
ON GENERIC DIFFERENTIAL SOn-EXTENSIONS

LOURDES JUAN AND ARNE LEDET

Abstract. Let C be an algebraically closed field with trivial derivation
and let F denote the differential rational field C〈Yij〉, with Yij , 1 ≤ i ≤
n − 1, 1 ≤ j ≤ n, i ≤ j, differentially independent over C. We show
that there is a Picard-Vessiot extension E ⊃ F for a matrix equation
X ′ = XA(Yij), with differential Galois group SOn, with the property
that if F is any differential field with field of constants C then there is a
Picard-Vessiot extension E ⊃ F with differential Galois group H ≤ SOn

if and only if there are fij ∈ F with A(fij) well defined and the equation
X ′ = XA(fij) giving rise to the extension E ⊃ F .

1. Introduction

Let C denote an algebraically closed field with trivial derivation, G a
linear algebraic group over C, and glm(·) the Lie algebra of m×m matrices
with coefficients in some specified field. The short form ‘Picard-Vessiot
G-extension’ (or some times ‘PVE with group G’) will be used for ‘Picard-
Vessiot extension (PVE) with differential Galois group isomorphic to G’. We
consider the differential rational field F = C〈Z1, . . . , Zk〉, where Z1, . . . , Zk

are differentially independent over C.

Definition 1.1. A Picard-Vessiot G-extension E ⊃ F for the equation X ′ =
XA(Z1, . . . , Zk), with A(Z1, . . . , Zk) ∈ glm(F) for some m, is said to be a
generic extension for G if for every Picard-Vessiot G-extension E ⊃ F there
is a specialization Zi → fi ∈ F , such that the equation X ′ = XA(f1, . . . , fk)
gives rise to E ⊃ F and any fundamental solution matrix maps to one for
the specialized equation.

Note that by making the assumption that G = G(C), we are also assuming
that the base field of a Picard-Vessiot G-extension, and the extension itself,
have field of constants C.

In this paper we produce generic extensions for the special orthogonal
groups SOn, n ≥ 3. For n = 2 the group is isomorphic to the (cohomologi-
cally trivial) multiplicative group, a case already studied in [5].

The construction that we provide is based on Kolchin’s Structure Theo-
rem, which describes the possible Picard-Vessiot G-extensions of a differen-
tial field F as function fields of F -irreducible G-torsors [11, Theorem 5.12],
[12, Theorem 1.28]. The isomorphism classes of G-torsors, in turn, are in
bijective correspondence with the elements of the first Galois cohomology
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set H1(F,G) [13, 15]. The latter is a particularly convenient feature since
for the special orthogonal groups the first cohomology can be described in
terms of regular quadratic forms of discriminant 1 (cf. [7]).

In previous work the first author has studied generic extensions in two
special situations. The first was when G is connected and the extension is
the function field of the trivial G-torsor (cf. [5]). The second was when G is
the semidirect product H nG0 of its connected component by a finite group
H and the extensions are the function fields of F -irreducible G-torsors of
the form W ×G0, where W is an F -irreducible H-torsor (cf. [6]).

In the present paper we turn our attention to the general case, that is,
when H1(F,G) is not necessarily trivial. In [7] we showed that in such a
situation, it might be possible to find a Picard-Vessiot G-extension of F
that is the function field of a non-trivial torsor. We will use the machinery
developed there and a version of a method to construct generic extensions
from [5] to attack this general situation when G is the special orthogonal
group SOn, n ≥ 3. With the description of the SOn-torsors in terms of
regular quadratic forms of discriminant 1 at our disposal we can provide a
good description of the twisted Lie algebras associated to the torsors [7], a
key ingredient of our construction.

Having a good grasp of the torsors also allows us to show that this exten-
sion fully descends to subgroups of SOn, that is, there is a specialization of
the parameters over the base field F yielding a Picard-Vessiot H-extension
if and only if H ≤ SOn.

Finally, we discuss how to proceed with connected groups in general, when
a good description of the torsors is not available. In this case a generic
extension relative to the trivial torsor along with the Trivialization Lemma
from Section 3 allow a (not so explicit but quite similar) construction in
which the specialization of the parameters takes place over a finite extension
of F instead of F .

All the differential fields that we consider are of characteristic zero and
have algebraically closed field of constants. We keep the notations C and F
introduced above.

2. Generic extension vs. generic equation

The SOn case is included among the groups studied by Goldman [3] and
Bhandari-Sankaran [1].

Definition 2.1. (Goldman [3]) Let G be a linear algebraic group over C
and assume that a faithful representation in GLn(C) is given. Let L(t, y) =
Q0(t1, . . . , tr)y(n)+· · ·+Qn(t1, . . . , tr)y ∈ C{t1, . . . , tr, y} and write (π1, . . . , πn)
for a fundamental system of zeros of L(t, y) such that C〈t1, . . . , tr, π1, . . . , πn〉
is a PVE of C〈t1, . . . , tr〉 with group G. Then L(t, y) = 0 will be called a
generic equation with group G if:

(1) t1, . . . , tr are differentially independent over C, and C〈t1, . . . , tr〉 ⊂
C〈π1, . . . , πn〉.
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(2) For every specialization (t1, . . . , tr, π1, . . . , πn) → (t̄1, . . . , t̄r, π̄1, . . . , π̄n)
over C such that C〈t̄1, . . . , t̄r, π̄1, . . . , π̄n〉 is a PVE of C〈t̄1, . . . , t̄r〉 and
the field of constants of the latter is C, the differential Galois group
of this extension is a subgroup of G.

(3) If (ω1, . . . , ωn) is a fundamental system of zeros of L(y) = y(n) +
a1y

(n−1) + · · · + any ∈ F{y}, where F is any differential field with
field of constants C, and F 〈ω1, . . . , ωn〉 is a PVE of F with differential
Galois group H ≤ G, then there exists a specialization (t1, . . . , tr) →
(t̄1, . . . , t̄r) over F with t̄i ∈ F such that Qo(t̄1, . . . , t̄r) 6= 0 and

ai = Qi(t̄1, . . . , t̄r)Q−1
o (t̄1, . . . , t̄r).

Goldman shows that a necessary condition for such an equation to exist
is that the number of parameters r equals the order n of the equation [3,
Lemma 1, p. 343]. The groups studied in that paper include GLn, SLn as
well as the orthogonal and symplectic groups.

Now, let G act on C〈y1, . . . , yn〉, where y1, . . . , yn are differentially inde-
pendent over C, by σ(yi) =

∑n
i=1 cijyj for σ = (cij) ∈ G(C) ⊂ GLn(C).

Then

Pi =
Wi(y1, . . . , yn)
W0(y1, . . . , yn)

(i = 1, . . . , n),

where

Wi = (−1)i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 · · · yn
...

...
y

(n−i−1)
1 y

(n−i−1)
n

y
(n−i+1)
1 y

(n−i+1)
n

...
...

y
(n)
1 · · · y

(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

are invariant under the G action.
The procedure used by Goldman for the groups above first finds n differen-

tially independent generators t1, . . . , tn over C of the fixed field C〈y1, . . . , yn〉G
and n+1 differential polynomials Q0(t1, . . . , tn), . . . , Qn(t1, . . . , tn) ∈ C{t1, . . . , tn}
with

Pi =
Qi(t1, . . . , tn)
Q0(t1, . . . , tn)

(i = 1, . . . , n).

He then shows that a generic equation with group G is given by

L(t, y) = Q0(t1, . . . , tn)y(n) + · · ·+ Qn(t1, . . . , tn)y = 0. (1)

This method, however, fails to produce a generic equation for G = SO3

as [3, Example 3, p. 355] illustrates.
Bhandari and Sankaran [1] proved that (1) is generic for the special or-

thogonal groups in a weaker sense, that is, replacing (3) in Goldman’s defi-
nition with the following:
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(3′) If F is a differential field with field of constants C and E is a PVE of F
with differential Galois group H ≤ G, then there exists a linear differential
equation

L(y) = y(n) + a1y
(n−1) + · · ·+ any = 0, ai ∈ F

such that that Qo(t̄1, . . . , t̄r) 6= 0, ai = Qi(t̄1, . . . , t̄r)Q−1
o (t̄1, . . . , t̄r), i =

1, . . . , n, for suitable t̄i ∈ F and E = F 〈ω1, . . . , ωn〉 for a fundamental
system of zeros of L(y).

There are, however, some key differences in our approaches. In construct-
ing their equations, both Goldman and Bhandari-Sankaran start with the
differential rational field F = C〈y1, . . . , yn〉, where n is the order of the
equation, and find the differential fixed field C〈y1, . . . , yn〉G. We start in-
stead with F as our base field and show that F〈Y 〉, where Y is a generic
point of a “general” G-torsor, is a generic PVE in the sense of Definition
1.1. Furthermore, it satisfies descent conditions analogous to (2) and (3′)
above. In our case, the number n of parameters is given by the dimension
of the group and the description of the torsors, so it is independent of the
representation of G in a GLm. By using a general derivation in the func-
tion field of our special G-torsor (that is, a typical element in the twisted
Lie algebra) the specialization of our parameters comes in a very natural
and painless fashion, whereas in the case of the generic equations in [1, 3],
showing that Q0(t1, . . . , tn) 6= 0 is quite involved.

In connection with the previous notions of generic equation [1, 3] Juan-
Magid [8] study the ring of generic solutions for a linear monic order n

equation, that is, R = C{P1, . . . , Pn}⊗CC[y(j)
i , 1 ≤ i ≤ n, 0 ≤ j ≤ n−1][w−1

0 ],
where Pi, yi, 1 ≤ i ≤ n, and w0, are as above, with the GLn(C) action
extended from the linear action on V = Cy1 + · · · + Cyn using the C-basis
y1, . . . , yn. The ring R has the following properties:

Assume that E ⊃ F is a Picard-Vessiot G-extension and that G has a
faithful representation ρ in GLn. Then there is a differential homomorphism
Ψ : R → F such that
1. E is the quotient field of FΨ(R); and
2. E ⊃ F is a PVE for

L(Y ) = Y (n) + Ψ(P1)Y (n−1) + · · ·+ Ψ(Pn)Y (0)

3. Ψ is G-equivariant, so Ψ(RG) ⊂ EG = F .
Conversely, assume that G is an observable subgroup of GLn and let φ :
RG → F be a differential F -algebra homomorphism with restriction α to
RGLn . Let P be a maximal differential ideal of R = F ⊗α R whose inverse
image in R contains the kernel of φ, and let E be the fraction field of R/P .
Then E is a PVE of F with differential Galois group contained in G.

The special orthogonal groups are observable (see [4]) and therefore satisfy
the above conditions. We point out that in our construction the coordinate
ring C{Yij}[Y, 1/ det(Y )], where Y is a generic point of a general SOn-torsor,
has properties similar to that of the ring R.
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The work in [1, 3, 8] describes equations given by linear differential oper-
ators attached to a representation of the differential Galois group G in GLn.
Our work describes matrix equations with group G in connection with the
structure of the Picard-Vessiot G-extensions.

3. SOn-extensions

In [7] we saw that every F -irreducible SOn-torsor has a generic point of
the form Y = XP , where X is a generic point for SOn and

P =


√

a1 √
a2

. . . √
an

 ,

for ai ∈ F ∗ with a1 · · · an = 1 and the roots chosen to have product 1 as well.
A PVE of F with group SOn corresponding to this torsor, if any, equals the
function field F (Y ) of the torsor and has derivation given by Y ′ = Y B,
where the matrix B is of the form



a′
1

2a1
b12 b13 . . . b1n

−a1
a2

b12
a′
2

2a2
b23 . . . b2n

−a1
a3

b13 −a2
a3

b23
a′
3

2a3
. . . b3n

...
...

...
. . .

...
− a1

an
b1n − a2

an
b2n − a3

an
b3n . . . a′

n
2an


for bij ∈ F , 1 ≤ i ≤ n − 1, 2 ≤ j ≤ n and ai ∈ F ∗ as before. An explicit
example was given there, with Y corresponding to a non-trivial torsor, by
making the simplifying assumption that bi,i+1 = ai. We point out that with
that assumption, the number of parameters used in [7] to produce a PVE
associated to a non-trivial torsor is 1

2n(n− 1), the dimension of SOn.
Since our goal here is to produce a generic extension we need to modify

that example in order to retain the 1
2(n−1)(n+2) parameters in the matrix

B.
We assume that a1, . . . , an−1, b12, . . . , bn−1,n are differentially independent

over C and let F = C〈a1, . . . , an−1, b12, . . . , bn−1,n〉. We first show that the
equation η′ = ηA over the algebraic closure F̄ of F , with coefficient matrix
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A =



0
√

a1√
a2

b12

√
a1√
a3

b13 . . .

√
a1√
an

b1n

−
√

a1√
a2

b12 0
√

a2√
a3

b23 . . .

√
a2√
an

b2n

−
√

a1√
a3

b13 −
√

a2√
a3

b23 0 . . .

√
a3√
an

b3n

...
...

...
. . .

...

−
√

a1√
an

b1n −
√

a2√
an

b2n −
√

a3√
an

b3n . . . 0


has differential Galois group SOn. From this it will follow that the corre-
sponding equation η′ = ηB over F has the same group.

Let Zij =
√

ai/
√

ajbij , 1 ≤ i ≤ n − 1, 2 ≤ j ≤ n, i < j. Clearly
the Zij are differentially independent over C since all the ai and b2

ij are in
the differential field L = C〈a1, . . . , an−1, Z12, . . . , Zn−1,n〉, which forces the
differential transcendence degree [10, Definition 3.2.33 and Theorem 5.4.12]
of L over C to be 1

2(n− 1)(n + 2).
Now, since A =

∑n
j=i+2

∑n−1
i=1 ZijAij , where {Aij} is the basis of Lie(SOn)

consisting of the antisymmetric matrices with 1 in the ij-entry, −1 in the ji-
entry and 0 otherwise, by [5, Theorem 4.1.2] it then follows that L(SOn) ⊃ L,
is a PVE with group SOn for the equation X ′ = XA.

Since ai, b
2
ij ∈ L we have that ai, bij ∈ L̄ and thus F̄ = L̄. Therefore,

F̄(SOn) ⊃ L(SOn) is an algebraic extension. Since the field of constants
of L(SOn) is the algebraically closed field C, F̄(SOn) must have no new
constants and F̄(SOn) ⊃ F̄ is a PVE with group SOn.

The discussion in [7, Section 4] implies that the matrix

B =



a′
1

2a1
b12 b13 . . . b1n

−a1
a2

b12
a′
2

2a2
b23 . . . b2n

−a1
a3

b13 −a2
a3

b23
a′
3

2a3
. . . b3n

...
...

...
. . .

...
− a1

an
b1n − a2

an
b2n − a3

an
b3n . . . a′

n
2an


defines a derivation on the coordinate ring T = F [Y ] of the SOn-torsor
corresponding to the quadratic form given by the matrix

Q =


a1

a2

. . .
an


which by [7, Lemma 1] is non-trivial.

Since F̄(Y ) = F̄(X), as a differential field it will be isomorphic to F̄ (SOn).
Therefore, the field of constants of F̄(Y ) is C. In particular, this implies that
F(Y ) ⊃ F is a no new constant extension. This shows that the function
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field of the (non-trivial) SOn-torsor corresponding to Y is a PVE of F with
group SOn.

We point out for later use that the previous argument can be shown in a
more general setting:

Trivialization Lemma. Let E ⊃ F be a Picard-Vessiot G-extension with
G connected. Then there are a finite extension k ⊃ F and a Picard-Vessiot
G-extension K = kE of k, such that K = k(G).

In other words, if there is a PVE of F with group G then the trivial
G-torsor can be realized over a finite extension of F . Although this is a
known result (see [14, p. 142, Corollary]), for the convenience of the reader
we include a short proof using the tools that we develop here.

Proof. Let X be a generic point of G. Then E = F (Y ) where Y = XP ,
for a matrix P with coefficients in F̄ [7, Section 3]. Let k denote the field
generated over F by the entries of P . Then k(X) = k(Y ) ⊃ F (Y ) is an
algebraic extentension. Therefore, k(G) = k(X) ⊃ k is a no new constant
extension and thus a Picard-Vessiot G-extension. Clearly, K = k(X) =
kE. �

4. Generic Extensions

First we introduce the following notion, analogous to one for generic poly-
nomial equations (see Kemper [9]).

Definition 4.1. A generic extension E ⊃ F for G is called descent generic
when the following condition holds: for any differential field F with field of
constants C there is a PVE E ⊃ F with group H ≤ G if and only if there are
fi ∈ F such that the matrix A(f1, . . . , fk) is well defined and the equation
X ′ = XA(f1, . . . , fk) gives rise to the extension E ⊃ F .

Theorem 1. The extension F(Y ) ⊃ F is a generic PVE for SOn. Further-
more, it is descent generic.

Proof. For convenience, we will use the double subscript notation Yii for ai,
i = 1, . . . , n− 1, and put Yij = bij , i < j. We then let A(Yij) = B.

Suppose that E ⊃ F is a PVE with group H ≤ SOn. Let X, XH re-
spectively denote generic points of SOn and H. Then E = F (Y ), where
Y = XHP for some invertible matrix P with coefficients in F̄ . Moreover,
there is an F -algebra homomorphism of coordinate rings

F [XP,det(XP )−1] � F [XHP,det(XHP )−1].

Since XHP is a generic point for an H-torsor we have that XP is a generic
point for an SOn-torsor, and therefore the (twisted) Lie algebra associated
to the H-torsor is contained in that for the SOn-torsor. In turn, this implies
that the generic point Y satisfies an equation with matrix B̃ = A(fij) for
some fij ∈ F .
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Likewise, a specialization A(fij) of A(Yij) with fij ∈ F , gives a derivation
on the coordinate ring F [XP,det(XP )−1] of an SOn-torsor. When extended
to the quotient field this derivaton may have new constants. We get a PVE
of F by taking the quotient field of the factor ring

F [XP,det(XP )−1]/M,

where M is a maximal differential ideal. The differential Galois group in
this case is the closed subgroup of SOn consisting of those elements that
stabilize M .

Finally, it is clear that a fundamental matrix for the equation η′ = ηA(Yij)
specializes to one for η′ = ηA(fij) since, on the one hand, a solution of
η′ = ηA(Yij) is given by a generic point XP of the SOn-torsor corresponding
to the quadratic form

Q =


Y11

Y22

. . .
1/Y11 . . . Yn−1,n−1


with

P =


√

Y11 √
Y22

. . . √
1/Y11 . . . Yn−1,n−1


and X a generic point of SOn.

On the other hand, a solution of η′ = ηA(fij) is given by a generic point
XP (fij) of the SOn-torsor corresponding to the quadratic form

Q(fij) =


f11

f22

. . .
1/f11 . . . fn−1,n−1


with

P (fij) =


√

f11 √
f22

. . . √
1/f11 . . . fn−1,n−1

 .

Note. In the case of SO3 we can exhibit a generic point using the classical
Euler parametrization:

X =
1

x2 + y2 + z2 + w2

x2 + y2 − z2 − w2 2xw + 2yz 2yw − 2xz
2yz − 2xw x2 − y2 + z2 − w2 2xy + 2zw
2xz + 2yw 2zw − 2xy x2 − y2 − z2 + w2

 ,
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obtained by interpreting the quaternion x + yi + zj + wk as an isometry by
conjugation on the quadratic space with basis i, j, k, where x, y, z and w are
indeterminates [2, Theorem 3, Chapter 3]. A generic point for the torsor, is
then

Y = XP =
1

x2 + y2 + z2 + w2
×(x2 + y2 − z2 − w2)

√
a 2(xw + yz)

√
b 2(yw − xz)/

√
ab

2(yz − xw)
√

a (x2 − y2 + z2 − w2)
√

b 2(xy + zw)/
√

ab

2(xz + yw)
√

a 2(zw − xy)
√

b (x2 − y2 − z2 + w2)/
√

ab

 .

Clearly, this matrix permits specialization of a and b to any non-zero
values.

�

Remark. Observe that when the fii are all 1, the matrix A(fij) then has
the form 

0 f12 f13 . . . f1n

−f12 0 f23 . . . f2n

−f13 −f23 0 . . . b3n
...

...
...

. . .
...

−f1n −f2n −f3n . . . 0

 ∈ Lie(SOn).

Therefore this situation corresponds to the trivial torsor case. In general,
if the fii are (not all equal) constants, the torsor associated to the quadratic
form will still be trivial and the specialized matrix will be in a Lie algebra
isomorphic to Lie(SOn).

5. Remarks on the general case

In general, when the matrices P parametrizing the G-torsors are not
known, it will not be possible to carry out the same kind of explicit con-
struction done here for SOn. In such a situation we can use the generic
extension relative to the trivial torsor [6, Definition 3.1, Theorem 3.3] and
obtain the extensions corresponding to nontrivial G-torsors indirectly:

Assume that G is connected and let E ⊃ F be a generic extension for G
relative to the trivial G-torsor, with equation Z ′ = A(Yi)Z.

Theorem 2. Let F be a differential field with field of constants C. There is
a PVE E ⊃ F with differential Galois group H ≤ G if and only if there are a
finite extension k ⊃ F , a matrix P with coefficients in k and a specialization
Yi 7→ fi ∈ k, such that the equation Z ′ = Z(P−1A(fi)P + P−1P ′) gives rise
to the extension E ⊃ F .

Proof. As before, we let X denote a generic point for G and write Y =
XP for a generic point of the G-torsor with E = F (Y ). The proof then
follows from the description of the twisted Lie algebras [7, Section 3] and
the Trivialization Lemma shown in Section 3 of this paper. �
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