On Picard-Vessiot extensions with group PGL_{3}

Lourdes Juan *, Arne Ledet
Department of Mathematics and Statistics, Texas Tech University, Box 41042, Lubbock, TX 79409-1042, USA

Received 5 February 2007

Communicated by Harm Derksen

Abstract

Let F be a differential field of characteristic zero with algebraically closed field of constants. We provide an explicit description of the twisted Lie algebras of PGL_{3}-equivariant derivations on the coordinate rings of F-irreducible PGL_{3}-torsors in terms of nine-dimensional central simple algebras over F. We use this to construct a Picard-Vessiot extension which is the function field of a non-trivial torsor and which is a generic extension for PGL_{3}.

© 2007 Elsevier Inc. All rights reserved.
Keywords: Differential Galois theory; Galois cohomology; Generic extensions; Picard-Vessiot

1. Introduction

We work in the standard differential Galois theory context and therefore all the fields considered are of characteristic zero. Let \mathcal{C} be an algebraically closed field with trivial derivation, $G \subset \mathrm{GL}_{n}$ an algebraic group over \mathcal{C} and F a differential field with field of constants \mathcal{C}. The following facts are well known:
(1) The Picard-Vessiot extensions (PVEs for short) of F with differential Galois group G, if any, are function fields of F-irreducible G-torsors (cf. [10, Theorem 5.12] or [11, Theorem 1.28]).
(2) The isomorphism classes of G-torsors are in one-to-one correspondence with the equivalence classes of crossed homomorphisms in the first Galois cohomology set $H^{1}(F, G)$ (cf. [12, Proposition 33]).

[^0]Therefore,
(3) To each PVE with group G one can associate an element of $H^{1}(F, G)$ which, by Speiser's Theorem [9, Exercise 1.61] corresponds to a matrix $P \in \mathrm{GL}_{n}(\bar{F}), \bar{F}$ denoting the algebraic closure.

The correspondence in (3) can be used to provide a precise description of the 'twisted' Lie algebras of G-equivariant derivations on the function fields of irreducible G-torsors, when a good interpretation of the elements of $H^{1}(F, G)$ is available-meaning that the matrices P can be given explicitly (see [6] for details).

In the case of PGL_{n} it is well known that the elements of $H^{1}\left(F, \mathrm{PGL}_{n}\right)$ correspond to isomorphism classes of n^{2}-dimensional CSAs (central simple algebras) over F, cf. [9, Section 4.2]. Regrettably, we stop short here since the structure of those is poorly understood in general. In this paper we will discuss the case $n=3$, where the CSAs are known to be cyclic [1]. We point out that for the case $n=4$ the structure is also known: the CSAs are crossed products based on a Galois extension for the Klein four group, cf. [1]. However, it is not immediately clear how these can be parametrized, leaving this case open to further research. Finally, the case $n=2$ is of no interest in this paper since over the fields that we consider PGL_{2} is isomorphic to SO_{3}, a group already studied in [6,7].

Our objective is to provide a systematic description of the PVEs $E \supset F$ with differential Galois group PGL_{3}, for an arbitrary differential field F with field of constants \mathcal{C}, by means of a construction similar to the one done in [7] for the special orthogonal groups. More precisely, let $\mathfrak{g l}_{m}(\cdot)$ be the Lie algebra of $m \times m$ matrices with coefficients in some specified field, and consider the differential rational field $\mathcal{F}=\mathcal{C}\left\langle Z_{1}, \ldots, Z_{k}\right\rangle$, where Z_{1}, \ldots, Z_{k} are differentially independent indeterminates over \mathcal{C}. We will construct a $\operatorname{PVE} \mathcal{E}$ of \mathcal{F} which is the function field of a non-trivial PGL_{3}-torsor and which satisfies the following:

Definition 1. (See [7].) A Picard-Vessiot G-extension (i.e., a PVE with differential Galois group isomorphic to $G) \mathcal{E} \supset \mathcal{F}$ for the equation $X^{\prime}=X \mathcal{A}(Z)$, with $\mathcal{A}(Z)=\mathcal{A}\left(Z_{1}, \ldots, Z_{k}\right) \in \mathfrak{g l}_{m}(\mathcal{F})$ for some m, is said to be a generic extension for G if for every Picard-Vessiot G-extension $E \supset F$ there is a specialization $Z_{i} \rightarrow f_{i} \in F$, such that the equation $X^{\prime}=X \mathcal{A}\left(f_{1}, \ldots, f_{k}\right)$ gives rise to $E \supset F$ and any fundamental solution matrix maps to one for the specialized equation.

The extension that we construct has the descent generic property [7], meaning that for any differential field F with field of constants \mathcal{C} there is a PVE $E \supset F$ with differential Galois group $H \leqslant G$ if and only if there are $f_{i} \in F$ such that the matrix $A\left(f_{1}, \ldots, f_{n}\right)$ is well defined, the equation $X^{\prime}=X \mathcal{A}\left(f_{1}, \ldots, f_{n}\right)$ gives rise to the extension $E \supset F$, and any fundamental solution matrix of $X^{\prime}=X \mathcal{A}(Z)$ maps to one of $X^{\prime}=X \mathcal{A}\left(f_{1}, \ldots, f_{n}\right)$ under $Z_{i} \rightarrow f_{i}$.

Generic extensions (and the related notions of generic equations [2,3]) are broadly discussed in [7]. We point out that the constructions in [4,5] provide a more restricted form of such extensions: in [4] all connected groups are considered, but the extensions are function fields of the trivial torsor. In [5] the groups G considered are the semidirect product $H \ltimes G^{0}$ of the connected component G^{0} by a finite group H, and the extensions are function fields of F-irreducible G torsors of the form $W \times G^{0}$, for some F-irreducible H-torsor W. The H-subextensions are also considered fixed. Although these omit the description of extensions which are function fields of non-trivial G-torsors, they cover many more groups than the ones for which an explicit description of the torsors using the first Galois cohomology is known. In [7] we also discuss how the
extensions in [4] can be used indirectly in the general situation of cohomologically non-trivial connected groups when a good description of the torsors is not available.

2. The representation of PGL_{3}

Let K be a field. It is well known that an isomorphism $\mathrm{M}_{m}(K) \otimes_{K} \mathrm{M}_{n}(K) \simeq \mathrm{M}_{m n}(K)$ is given by

$$
A \otimes 1 \mapsto\left(\begin{array}{ccccc}
A & & & & \\
& A & & & \\
& & A & & \\
& & & \ddots & \\
& & & & A
\end{array}\right)
$$

and

$$
1 \otimes B \mapsto\left(\begin{array}{cccc}
b_{11} I & b_{12} I & \ldots & b_{1 n} I \\
b_{21} I & b_{22} I & \ldots & b_{2 n} I \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} I & b_{n 2} I & \ldots & b_{n n} I
\end{array}\right)
$$

or simply

$$
(A \otimes B)_{i j}=a_{((i-1) \bmod m)+1,((j-1) \bmod m)+1} \cdot b_{\lfloor(i-1) / m\rfloor+1,\lfloor(j-1) / m\rfloor+1} .
$$

Correspondingly, we get a group homomorphism $\mathrm{GL}_{n} \rightarrow \mathrm{SL}_{n^{2}}$ by

$$
A \mapsto A \otimes A^{-T}
$$

Here, the image is closed: If we identify $\mathrm{M}_{n}(K)$ with $K^{n^{2}}$, the image consists exactly of those vector space automorphisms on $\mathrm{M}_{n}(K)$ that preserve matrix multiplication, i.e., the algebra automorphisms, and this condition clearly defines a Zariski closed set.

Since the kernel consists exactly of the scalar matrices, we have a representation $\varphi: \mathrm{PGL}_{n} \rightarrow$ $\mathrm{SL}_{n^{2}}$.

We will consider this representation in the case $n=3$. (And we refrain from writing φ out explicitly.) Now, PGL_{3} is an 8 -dimensional irreducible algebraic group, and we will need to describe its Lie algebra $\mathfrak{p g l}_{3}$. As $\mathfrak{p g l}_{3}$ consists simply of those 9×9 matrices C, for which $I+\varepsilon C$ is in $\operatorname{PGL}_{3}(K[\varepsilon])$ for an 'algebraic infinitesimal' ε, i.e., a non-zero quantity satisfying $\varepsilon^{2}=0$ (see, e.g., [11, A.2.2]), we can produce such matrices by looking at $(I+\varepsilon A) \otimes\left(I-\varepsilon A^{T}\right.$) for 3×3 matrices A. In fact, if we assume $\operatorname{Tr}(A)=0$, we get that

$$
(I+\varepsilon A) \otimes\left(I-\varepsilon A^{T}\right)=I+\varepsilon U
$$

for

$$
\begin{align*}
U & =A \otimes 1-1 \otimes A^{T} \\
& =\left(\begin{array}{ccccccccc}
0 & a_{12} & a_{13} & -a_{21} & 0 & 0 & -a_{31} & 0 & 0 \\
a_{21} & -a_{11}+a_{22} & a_{23} & 0 & -a_{21} & 0 & 0 & -a_{31} & 0 \\
a_{31} & a_{32} & -a_{22}-2 a_{11} & 0 & 0 & -a_{21} & 0 & 0 & -a_{31} \\
-a_{12} & 0 & 0 & a_{11}-a_{22} & a_{12} & a_{13} & -a_{32} & 0 & 0 \\
0 & -a_{12} & 0 & a_{21} & 0 & a_{23} & 0 & -a_{32} & 0 \\
0 & 0 & -a_{12} & a_{31} & a_{32} & -a_{11}-2 a_{22} & 0 & 0 & -a_{32} \\
-a_{13} & 0 & 0 & -a_{23} & 0 & 0 & a_{22}+2 a_{11} & a_{12} & a_{13} \\
0 & -a_{13} & 0 & 0 & -a_{23} & 0 & a_{21} & a_{11}+2 a_{22} & a_{23} \\
0 & 0 & -a_{13} & 0 & 0 & -a_{23} & a_{31} & a_{32} & 0
\end{array}\right) . \tag{1}
\end{align*}
$$

This gives us an 8 -dimensional subspace of $\mathfrak{p g l}_{3}$, i.e., all of $\mathfrak{p g l}_{3}$.

3. The cohomology

Let K be a field as before. From the short-exact sequence

$$
1 \rightarrow \bar{K}^{*} \rightarrow \mathrm{GL}_{3}(\bar{K}) \rightarrow \mathrm{PGL}_{3}(\bar{K}) \rightarrow 1
$$

we get (part of) a long-exact cohomology sequence

$$
1 \rightarrow H^{1}\left(K, \mathrm{PGL}_{3}\right) \underset{\delta}{\rightarrow} H^{2}\left(K, \mathbb{G}_{m}\right)
$$

and if we identify $H^{2}\left(K, \mathbb{G}_{m}\right)$ with the Brauer group $\operatorname{Br}(K)$, it is known (see, e.g., [9, Lemma 6.3.1]) that

Lemma 1. For $e \in H^{1}\left(K, \mathrm{PGL}_{3}\right)$ we have $\delta[e]=\left[\mathrm{M}_{3}(K)_{e}\right]$, where $\mathrm{M}_{3}(K)_{e}$ is the Galois twist of $\mathrm{M}_{3}(K)$ by e.

The Galois twists of $\mathrm{M}_{3}(K)$ are the nine-dimensional central simple algebras over K. These are classically known to be cyclic, cf. [1, Theorem XI.5]. In our case, since the field K contains a primitive third root of unity ζ, this means that the algebras have the form $(a, b / K)_{3}=K[i, j]$ for $a, b \in K^{*}$, where $i^{3}=a, j^{3}=b$ and $j i=\zeta i j$, cf., e.g., [9, 3.5]. These are either split (i.e., isomorphic to $\mathrm{M}_{3}(K)$) or non-split (i.e., division algebras).

Thus, we can produce all crossed homomorphisms (and hence all torsors) by starting with a cyclic algebra, and if the cyclic algebra is non-split, the torsor will be non-trivial.

Without loss of generality, we may assume that a is not a third power in K. We then have a C_{3}-extension $M / K=K(\sqrt[3]{a}) / K$ which splits $(a, b / K)_{3}$, since we can let

$$
i=\left(\begin{array}{ccc}
\sqrt[3]{a} & & \\
& \zeta \cdot \sqrt[3]{a} & \\
& & \zeta^{2} \cdot \sqrt[3]{a}
\end{array}\right), \quad j=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
b & 0 & 0
\end{array}\right)
$$

The crossed homomorphism corresponding to $(a, b / K)_{3}$ then factors through C_{3}, i.e., it is of the form $e: C_{3} \rightarrow \operatorname{PGL}_{3}(M)$. Let $\sigma \in C_{3}$ be given by $\sigma(\sqrt[3]{a})=\zeta \cdot \sqrt[3]{a}$. Hence, we can find e
by finding e_{σ}, which again can be done by requiring that the matrices i and j above should be invariant under the twisted Galois action of C_{3} on $\mathrm{M}_{3}(M)$, i.e., that

$$
e_{\sigma} \sigma(i) e_{\sigma}^{-1}=i, \quad e_{\sigma} \sigma(j) e_{\sigma}^{-1}=j
$$

It is obvious that we can simply let $e_{\sigma}=j^{-1}$. We then have

$$
\varphi\left(e_{\sigma}\right)=E_{\sigma}=\left(\begin{array}{cccccccc}
& & & & & & 0 & 0 \\
b & 1 \\
& & & & & & 0 & 0 \\
0 & b & 0 \\
0 & 0 & 1 / b & & & & & \\
1 & 0 & 0 & & & & & \\
0 & 1 & 0 & & & & & \\
& & & 0 & 0 & 1 / b & & \\
& & & 1 & 0 & 0 & & \\
& & & 0 & 1 & 0 & & \\
&
\end{array}\right)
$$

and get $E_{\sigma}=P \sigma(P)^{-1}$ for

$$
P=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & \zeta \cdot \sqrt[3]{a} & 0 & 0 & \zeta^{2} \cdot(\sqrt[3]{a})^{2} & 0 & 0 \tag{2}\\
0 & b & 0 & 0 & \zeta \cdot \sqrt[3]{a} b & 0 & 0 & \zeta^{2} \cdot(\sqrt[3]{a})^{2} b & 0 \\
0 & 0 & b & 0 & 0 & \zeta \cdot \sqrt[3]{a} b & 0 & 0 & \zeta^{2} \cdot(\sqrt[3]{a})^{2} b \\
0 & 0 & 1 & 0 & 0 & \zeta^{2} \cdot \sqrt[3]{a} & 0 & 0 & \zeta \cdot(\sqrt[3]{a})^{2} \\
1 & 0 & 0 & \zeta^{2} \cdot \sqrt[3]{a} & 0 & 0 & \zeta \cdot(\sqrt[3]{a})^{2} & 0 & 0 \\
0 & b & 0 & 0 & \zeta^{2} \cdot \sqrt[3]{a} b & 0 & 0 & \zeta \cdot(\sqrt[3]{a})^{2} b & 0 \\
0 & 1 & 0 & 0 & \sqrt[3]{a} & 0 & 0 & (\sqrt[3]{a})^{2} & 0 \\
0 & 0 & 1 & 0 & 0 & \sqrt[3]{a} & 0 & 0 & (\sqrt[3]{a})^{2} \\
1 & 0 & 0 & \sqrt[3]{a} & 0 & 0 & (\sqrt[3]{a})^{2} & 0 & 0
\end{array}\right) .
$$

4. The derivations

We see that

$$
P^{-1} P^{\prime}=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{2 b^{\prime}}{3 b} & 0 & 0 & -\frac{\sqrt[3]{a} b^{\prime}}{3 b} & 0 & 0 & -\frac{\sqrt[3]{a} b^{2} b^{\prime}}{3 b} & 0 \\
0 & 0 & \frac{b^{\prime}}{3 b} & 0 & 0 & \frac{\zeta \cdot \sqrt[3]{a} b^{\prime}}{3 b} & 0 & 0 & \frac{\zeta^{2} \cdot \sqrt[3]{a^{2} b^{\prime}}}{3 b} \\
0 & 0 & 0 & \frac{a^{\prime}}{3 a} & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{b^{\prime}}{3 \sqrt[3]{a} b} & 0 & 0 & \frac{a^{\prime}}{3 a}+\frac{2 b^{\prime}}{3 b} & 0 & 0 & -\frac{\sqrt[3]{a} b^{\prime}}{3 b} & 0 \\
0 & 0 & \frac{\zeta^{2} b^{\prime}}{3 \sqrt[3]{a} b} & 0 & 0 & \frac{a^{\prime}}{3 a}+\frac{b^{\prime}}{3 b} & 0 & 0 & \frac{\zeta \cdot \sqrt[3]{a} b^{\prime}}{3 b} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{2 a^{\prime}}{3 a} & 0 & 0 \\
0 & -\frac{b^{\prime}}{3 \sqrt[3]{a^{2} b}} & 0 & 0 & -\frac{b^{\prime}}{3 \sqrt[3]{a} b} & 0 & 0 & \frac{2 a^{\prime}}{3 a}+\frac{2 b^{\prime}}{3 b} & 0 \\
0 & 0 & \frac{\zeta b^{\prime}}{3 \sqrt[3]{a} 2 b} & 0 & 0 & \frac{\zeta^{2} b^{\prime}}{3 \sqrt[3]{a} b} & 0 & 0 & \frac{2 a^{\prime}}{3 a}+\frac{b^{\prime}}{3 b}
\end{array}\right) .
$$

This matrix does not have its coefficients in K.

The derivations on $K[Y, 1 / \operatorname{det} Y]$, where $Y=X P$ and X is a generic point for PGL_{3}, are given by $Y^{\prime}=Y B$, where $B=P^{-1} A P+P^{-1} P^{\prime}$, and $A \in \mathfrak{p g l}_{3}(M)$ is picked such that $B \in$ $\mathrm{M}_{9}(K)$.

We know that there exists an element $C \in P^{-1} \mathfrak{p g l}_{3}(M) P$ such that $P^{-1} P^{\prime}-C$ has coefficients in K [6, Proposition 1], meaning that B can then be picked in

$$
\begin{aligned}
\left(P^{-1} \mathfrak{p g l}_{3}(M) P+P^{-1} P^{\prime}\right)^{C_{3}} & =\left(P^{-1} \mathfrak{p g l}_{3}(M) P+\left(P^{-1} P^{\prime}-C\right)\right)^{C_{3}} \\
& =\left(P^{-1} \mathfrak{p g l}_{3}(M) P\right)^{C_{3}}+\left(P^{-1} P^{\prime}-C\right)
\end{aligned}
$$

Computations show that we can let $C=P^{-1} U P$, where U is the element in $\mathfrak{p g l}_{3}(M)$ with $a_{11}=-b^{\prime} / 3 b$ and the other $a_{i j}$ all 0 . Then,

$$
P^{-1} P^{\prime}-C=\operatorname{diag}\left(0, \frac{2}{3} \frac{b^{\prime}}{b}, \frac{1}{3} \frac{b^{\prime}}{b}, \frac{1}{3} \frac{a^{\prime}}{a}, \frac{1}{3} \frac{a^{\prime}}{a}+\frac{2}{3} \frac{b^{\prime}}{b}, \frac{1}{3} \frac{a^{\prime}}{a}+\frac{1}{3} \frac{b^{\prime}}{b}, \frac{2}{3} \frac{a^{\prime}}{a}, \frac{2}{3} \frac{a^{\prime}}{a}+\frac{2}{3} \frac{b^{\prime}}{b}, \frac{2}{3} \frac{a^{\prime}}{a}+\frac{1}{3} \frac{b^{\prime}}{b}\right) .
$$

Next, we compute $\mathfrak{T}=\left(P^{-1} \mathfrak{p g l}_{3}(M) P\right)^{C_{3}}$. This is the twisted Lie algebra associated to the torsor (cf. [6]), and is itself a Lie algebra over K of dimension 8. Finding \mathfrak{T} is just linear algebra, and we find that the elements of \mathfrak{T} are $P^{-1} U P$, where U is an element from $\mathfrak{p g l}_{3}(M)$ with

$$
\begin{aligned}
& a_{11}=x_{1} \cdot \sqrt[3]{a}-x_{2} \zeta(\sqrt[3]{a})^{2} \\
& a_{12}=y_{1}-y_{2} \cdot \sqrt[3]{a}+y_{3} \zeta^{2}(\sqrt[3]{a})^{2} \\
& a_{13}=z_{1}+z_{2} \cdot \sqrt[3]{a}+z_{3}(\sqrt[3]{a})^{2} \\
& a_{21}=b\left(z_{1}+z_{2} \zeta \cdot \sqrt[3]{a}+z_{3} \zeta^{2}(\sqrt[3]{a})^{2}\right)=b \sigma\left(a_{13}\right) \\
& a_{22}=x_{1} \zeta \cdot \sqrt[3]{a}-x_{2}(\sqrt[3]{a})^{2}=\sigma\left(a_{11}\right) \\
& a_{23}=y_{1}-y_{2} \zeta \cdot \sqrt[3]{a}+y_{3} \zeta(\sqrt[3]{a})^{2}=\sigma\left(a_{12}\right) \\
& a_{31}=b\left(y_{1}-y_{2} \zeta^{2} \cdot \sqrt[3]{a}+y_{3}(\sqrt[3]{a})^{2}\right)=b \sigma^{2}\left(a_{12}\right) \\
& a_{32}=b\left(z_{1}+z_{2} \zeta^{2} \cdot \sqrt[3]{a}+z_{3} \zeta(\sqrt[3]{a})^{2}\right)=b \sigma^{2}\left(a_{13}\right)
\end{aligned}
$$

where $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3} \in K$.
For convenience, we scale x_{1} and x_{2} by $(1+2 \zeta) / 3$, and $y_{1}, y_{2}, y_{3}, z_{1}, z_{2}$ and z_{3} by $(1-\zeta) / 3$. The result is

$$
\begin{aligned}
& P^{-1} U P \\
& \quad=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -a z_{3} & a x_{2} & a y_{3} & a z_{2} & a \zeta x_{1} & -a y_{2} \\
0 & 0 & 0 & -a \zeta y_{3} & a b \zeta z_{3} & -a \zeta x_{2} & a \zeta^{2} y_{2} & -a b \zeta^{2} z_{2} & -a x_{1} \\
0 & -b \zeta^{2} y_{2} & -b z_{2} & 0 & b y_{1} & -\zeta z_{1} & 0 & -a b y_{3} & -a b \zeta z_{3} \\
0 & \zeta x_{1} & \zeta y_{2} & -\zeta z_{1} & 0 & y_{1} & a \zeta^{2} z_{3} & a x_{2} & 0 \\
0 & b \zeta z_{2} & -x_{1} & y_{1} & -b \zeta z_{1} & 0 & a \zeta^{2} y_{3} & 0 & -a \zeta x_{2} \\
0 & b \zeta y_{3} & b z_{3} & 0 & b y_{2} & b \zeta^{2} z_{2} & 0 & -b \zeta y_{1} & b z_{1} \\
0 & x_{2} & -\zeta^{2} y_{3} & -\zeta z_{2} & \zeta x_{1} & 0 & z_{1} & 0 & -\zeta y_{1} \\
0 & -b \zeta^{2} z_{3} & -\zeta x_{2} & -\zeta y_{2} & 0 & -x_{1} & -\zeta y_{1} & b z_{1} & 0
\end{array}\right) .
\end{aligned}
$$

Thus, the derivations on $K(Y)$ are given by $Y^{\prime}=Y B$ for

$$
B=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{3}\\
0 & \frac{2}{3} \frac{b^{\prime}}{b} & 0 & -a z_{3} & a x_{2} & a y_{3} & a z_{2} & a \zeta x_{1} & -a y_{2} \\
0 & 0 & \frac{1}{3} \frac{b^{\prime}}{b} & -a \zeta y_{3} & a b \zeta z_{3} & -a \zeta x_{2} & a \zeta^{2} y_{2} & -a b \zeta^{2} z_{2} & -a x_{1} \\
0 & -b \zeta^{2} y_{2} & -b z_{2} & \frac{1}{3} \frac{a^{\prime}}{a} & b y_{1} & -\zeta z_{1} & 0 & -a b y_{3} & -a b \zeta z_{3} \\
0 & \zeta x_{1} & \zeta y_{2} & -\zeta z_{1} & \frac{1}{3} \frac{a^{\prime}}{a}+\frac{2}{3} \frac{b^{\prime}}{b} & y_{1} & a \zeta^{2} z_{3} & a x_{2} & 0 \\
0 & b \zeta z_{2} & -x_{1} & y_{1} & -b \zeta z_{1} & \frac{1}{3} \frac{a^{\prime}}{a}+\frac{1}{3} \frac{b^{\prime}}{b} & a \zeta^{2} y_{3} & 0 & -a \zeta x_{2} \\
0 & b \zeta y_{3} & b z_{3} & 0 & b y_{2} & b \zeta_{2}^{2} z_{2} & \frac{2}{3} \frac{a^{\prime}}{a} & -b \zeta y_{1} & b z_{1} \\
0 & x_{2} & -\zeta^{2} y_{3} & -\zeta z_{2} & \zeta x_{1} & 0 & z_{1} & \frac{2}{3} \frac{a^{\prime}}{a}+\frac{2}{3} \frac{b^{\prime}}{b} & -\zeta y_{1} \\
0 & -b \zeta^{2} z_{3} & -\zeta x_{2} & -\zeta y_{2} & 0 & -x_{1} & -\zeta y_{1} & b z_{1} & \frac{2}{3} \frac{a^{\prime}}{a}+\frac{1}{3} \frac{b^{\prime}}{b}
\end{array}\right) .
$$

5. A Picard-Vessiot extension

Let $a, b, x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}$ be differentially independent indeterminates over \mathcal{C} and let $\mathcal{K}=\mathcal{C}\left\langle a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}\right\rangle$ where the $a_{i j}$ are defined in the previous section. Put $Z_{11}=x_{1} \sqrt[3]{a}, Z_{12}=x_{2}(\sqrt[3]{a})^{2}, Z_{13}=y_{1}+\zeta y_{3}(\sqrt[3]{a})^{2}, Z_{21}=y_{1}-(1+\zeta) y_{2}(\sqrt[3]{a})^{2}, Z_{22}=a_{31}$, $Z_{23}=a_{13}, Z_{31}=b z_{1}-b z_{2} \sqrt[3]{a}, Z_{32}=b z_{1}-b z_{3}(\sqrt[3]{a})^{2}$. A calculation shows that $Z_{i j} \in \mathcal{K}$. Since $x_{1} \sqrt[3]{a}, x_{2} \sqrt[3]{a^{2}}, y_{1}, y_{2}(\sqrt[3]{a})^{2}, y_{3}(\sqrt[3]{a})^{2}, z_{1}, z_{2} \sqrt[3]{a}, z_{3}(\sqrt[3]{a})^{2}$ and b are differentially independent over \mathcal{C} it immediately follows that the $Z_{i j}$ are differentially independent over \mathcal{C}. Therefore the differential transcendence degree [8, Definition 3.2.33 and Theorem 5.4.12] of \mathcal{K} over \mathcal{C} has to be eight. This proves that the $a_{i j}$ are differentially independent over \mathcal{C} as well. By [4, Theorem 4.1.2] it follows that $\mathcal{K}\left(\mathrm{PGL}_{3}\right)$ (i.e., the function field of the trivial torsor) is a PVE with group PGL_{3} for the equation $X^{\prime}=X U$, where U is given by (1).

Now, let $\mathcal{F}=\mathcal{C}\left\langle a, b, x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right\rangle$. Since $\overline{\mathcal{F}}=\overline{\mathcal{K}\langle a, b\rangle}$ we have that $\overline{\mathcal{F}}\left(\mathrm{PGL}_{3}\right) \supset \mathcal{K}\langle a, b\rangle\left(\mathrm{PGL}_{3}\right)$ is an algebraic and thus no-new-constant extension, since the field of constants of $\mathcal{K}\langle a, b\rangle\left(\mathrm{PGL}_{3}\right)$ is algebraically closed. Thus $\overline{\mathcal{F}}\left(\mathrm{PGL}_{3}\right) \supset \overline{\mathcal{F}}$ is a PVE with group PGL_{3}. It follows at once that the function field $\mathcal{F}(Y)$ of the PGL_{3}-torsor corresponding to the matrix P in (2) is a PVE of \mathcal{F} with group PGL_{3} for the equation $X^{\prime}=X B$, with B as in (3). Since a, b are differential indeterminates over \mathcal{C} the associated CSA is non-split and the corresponding torsor is non-trivial.

6. Generic extension

Theorem 1. The extension $\mathcal{F}(Y) \supset \mathcal{F}$ is a descent generic PVE for PGL_{3}.

Proof. Let the matrix $\mathcal{A}\left(Z_{i}\right)$ in Definition 1, where the $Z_{i}, i=1, \ldots, 10$, respectively stand for the differential indeterminates $a, b, x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}$, be the matrix B in (3).

Suppose that $E \supset F$ is a PVE with differential Galois group $H \leqslant \mathrm{PGL}_{3}$. Let X, X_{H} respectively denote generic points of PGL_{3} and H. Then $E=F\left(Y_{H}\right)$, where $Y_{H}=X_{H} P$ for some invertible matrix P of the form (2), with coefficients in \bar{F}. Moreover, there is an F-algebra homomorphism of coordinate rings

$$
F\left[X P, \operatorname{det}(X P)^{-1}\right] \rightarrow F\left[X_{H} P, \operatorname{det}\left(X_{H} P\right)^{-1}\right] .
$$

Since $X_{H} P$ is a generic point for an H-torsor we have that $X P$ is a generic point for a $\mathrm{PGL}_{3}-$ torsor, and therefore the twisted Lie algebra associated to the H-torsor is contained in that for the PGL_{3}-torsor. In turn, this implies that the generic point Y_{H} satisfies an equation with matrix $\tilde{B}=\mathcal{A}\left(f_{i}\right)$ for some $f_{i} \in F$.

Conversely, a specialization $\mathcal{A}\left(f_{i}\right)$ of $\mathcal{A}\left(Z_{i}\right)$ with $f_{i} \in F$, gives a derivation on the coordinate ring $F\left[X P, \operatorname{det}(X P)^{-1}\right]$ of a PGL_{3}-torsor, which may have new constants. We get a PVE of F by taking the quotient field of the factor ring

$$
F\left[X P, \operatorname{det}(X P)^{-1}\right] / M
$$

where M is a maximal differential ideal. The differential Galois group in this case is the closed subgroup of PGL_{3} consisting of those elements that stabilize M.

It is now clear that a fundamental matrix for the equation $\eta^{\prime}=\eta \mathcal{A}\left(Z_{i}\right)$ specializes to one for $\eta^{\prime}=\eta \mathcal{A}\left(f_{i}\right)$. For, on the one hand, a solution of $\eta^{\prime}=\eta \mathcal{A}\left(Z_{i}\right)$ is given by a generic point $X P\left(Z_{1}, Z_{2}\right)$ of the PGL_{3}-torsor corresponding to a matrix $P\left(Z_{1}, Z_{2}\right)$ of the form (2), with a and b, respectively, the differential indeterminates Z_{1} and Z_{2}.

On the other hand, a solution of $\eta^{\prime}=\eta \mathcal{A}\left(f_{i}\right)$ is given by a generic point $X_{H} P\left(f_{1}, f_{2}\right)$ of an H-torsor $\left(H \leqslant \mathrm{PGL}_{3}\right)$ corresponding to a matrix $P\left(f_{1}, f_{2}\right)$ also of the form (2), with a and b, respectively, some elements $f_{1}, f_{2} \in F$.

Clearly, the matrix $P\left(Z_{1}, Z_{2}\right)$ permits specialization of Z_{1} and Z_{2} to any non-zero values f_{1} and f_{2}.

References

[1] A.A. Albert, Structure of Algebras, American Mathematical Society, 1961.
[2] A.K. Bhandari, N. Sankaran, Generic differential equations and Picard-Vessiot extensions, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994) 353-358.
[3] L. Goldman, Specialization and Picard-Vessiot theory, Trans. Amer. Math. Soc. 85 (1957) 327-356.
[4] L. Juan, Pure Picard-Vessiot extensions with generic properties, Proc. Amer. Math. Soc. 9 (2004) 2549-2556.
[5] L. Juan, Generic Picard-Vessiot extensions for connected-by-finite groups, J. Algebra 312 (2007) 194-206.
[6] L. Juan, A. Ledet, Equivariant vector fields on non-trivial SO_{n}-torsors and differential Galois theory, J. Algebra 316 (2) (2007) 735-745.
[7] L. Juan, A. Ledet, On generic differential SO_{n}-extensions, Proc. Amer. Math. Soc., in press.
[8] M.V. Kondratieva, A.B. Levin, A.V. Mikhalev, E.V. Pankatriev, Differential and Difference Dimension Polynomials, Kluwer Academic Publishers, Dordrecht, 1999.
[9] A. Ledet, Brauer Type Embedding Problems, Fields Inst. Monogr., vol. 21, American Mathematical Society, 2005.
[10] A. Magid, Lectures in Differential Galois Theory, Univ. Lecture Ser., American Mathematical Society, 1994.
[11] M. van der Put, M.F. Singer, Galois Theory of Linear Differential Equations, Grundlehren Math. Wiss., vol. 328, Springer-Verlag, 2003.
[12] J.P. Serre, Galois Cohomology, Springer-Verlag, 1997.

[^0]: * Corresponding author.

 E-mail addresses: lourdes.juan@ttu.edu (L. Juan), arne.ledet@ttu.edu (A. Ledet).
 0021-8693/\$ - see front matter © 2007 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2007.09.022

