþ f12Eþ F 0

¼ f21f11f12 þ 2f22f21f12 þ 3f22f
0
22 þ 2f12f

0
21 þ f012f21

þ f322 þ f0022
and

MðfijÞ ¼
1 0 0 1
f11 f12 f21 f22
A B E F
C D G H

��������

��������
:
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We have after simplifying using the hypothesis that det½fij� ¼ 0,

MðfijÞ ¼ ðf22 � f11Þðf 012f 0021 � f 021f 0012Þ þ ðf 022 � f 011Þðf 0012f21 � f12f 0021Þ
� f 012f 021ðf11 � f22Þ2 � f12f21ðf 011 � f 022Þ þ f12f 021ðf11f 011 þ f22f 022
� f 011f22 � f11f 022 þ f 0022 � f 0011 þ f12f 021 � f 012f21Þ þ f 012f21ðf11f 011
þ f22f 022 � f 011f22 � f11f 022 þ f 0011 � f 0022 þ f 012f21 � f12f 021Þ:

Getting the above expression for MðfijÞ took long and involved computa-
tions. We first computed the determinant directly and then we checked the
result using Dogson’s method.[6,28]

The wronskian W1 ¼ 0 if and only if MðfijÞ ¼ 0. Now, observe that if
f12 ¼ 0 then f 012 ¼ 0 which implies that B ¼ 0 and D ¼ 0 as well. Therefore
MðfijÞ ¼ 0. So, if we let MðYijÞ be the differential polynomial in the Yij
whose specialization to the fij isMðfijÞ thenMðYijÞ is in the differential ideal

I ¼ fdet½Yij�;Y12g
¼ fY11Y22 � Y12Y21; Y12g
¼ fY11Y22; Y12g

of CfY11; Y12; Y21; Y22g: It is easy to see that Y22 is not in I . Indeed,
suppose that

Y22 ¼ pY11Y22 þ qY12 þ r; ð8Þ

where p; q 2 CfY11; Y12; Y21; Y22g,

r ¼
X
i;j

pi ðY11Y22ÞðiÞ þ qj YðjÞ12
h i

with pi; qj 2 CfY11; Y12; Y21; Y22g.
Now, consider the map

c : CfY11; Y21; Y22g �! C½Y11; Y21; Y22�
given by cðY22Þ ¼ Y22 and cðYijÞ ¼ 0 for i; j 6¼ 2. Let �p ¼ cð pÞ, �q ¼ cðqÞ,
�r ¼ cðrÞ. We have that �r ¼ 0 and (8) becomes

Y22 ¼ 0:

which is impossible. u
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