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SOME RESULTS ABOUT SYMMETRIC SEMIGROUPE

LOURDES JUAN
Academia de Ciencias de Cuba
Instituto de Cibernética, Matemdtica y Flsica
Dpto. de Inteligencia Actificial
Ave. 19 # 7205 e/ 72 y 74 Playa, Ciudad Habana, Cuba.

ApstrRacT. In this article we prove the equivalence of two
definitions of symmetric semigroups, a necessary and sufficient
condition for semigroups (n,n+a,...,.n+s3), n,asN, (n,a)=1,
2%s5n-2, to be symmetric and a sufficient condition for
non-symmetry of semigroups (4,b,c.c+l), b=l, =2 {mod 4). An upper
bound is given for the largest integer which is not in a semigroup
generated by k relative prime positive integers.
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1. INTRODUCTION

It is well known a result of Bresinsky [1} about set-theoretic
complete intersection problem for monomial curves 1in connection
with symmetric semigroups. In his Thesiszs Elishou (2] proves a
theorem which is a generalization of Bresinsky's result. To
illustrate his theorem Elizhou offers the following monotial
curves (applications 2}, 3), 4), Froposition 8. ch. II):

1) r={z*,t%,t%,t7}

This paper is based on the resulls of the¢ Diploma Thesis (4], The
authoress qratefully ucknowledaes her Diploma's Tutoer, Prof. Dr.

Marieo Eslrada of Lhe Cuban Academy of Sciences, for proposing her
the problems und Prof. Dr, Shalom Eliahou of the Universily of

Jeneva. for his commenis on Lhis paper.
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2) F:{t‘,tb,tc,td} where
i) b,c,d>4,
ii) bsl, c=2, d=3 (mod 4),
1ii) Zezb+d.

3) z...={_t’r\’tn-o-1 ’tn+2

n+3
.t }, n=-1 (mod 33.

The associated semigroup of the curve of 3), i.e.
A={n,n+l,n+2d,n+3), n=-1 (mod 3), 1is a particular case of the
semigroups A1=(n,n+a,...,n+sa), n,asN, (n,a)=1, for a=1l, 5=3. The

main result in this paper is the fact that the semigroups Al are
symmetric if and only if n=Z (mod s) (see Proposition 4). As a
consequence of this proposition the related example of Eliahou
results superflous. On the other hand, the examples, 1) and 2),
exhibit the greater generality of his thecrem. In fact, it is
obvious that the associated semigroup of the curve of 1) is not
symmetric, since M\a={1,2,3}. Moreover the associated semigroups
of the curves of type 2) include those of the form AZ:(4,b,c,c+1},
b=l, <=2 (mod 4) b,c>4, ¢>b+l, which are not symmetric provided
that each generator does not belong to the semigroup generated by
the others. This fact ies the content of Proposition 5, section 3
in this paper, so the greater generality of Eliahou’s theorem is
illustrated for & wide class of cases.

In addition, the equivalence of two definitions about symmetric
semigroupe which appear separately in ([3] and [2] and other
auxiliary results are proven in section 2.

~oTe. In the sequel we ares going to assume that O=N.

2. PRELIMINARY RESULTS
Definitionl: Let & be & cancellative semigroup with 0 element
and E its assoclated group. & is called svmmetric if there exists
msi such that Sei if and only if m-&es for all Sea.
Remark: We restrict the former definition to a semigroup AciM

such that 1A (the case N=4 is trivial) and therefore AcZ.

DefinitionllI: A semigroup &dN is said to be zymmetric if

al\A is finite

b)Card(N\b)zf, where c-1 is the largest element of M\&.

Definitionl gccurs more frecuently in the literature about
symmetric semigroups (see [1] and {3]) but we are going also to
employ definition II, aprearing in Eliahou {2]. Actually we have:

Propositionl: Definitions I and Il are equivalents.

Proof.

I)»II): Let A be a semigroup such that I holds and let’s verify
that there are szatisfied a) and b):
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a)H\s is finite because if not there existz nshi\&  zuch that
n>m, that iz, m-n<{ and by virtue of I m-n=adH (zince n=A), a
contradiction.

b)m iz the largest element of M\i: In fact, wmm=90ea +thus med
(because of 1), moreover msN since 1&4 =+ m-1&d 2 m=l+r, reiaN., On
the other hand, if n>m then m-n<0 ond m—neddd  therefore, in
accordance with I, nei,

From I we also derive the fact that m is odd because if not
m=2k, kelN, and we have for this k<m that ksA if and only if
m-k=ketaN, a contradiction. Thus m=2k+1, for some ke,

Considering now the m+l non-negative integers 0,1,...,m we may
form the mtl couples (O.m),(l,mhl),...,(mﬁl,m%l) each of
2 N L

components k and m-k, and where one and only one of these

components belongs tc WN\NA., A3 n>m =% n=t it has to be
1
card(m\ﬁ)=m%‘.

I1)=1) Let n‘,...,nrem be the elements non-bigger than c-1 for

which n, <4 if and only if (c-1)-n =5 for all i=t,r (because of the
nature of c¢-1 and since 4cH it is obvious that all the elemente
bigger than e-~1 fulfill it). There should be therefore c¢-r such
k=c-1, wsatisfaying k&t and (c-1)-k=4a (becaouse the other
alternative: ked and (c~-1)-ke4 implies c¢-1=A, a contradiction).
Thus card(m\&}zg +c—r=c~§=§ (the last equality being by virtue of
I1). Therefore r=c and m:cfl.a 7

Let"s note az a curiosity the fact that +the relationship e
defined in £ by a®b, if and only if b=m-o for all a,b=Z and for a
certain meZ fixed, is a symmetric relationship.

The following Lemma will be alsc helpful.

LemmaZ: Let A=, A=(d1"":dk) be a semigroup with generatorse
di,-...,dkém. Then for all &ei, &=2¢, it holds that Sei& if and only
if there exists j<t,kx such that £~dieﬁ.

Proof.

~

{(«) Sufficiency of the condition is evident becausec if SeA  and

é—di&ﬁ for some 3je=l.k then S:di+d‘ with d =4, thus €A because it

(a7}

iz the sum of two elements cf 4.
(%) Let"s suppose now that &4 and %0, then &=L @ d. where
=4
aiEO for all i1,k and aLll for some i=1,k. So we have

6—dL:iEiajdj+(al-1)dleA.n

Remarks:
i)As for 3ll j=1l,k we have di-djzceA, Lemma 2 holds clearly for

the zenerators of 4.
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ii)If 5 is an arbitrary element of 4, by virtue of Lemmz 2, wc
can substract from it whenever it zhould be nccessary generators
of & to obtain finally a generator of &4 or else zerc (the later if
& ie a generator itself)}. Therefore, this Lemma providez us a
method for determining whether an arbitrary n<l belongs *to A,
without solving a linear diophantine equation.

iii)The following algorithm derived from the Lemma allows us to

construct scemigroup 4:

1.- Let d= min d. . Put Ad={0,d}.
15isk b

2.-- For all n>d construct the szet An as follows: if there is

k such that n-d.=& then & :=4A U{n}; otherwise & :=4A .
i n—4a bl n-4 n n-1

2.~ Az VU A
nzd
Note that if (dl,...,dk)zl then there is a ¢c=Z such that all

subsegquent integers are in & (In fact, by wvirtue of Bezout’'e

Theorem there are ai,...,akez such that lza‘d‘+...+akdk. Let it be

(]

={1,...,k} and J={isI:u<0)} then we can take c:=-(Ld-1)(min « )Td.
jsa! ies Jies?

i isJs IES
di-l, such that (Euclidean algorithm) n=t ¥, di 4+ r =
1sJ

= 5 Ndl, where p=-( L djwl)(min JJ), since there are t=Z and
r

I/
™

J
) T aidiz L {ttra . }d, + r T “‘da'
i . . L - +
z5 Lex i Lo W)

If now nZc then t=p and t+ra;2plrai20 for all jsJdJ. Thereforc

x

ne LT Wdl.n This ¢ is consequently an upper bound for the largest
L=4

integer which is not in the semigrour generated by k relative
prime positive integers. For a detailed discussion on the related
“coin exchange problem of Frobenius" see [H])). So if we assume

that (d‘,...,dn)=1 it should be only necessary in ii) to consider

such ned,c.

Example:

Semigroup A=(6,8,10,15,13) is symmetric.

In fact, here k=5, di=6, d2=8, d3=10, d4=11, d5=13. We are
going to find then the elements of 4 by means of the algorithm
given in iii):

1.~ d= min d =6 therefore a,={0,86].

1= 55
2.~ For n=7, 7-d & for all i=1,5 hence 4&_=4 .

For n=8, 8-d,6=0s4 hence & =4, u{8}.

-4

For n=9, 9-4 <A for all iel,ﬁ hence & =4 .
I n- 1 » 8

For n=10, 10-d,=0ei _ hence &  =A/

v

For n=11, 11-d =0=a = hence &, =& U{11}.
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-— L 3 - - - 1O
Fer n=12, 12 dj~6=én7‘ hence Aiz”ézxu‘1°"
—_ - - =4 r LY
For n=13, 13-d_=0=A _ hence & =& ~U{13}.

For n=14, 14-4,=8<=4A  hence & =4 uU{14].

For n=15, 15-4. =A for all i=1,5 hence & _=4& .
L n- 4 15 14

For n=16, 16-4 =10=4 = hence A =& U{18).

For n=17, 17-—<:14=}.164:an1 hence A _=A O{17].
For n=18, 18-d =12eA _ hence & =4 _U{18}.
For n=19, 19—d1=13eAn“‘hence &AP=A‘QU{1Q}.

For n=20, 20-d =14ea  _ hence &, =& U{20).

For n=21, 21—d‘=17='2-n_i hence A2’=A20U{21}.

Since there are 6 consecutive integers in b21 it holds by
induction for all n222 that & =A  Uin}, since n-d =& .

3_—A:UAH:‘0,6,8.10,11,12,18,14,16=¢} {the final arrow indicates
n=c
henceforth that all subsequent integers belong to A).

Therefore N\A={1,2,3,4,5,7,9,15) and the largest element of N\aA
is m=15. On the other hand card(m\ﬁ)=8=mfl. That is, A is
symmetric in accordance with definition II. B

The next Lemma is indispensable for proving Proposition 4.

Lemma3: Let it be A=(n,nda,...,n+sa), n,asl, (n,a)=1, 23==n-2.
Then the largest element of N\A is m:nfgn + {n-1)a, where q is the
least integer such that gZ2 and n-g=0 ?ﬁod 8).

Proof.

The following remarks are going to be helpful:

iv)If PasA then either =0 or 3zn, because if
B » -] =5 -
B2a= ¢ ﬁt(n+ta)= b ﬁin + T 3lta, nizo, then (- L ﬁii)a=( b ﬁi)n.
. 1RO L=0 =0 L =0 i=0
But {(n,a)=1l, thus n divides (3- § 3Li)20 and therefore either it
(=] 5 N
holds equality to zero and consequently L ﬁizo and 5= L Bai:O or
o a L= [Wds |
else - L ﬁﬁan whence 3Zn since E #,i=0.
i=0 (=]

v)If n+aacsA, aelN, then in accordance with Lemma 2, there is
i=0,s. such that n+aa-(n+ia)z={=x-i)aed and by iv) «-i=0 or o-iZn,

i.e., ozi+n. Therefore if n+xasd with a<n, then aeajg.

vi}If C=h=<ts then tn+has4 because it can be expressed as the
sum of t elements of 4 of the form n+tja, JeGTE (i.e., dgenerators
of A).

vii)If Szé°ed and =5 (mod n) then there i3 g0 such +that
Szgn+$°, thus Sei.
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First of all m=A because if msd then by virtue of LemmaZ2 there

is J,=0,5 such that m-(n+j a)s (U.%-1in+(n-1-j Ja =a.
Applying now LemmaZ to this element we find then Jj_<0,s such

that (C9-Lin+(n-1-5 Da-(n+3,2)=(" % 2)n+ (n-1-5 -4, )a =5, and so

D;3~;
forth until we find Jp-a «0,s such that n +(n-1- L i, )a=a.
! k=4
s 223—1
However, because of remark V), (n-1- L 4, )=0,5. Thus
n=q k=1

--="4

E-
0s=n~1i- ¢ ijS, that is to say,

x=1
n=q

--Z-4

n-1-s 5‘2 3, S(ngg -1)s (since j, =5 for all k.
and the;-’

n-1l~s & n—-g-8 = n-2-3 (since g=2).

This contradiction shows that msA.

Let now kEE:ITE?E. It holds then n~1—k§n;gs=n-q, 56 in
accordance with observation vi) nzgn+(n—1~k)aea.

On the other hand, if rEITEjI then n;gn+(n-q+r)a+n=
=nggn+(n—q)a+n+ra=n§g(n+sa)+n+raeﬁ, since r3g-1%s (for the way we
choosed g: if nst (t=the remainder mod &) (mod 8) and t22 then it
is clear that g¢=t<s, otherwise a=5 or else g=s+1 and always
q-1=5}.

In short. we have included in &4 the set of n remainders (mod n)
A=A‘UA2, where

A, ={"-%n+(n-1-k)a: keq-1,n-1} and

A2={n;gn+(n—q+r)a+n: rel1,q-1b.

. Let heI:; and let m+h be the n's integers subsequent tec m.
There are then n-g of them congruent (mod n) to the elements of A
and the remaining g are congruent tc the elements of Az.

For those congruent to the elements of A, there is not doubt

about their belonging to &. Let it now he

n;gn+(n—l)a+hEn;gn+(n—g+r)a+n (mod n)
then

n§9n+(n—l)a+hznggn+(n—q+r)a+n
because

n;gn+(n—1)a+hEn;gn+(n—q+r)a {mod n)
and the left side of the foregoing congruence is bigger than the
right side. Whence, in accordance with remark vii),
n;gn+(n—1)a+héb, and the Lemma is proved because of remark vii)

again ‘a
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3. SOME CLASSES OF SYMMETRIC AND NON-SYMMETRIC SEMIGROUPS
Fropozitiond: The semigroups of +the form &=(n,n+a,....n+sa),
n,asMN, (n,a)=1 and 223=n-2 are osymmetric if and only if n=2

{mod 5.
Proof.

(¢) 1f n=2 (mod s}, by Lemma 3, m=2%

n

~“n+{n-1)a is the largest
o=

integer which is not in 4.

Now we are ready to prove Ehat A5 holds definition I with the
foregoing m, i.e., for all Sei, S0 if and only if m-S&4.

Necessity of the condition holds because if not then de& and
alzo m-SeA, and so S+{m-S)=m=4, in opposzition to Lemma 3.

<

To prove sufficiency it is enough to regard only such <& that
n-S>0 and m-$€3 because 1f m-£<0 then m<d and &4 by the nature of
-

Let it be therefore <<m such that m-d&i. In particular m-6z0

(mod n), thus it must be congruent (mod n) t¢ one o&f the ks,

k=1,....n-1. It means that thers are g=2 and k<l,n-1 such that
nf2n+(n~l)a—&=qn+ka£ﬁ (1
=r

o k>gs {if =0 it is chviocus, if grC ond k3gz than by remark vi),
n

Sclving in (1), 6=(a§2»q)n=(n—1~k)a and ineguality {2} showse
that S<4 by virtue of remark vi}), L{b.

() First of all we are going to prove the following:

Assertion: Let 4 and g be as in the statement of Lemma 3, then
m:nfgn+(n—q+1}aiA.

;n fact, as in the proof of Lemma 3, by reductic ad absurdum,

if we assume that me4 then there ara'ji,...,j <0,5 such that

™

n-g+l-ss L Jkin-g—s, 8 contradiction.
X=1

Therefore, m wd .

It remains only to prove that 1f g>2 then 4 i not symmetric.
But it is simple because m =4 and m~m‘=n;gn+(n-l)a—(nggn+(n-q+1)a)
=(q@q-2)a, where 0<g-2<a<n.

Thus, in accordance with remark iv)} Lemma 3. m-m =5, and 4
doesn”t £ulfill definition L.,
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o - 1pm-
-

} 4=(35,48,61,59,67,75,83,91,99,107,1156,123) is symmetric by
virtue of Proposition 4, with n=35, a=8, s=11. We also have the
largest integer which 1s not in &, m=377. (Observe that without
the above proposition it could he annoying to study the symmetry
0of A& and the computation of m as well.)

2) The associated semigroup in the example 3) of ZElishou (see
Introduction), A=(n,n+1,n+2,n+3), n=~1 (mod 3), isc symmetric since
-1=2 (mod 3} and we can make use of Proposition 4, with a=1, =s=3.

ErovcgitionS: The semigroups of the form a={4,b,c,c+l), ©L,o>4,
b=l, c=2 (mod 4) and ctb+l are not symmetric if we regquire that
each generator does not belong to the semigroup generated Ly the
others.

Proof.

We shall employ definition II of symmetric semigroup and split
the proof in two parts:

a)let’s assume first that b=c-1l=4r+l, raiN, that i=,
A=(4,4r+1,4r+2,4r+3). Here is not possible for a generator to
belong to the semigroup generated by the others. In this case & is
never symmetric since 4={4,8,...,4r,4r+1,4r+2,4r+3 *+} and so, the
largest integer which iz not in & iz m=4r-~1, meanwhile
B\A={1,2,3,5,...,4r-3,4r-2,4r-1} and card(®h\a)=3r=Btlezr,  aince
rel. B

bllLet now b=4r+], c=4k+2, and r~k, that is,
A=(4,4r+1,4k+2,4k+3). It can be checked out that the requirements
of our proposition holds if and only if r<k<2r. Then

a={4,8,4r,4r+1,...,4k,4k+1,4k+2,4k+3—}, and

N\A={1,2,3,5.6,7,...,.4r+2,4r+3, . ..,4(k-1)+2,4(k-1)+3}.

On ;2; other hand m=4k-1, and it doesn’t hold definition 11

since "5 =2k¢card(m\A)=r+2k.D

Example:

A=(4,b,c,d), with b,c,d>4, b=1l, c=2, d=3 (mod 4) and Zczb+d, in
the second example of Eliahou presented in the introduction, for
d=c+l, is not symmetric provided that each generator does not
belong to the semigroup generated by the others.
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