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Abstract

Let F be a differential field of characteristic zero with algebraically closed field of constants. We provide
an explicit description of the twisted Lie algebras of PGL3-equivariant derivations on the coordinate rings
of F -irreducible PGL3-torsors in terms of nine-dimensional central simple algebras over F . We use this to
construct a Picard–Vessiot extension which is the function field of a non-trivial torsor and which is a generic
extension for PGL3.
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1. Introduction

We work in the standard differential Galois theory context and therefore all the fields con-
sidered are of characteristic zero. Let C be an algebraically closed field with trivial derivation,
G ⊂ GLn an algebraic group over C and F a differential field with field of constants C. The
following facts are well known:

(1) The Picard–Vessiot extensions (PVEs for short) of F with differential Galois group G, if any,
are function fields of F -irreducible G-torsors (cf. [10, Theorem 5.12] or [11, Theorem 1.28]).

(2) The isomorphism classes of G-torsors are in one-to-one correspondence with the equivalence
classes of crossed homomorphisms in the first Galois cohomology set H 1(F,G) (cf. [12,
Proposition 33]).
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Therefore,

(3) To each PVE with group G one can associate an element of H 1(F,G) which, by Speiser’s
Theorem [9, Exercise 1.61] corresponds to a matrix P ∈ GLn(F̄ ), F̄ denoting the algebraic
closure.

The correspondence in (3) can be used to provide a precise description of the ‘twisted’ Lie
algebras of G-equivariant derivations on the function fields of irreducible G-torsors, when a
good interpretation of the elements of H 1(F,G) is available—meaning that the matrices P can
be given explicitly (see [6] for details).

In the case of PGLn it is well known that the elements of H 1(F,PGLn) correspond to iso-
morphism classes of n2-dimensional CSAs (central simple algebras) over F , cf. [9, Section 4.2].
Regrettably, we stop short here since the structure of those is poorly understood in general. In
this paper we will discuss the case n = 3, where the CSAs are known to be cyclic [1]. We point
out that for the case n = 4 the structure is also known: the CSAs are crossed products based on a
Galois extension for the Klein four group, cf. [1]. However, it is not immediately clear how these
can be parametrized, leaving this case open to further research. Finally, the case n = 2 is of no
interest in this paper since over the fields that we consider PGL2 is isomorphic to SO3, a group
already studied in [6,7].

Our objective is to provide a systematic description of the PVEs E ⊃ F with differential
Galois group PGL3, for an arbitrary differential field F with field of constants C, by means of
a construction similar to the one done in [7] for the special orthogonal groups. More precisely,
let glm(·) be the Lie algebra of m × m matrices with coefficients in some specified field, and
consider the differential rational field F = C〈Z1, . . . ,Zk〉, where Z1, . . . ,Zk are differentially
independent indeterminates over C. We will construct a PVE E of F which is the function field
of a non-trivial PGL3-torsor and which satisfies the following:

Definition 1. (See [7].) A Picard–Vessiot G-extension (i.e., a PVE with differential Galois group
isomorphic to G) E ⊃ F for the equation X′ = XA(Z), with A(Z) = A(Z1, . . . ,Zk) ∈ glm(F)

for some m, is said to be a generic extension for G if for every Picard–Vessiot G-extension
E ⊃ F there is a specialization Zi → fi ∈ F , such that the equation X′ = XA(f1, . . . , fk) gives
rise to E ⊃ F and any fundamental solution matrix maps to one for the specialized equation.

The extension that we construct has the descent generic property [7], meaning that for any
differential field F with field of constants C there is a PVE E ⊃ F with differential Galois group
H � G if and only if there are fi ∈ F such that the matrix A(f1, . . . , fn) is well defined, the
equation X′ = XA(f1, . . . , fn) gives rise to the extension E ⊃ F , and any fundamental solution
matrix of X′ = XA(Z) maps to one of X′ = XA(f1, . . . , fn) under Zi → fi .

Generic extensions (and the related notions of generic equations [2,3]) are broadly discussed
in [7]. We point out that the constructions in [4,5] provide a more restricted form of such ex-
tensions: in [4] all connected groups are considered, but the extensions are function fields of the
trivial torsor. In [5] the groups G considered are the semidirect product H �G0 of the connected
component G0 by a finite group H , and the extensions are function fields of F -irreducible G-
torsors of the form W × G0, for some F -irreducible H -torsor W . The H -subextensions are also
considered fixed. Although these omit the description of extensions which are function fields of
non-trivial G-torsors, they cover many more groups than the ones for which an explicit descrip-
tion of the torsors using the first Galois cohomology is known. In [7] we also discuss how the
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extensions in [4] can be used indirectly in the general situation of cohomologically non-trivial
connected groups when a good description of the torsors is not available.

2. The representation of PGL3

Let K be a field. It is well known that an isomorphism Mm(K) ⊗K Mn(K) � Mmn(K) is
given by

A ⊗ 1 �→

⎛
⎜⎜⎜⎜⎝

A

A

A
.. .

A

⎞
⎟⎟⎟⎟⎠

and

1 ⊗ B �→

⎛
⎜⎜⎝

b11I b12I . . . b1nI

b21I b22I . . . b2nI
...

...
. . .

...

bn1I bn2I . . . bnnI

⎞
⎟⎟⎠ ,

or simply

(A ⊗ B)ij = a((i−1)modm)+1,((j−1)modm)+1 · b(i−1)/m�+1,(j−1)/m�+1.

Correspondingly, we get a group homomorphism GLn → SLn2 by

A �→ A ⊗ A−T .

Here, the image is closed: If we identify Mn(K) with Kn2
, the image consists exactly of those

vector space automorphisms on Mn(K) that preserve matrix multiplication, i.e., the algebra au-
tomorphisms, and this condition clearly defines a Zariski closed set.

Since the kernel consists exactly of the scalar matrices, we have a representation ϕ : PGLn →
SLn2 .

We will consider this representation in the case n = 3. (And we refrain from writing ϕ out
explicitly.) Now, PGL3 is an 8-dimensional irreducible algebraic group, and we will need to
describe its Lie algebra pgl3. As pgl3 consists simply of those 9 × 9 matrices C, for which
I + εC is in PGL3(K[ε]) for an ‘algebraic infinitesimal’ ε, i.e., a non-zero quantity satisfying
ε2 = 0 (see, e.g., [11, A.2.2]), we can produce such matrices by looking at (I + εA)⊗ (I − εAT )

for 3 × 3 matrices A. In fact, if we assume Tr(A) = 0, we get that

(I + εA) ⊗ (
I − εAT

) = I + εU

for
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U = A ⊗ 1 − 1 ⊗ AT

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a12 a13 −a21 0 0 −a31 0 0
a21 −a11 + a22 a23 0 −a21 0 0 −a31 0
a31 a32 −a22 − 2a11 0 0 −a21 0 0 −a31

−a12 0 0 a11 − a22 a12 a13 −a32 0 0
0 −a12 0 a21 0 a23 0 −a32 0
0 0 −a12 a31 a32 −a11 − 2a22 0 0 −a32

−a13 0 0 −a23 0 0 a22 + 2a11 a12 a13
0 −a13 0 0 −a23 0 a21 a11 + 2a22 a23
0 0 −a13 0 0 −a23 a31 a32 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(1)

This gives us an 8-dimensional subspace of pgl3, i.e., all of pgl3.

3. The cohomology

Let K be a field as before. From the short-exact sequence

1 → K̄∗ → GL3(K̄) → PGL3(K̄) → 1,

we get (part of) a long-exact cohomology sequence

1 → H 1(K,PGL3)→
δ

H 2(K,Gm),

and if we identify H 2(K,Gm) with the Brauer group Br(K), it is known (see, e.g., [9,
Lemma 6.3.1]) that

Lemma 1. For e ∈ H 1(K,PGL3) we have δ[e] = [M3(K)e], where M3(K)e is the Galois twist
of M3(K) by e.

The Galois twists of M3(K) are the nine-dimensional central simple algebras over K . These
are classically known to be cyclic, cf. [1, Theorem XI.5]. In our case, since the field K contains
a primitive third root of unity ζ , this means that the algebras have the form (a, b/K)3 = K[i, j ]
for a, b ∈ K∗, where i3 = a, j3 = b and ji = ζ ij , cf., e.g., [9, 3.5]. These are either split (i.e.,
isomorphic to M3(K)) or non-split (i.e., division algebras).

Thus, we can produce all crossed homomorphisms (and hence all torsors) by starting with a
cyclic algebra, and if the cyclic algebra is non-split, the torsor will be non-trivial.

Without loss of generality, we may assume that a is not a third power in K . We then have a
C3-extension M/K = K( 3

√
a)/K which splits (a, b/K)3, since we can let

i =
( 3

√
a

ζ · 3
√

a

ζ 2 · 3
√

a

)
, j =

( 0 1 0
0 0 1
b 0 0

)
.

The crossed homomorphism corresponding to (a, b/K)3 then factors through C3, i.e., it is of
the form e :C3 → PGL3(M). Let σ ∈ C3 be given by σ( 3

√
a) = ζ · 3

√
a. Hence, we can find e
Please cite this article in press as: L. Juan, A. Ledet, On Picard–Vessiot extensions with group PGL3, J. Algebra
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by finding eσ , which again can be done by requiring that the matrices i and j above should be
invariant under the twisted Galois action of C3 on M3(M), i.e., that

eσ σ (i)e−1
σ = i, eσ σ (j)e−1

σ = j.

It is obvious that we can simply let eσ = j−1. We then have

ϕ(eσ ) = Eσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
b 0 0
0 b 0

0 0 1/b

1 0 0
0 1 0

0 0 1/b

1 0 0
0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and get Eσ = Pσ(P )−1 for

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ζ · 3
√

a 0 0 ζ 2 · ( 3
√

a)2 0 0
0 b 0 0 ζ · 3

√
ab 0 0 ζ 2 · ( 3

√
a)2b 0

0 0 b 0 0 ζ · 3
√

ab 0 0 ζ 2 · ( 3
√

a)2b

0 0 1 0 0 ζ 2 · 3
√

a 0 0 ζ · ( 3
√

a)2

1 0 0 ζ 2 · 3
√

a 0 0 ζ · ( 3
√

a)2 0 0
0 b 0 0 ζ 2 · 3

√
ab 0 0 ζ · ( 3

√
a)2b 0

0 1 0 0 3
√

a 0 0 ( 3
√

a)2 0
0 0 1 0 0 3

√
a 0 0 ( 3

√
a)2

1 0 0 3
√

a 0 0 ( 3
√

a)2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2)

4. The derivations

We see that

P −1P ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0

0 2b′
3b

0 0 − 3√ab′
3b

0 0 − 3√a2b′
3b

0

0 0 b′
3b

0 0 ζ · 3√ab′
3b

0 0 ζ 2· 3√a2b′
3b

0 0 0 a′
3a

0 0 0 0 0

0 − b′
3 3√ab

0 0 a′
3a

+ 2b′
3b

0 0 − 3√ab′
3b

0

0 0 ζ 2b′
3 3√ab

0 0 a′
3a

+ b′
3b

0 0 ζ · 3√ab′
3b

0 0 0 0 0 0 2a′
3a

0 0

0 − b′
3 3√a2b

0 0 − b′
3 3√ab

0 0 2a′
3a

+ 2b′
3b

0

0 0 ζb′
3 3√a2b

0 0 ζ 2b′
3 3√ab

0 0 2a′
3a

+ b′
3b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix does not have its coefficients in K .
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The derivations on K[Y,1/detY ], where Y = XP and X is a generic point for PGL3, are
given by Y ′ = YB , where B = P −1AP + P −1P ′, and A ∈ pgl3(M) is picked such that B ∈
M9(K).

We know that there exists an element C ∈ P −1pgl3(M)P such that P −1P ′ − C has coeffi-
cients in K [6, Proposition 1], meaning that B can then be picked in

(
P −1pgl3(M)P + P −1P ′)C3 = (

P −1pgl3(M)P + (
P −1P ′ − C

))C3

= (
P −1pgl3(M)P

)C3 + (
P −1P ′ − C

)
.

Computations show that we can let C = P −1UP , where U is the element in pgl3(M) with
a11 = −b′/3b and the other aij all 0. Then,

P −1P ′ − C = diag
(
0, 2

3
b′
b
, 1

3
b′
b
, 1

3
a′
a
, 1

3
a′
a

+ 2
3

b′
b
, 1

3
a′
a

+ 1
3

b′
b
, 2

3
a′
a
, 2

3
a′
a

+ 2
3

b′
b
, 2

3
a′
a

+ 1
3

b′
b

)
.

Next, we compute T = (P −1pgl3(M)P )C3 . This is the twisted Lie algebra associated to the
torsor (cf. [6]), and is itself a Lie algebra over K of dimension 8. Finding T is just linear algebra,
and we find that the elements of T are P −1UP , where U is an element from pgl3(M) with

a11 = x1 · 3
√

a − x2ζ(
3
√

a)2,

a12 = y1 − y2 · 3
√

a + y3ζ
2(

3
√

a)2,

a13 = z1 + z2 · 3
√

a + z3(
3
√

a)2,

a21 = b
(
z1 + z2ζ · 3

√
a + z3ζ

2(
3
√

a)2) = bσ(a13),

a22 = x1ζ · 3
√

a − x2(
3
√

a)2 = σ(a11),

a23 = y1 − y2ζ · 3
√

a + y3ζ(
3
√

a)2 = σ(a12),

a31 = b
(
y1 − y2ζ

2 · 3
√

a + y3(
3
√

a)2) = bσ 2(a12),

a32 = b
(
z1 + z2ζ

2 · 3
√

a + z3ζ(
3
√

a)2) = bσ 2(a13),

where x1, x2, y1, y2, y3, z1, z2, z3 ∈ K .
For convenience, we scale x1 and x2 by (1+2ζ )/3, and y1, y2, y3, z1, z2 and z3 by (1− ζ )/3.

The result is

P −1UP

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 −az3 ax2 ay3 az2 aζx1 −ay2
0 0 0 −aζy3 abζz3 −aζx2 aζ 2y2 −abζ 2z2 −ax1
0 −bζ 2y2 −bz2 0 by1 −ζz1 0 −aby3 −abζz3
0 ζx1 ζy2 −ζz1 0 y1 aζ 2z3 ax2 0
0 bζz2 −x1 y1 −bζz1 0 aζ 2y3 0 −aζx2
0 bζy3 bz3 0 by2 bζ 2z2 0 −bζy1 bz1
0 x2 −ζ 2y3 −ζz2 ζx1 0 z1 0 −ζy1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Thus, the derivations on K(Y) are given by Y ′ = YB for

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0

0 2
3

b′
b

0 −az3 ax2 ay3 az2 aζx1 −ay2

0 0 1
3

b′
b

−aζy3 abζz3 −aζx2 aζ 2y2 −abζ 2z2 −ax1

0 −bζ 2y2 −bz2
1
3

a′
a by1 −ζz1 0 −aby3 −abζz3

0 ζx1 ζy2 −ζz1
1
3

a′
a + 2

3
b′
b

y1 aζ 2z3 ax2 0

0 bζz2 −x1 y1 −bζz1
1
3

a′
a + 1

3
b′
b

aζ 2y3 0 −aζx2

0 bζy3 bz3 0 by2 bζ 2z2
2
3

a′
a −bζy1 bz1

0 x2 −ζ 2y3 −ζz2 ζx1 0 z1
2
3

a′
a + 2

3
b′
b

−ζy1

0 −bζ 2z3 −ζx2 −ζy2 0 −x1 −ζy1 bz1
2
3

a′
a + 1

3
b′
b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3)

5. A Picard–Vessiot extension

Let a, b, x1, x2, y1, y2, y3, z1, z2, z3 be differentially independent indeterminates over C and
let K = C〈a11, a12, a13, a21, a22, a23, a31, a32〉 where the aij are defined in the previous section.
Put Z11 = x1

3
√

a, Z12 = x2(
3
√

a)2, Z13 = y1 +ζy3(
3
√

a)2, Z21 = y1 −(1+ζ )y2(
3
√

a)2, Z22 = a31,
Z23 = a13, Z31 = bz1 −bz2

3
√

a, Z32 = bz1 −bz3(
3
√

a)2. A calculation shows that Zij ∈K. Since
x1

3
√

a, x2
3
√

a2, y1, y2(
3
√

a)2, y3(
3
√

a)2, z1, z2
3
√

a, z3(
3
√

a)2 and b are differentially independent
over C it immediately follows that the Zij are differentially independent over C. Therefore the
differential transcendence degree [8, Definition 3.2.33 and Theorem 5.4.12] of K over C has to be
eight. This proves that the aij are differentially independent over C as well. By [4, Theorem 4.1.2]
it follows that K(PGL3) (i.e., the function field of the trivial torsor) is a PVE with group PGL3
for the equation X′ = XU , where U is given by (1).

Now, let F = C〈a, b, x1, x2, y1, y2, y3, z1, z2, z3〉. Since F̄ = K〈a, b〉 we have that
F̄(PGL3) ⊃ K〈a, b〉(PGL3) is an algebraic and thus no-new-constant extension, since the field
of constants of K〈a, b〉(PGL3) is algebraically closed. Thus F̄(PGL3) ⊃ F̄ is a PVE with group
PGL3. It follows at once that the function field F(Y ) of the PGL3-torsor corresponding to the
matrix P in (2) is a PVE of F with group PGL3 for the equation X′ = XB , with B as in (3). Since
a, b are differential indeterminates over C the associated CSA is non-split and the corresponding
torsor is non-trivial.

6. Generic extension

Theorem 1. The extension F(Y ) ⊃ F is a descent generic PVE for PGL3.

Proof. Let the matrix A(Zi) in Definition 1, where the Zi , i = 1, . . . ,10, respectively stand for
the differential indeterminates a, b, x1, x2, y1, y2, y3, z1, z2, z3, be the matrix B in (3).

Suppose that E ⊃ F is a PVE with differential Galois group H � PGL3. Let X, XH respec-
tively denote generic points of PGL3 and H . Then E = F(YH ), where YH = XH P for some
invertible matrix P of the form (2), with coefficients in F̄ . Moreover, there is an F -algebra
homomorphism of coordinate rings

F
[
XP,det(XP )−1] � F

[
XH P,det(XH P )−1].
Please cite this article in press as: L. Juan, A. Ledet, On Picard–Vessiot extensions with group PGL3, J. Algebra
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Since XH P is a generic point for an H -torsor we have that XP is a generic point for a PGL3-
torsor, and therefore the twisted Lie algebra associated to the H -torsor is contained in that for
the PGL3-torsor. In turn, this implies that the generic point YH satisfies an equation with matrix
B̃ = A(fi) for some fi ∈ F .

Conversely, a specialization A(fi) of A(Zi) with fi ∈ F , gives a derivation on the coordinate
ring F [XP,det(XP )−1] of a PGL3-torsor, which may have new constants. We get a PVE of F

by taking the quotient field of the factor ring

F
[
XP,det(XP )−1]/M,

where M is a maximal differential ideal. The differential Galois group in this case is the closed
subgroup of PGL3 consisting of those elements that stabilize M .

It is now clear that a fundamental matrix for the equation η′ = ηA(Zi) specializes to one
for η′ = ηA(fi). For, on the one hand, a solution of η′ = ηA(Zi) is given by a generic point
XP(Z1,Z2) of the PGL3-torsor corresponding to a matrix P(Z1,Z2) of the form (2), with a

and b, respectively, the differential indeterminates Z1 and Z2.
On the other hand, a solution of η′ = ηA(fi) is given by a generic point XH P(f1, f2) of an

H -torsor (H � PGL3) corresponding to a matrix P(f1, f2) also of the form (2), with a and b,
respectively, some elements f1, f2 ∈ F .

Clearly, the matrix P(Z1,Z2) permits specialization of Z1 and Z2 to any non-zero values f1
and f2. �
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