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Abstract. Di↵erential modules over a commutative di↵erential ring R which

are finitely generated projective as ring modules, with di↵erential homomor-

phisms, form an additive category, so their isomorphism classes form a monoid.

We study the quotient monoid of this monoid by the submonoid of isomor-

phism classes of free modules with component wise derivation. This quotient

monoid has the reduced K0 of R (ignoring the derivation) as an image and

contains the reduced K0 of the constants of R as its subgroup of units. This

provides a description of the isomorphism classes of di↵erential projective R
modules up to an equivalence.

1. Introduction

Let R be a commutative di↵erential ring with derivation DR, or just D if
the context is clear. A di↵erential projective module over R is a finitely gener-
ated projective R module P and an additive endomorphism DM , or just D if the
context is clear, such that DM (rm) = DR(r)m + rDM (m) for all r 2 R and
m 2 M . For example, if A 2 Mn(R) defining D on the free module R(n) by
D((x1, . . . , xn) = (x0

1
, . . . , x0

n) + (x1, . . . , xn)A makes the free module into a di↵er-
ential projective module denoted P (A) or (R(n), A) whose di↵erential structure is
denoted DA. When A is a zero matrix, we call the di↵eretial module trivial. In [4]
we investigated di↵erential projective modules and looked at their classification. It
is our goal in this work to advance this classification. In [4], we took a K theoretic
approach. We review briefly that approach and its di�culties.

The isomorphism classes of di↵erential projective modules, with an addition
operation induced from direct sum, form a commutative monoid with identity the
class of the zero module; the most general group to which this monoid maps is
denoted Kdi↵

0
(R) [4, p. 43434]. We use brackets to denote the image of a di↵eren-

tial projective module in Kdi↵
0

(R). For di↵erential projective modules M and N ,
[M ] = [N ] provided there is a di↵erential projective module P such that M � P
is di↵erentially isomorphic to N � P . There is a di↵erential projective module Q
such that P � Q is di↵erentially isomorphic to P (C) for suitable C [4, Corollary
3, p. 4342] so we conclude that [M ] = [N ] provided there is a C with M � P (C)
di↵erentially isomorphic to N � P (C).
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Forgetting the di↵erential structure defines a homomorphism from this di↵er-
ential K group to the usual K group, Kdi↵

0
(R) ! K0(R). This is in epimor-

phism by [4, Theorem 2, p. 4341], and every element of the kernel has the form
[P (C)] � [P (D)] where C and D are matrices of the same size by [4, p. 4242].
Informally, these results say that, setting aside the non–di↵erential K-theory of R,
the di↵erential K theory of R is controlled by the classes of di↵erential projective
modules whose underlying R module is free. Thus the classification problem, us-
ing K theory, comes down to the relation of declaring P (A) and P (B) equivalent
provided there is a C with P (A)�P (C) di↵erentially isomorphic to P (B)�P (C).

Di↵erential projective modules P (A) and P (B) are di↵erentially isomorphic
if there is an invertible matrix T with T 0 = AT � TB. Thus P (A) � P (C) is
di↵erentially isomorphic to P (B) � P (C) provided there is an invertible matrix
S with S0 = (A � C)S � S(B � C). To tell if P (A) and P (B) are equivalent
requires considering all possible C’s and S’s for which this equation holds. Although
this is just a problem of matrix algebra, controlling the complications arising from
stabilization with C are formidable.

To avoid these complications, we propose a finer classification, where we restrict
the C’s to be zero matrices. (Example 1 shows that this classification can actually
be finer.) This leads us to a quotient of the monoid of isomorphism classes which
is a monoid, but need not be a group.

Starting with the monoid of isomorphism classes of di↵erential projective mod-
ules we look at the quotient by the submonoid of isomorphism classes of modules
of the form P (0n). While this quotient di↵erential monoid is not always a group,
it maps surjectively to the similar object defined for R ignoring the derivation,
which is a group, and which we show is isomorphic to K0(R)/ < [R] >. When
R is connected, this quotient is the kernel of the rank function. Moreover, we
show that the group of units of the quotient di↵erential monoid is isomorphic to
K0(RD)/ < [RD] >. Also, we will see that the part of the di↵erential quotient
monoid not described by the K theory of R and RD is captured by the quotient of
the submonoid of di↵erential isomophism classes of the modules of the form P (A).
(This approach is similar to the one adopted for di↵erential Azumaya algebras in
[5], an approach taken because of the di�culties similar to those noted above that
appear in [3]).)

2. The Monoids

A monoid is a commutative semigroup with identity. We use addition for
the operation, and 0 for the identity. Except for the notation for the operation,
the following observations are identical with [5]: Throughout this section we will
be concerned with monoids of isomorphism classes and various quotients thereof.
If N ✓ M is a submonoid, by M/N we mean the set of equivalence classes on
M under the equivalence relation m1 ⇠ m2 if there are n1, n2 2 N such that
m1 + n1 = m2 + n2. Sums of equivalent elements are equivalent, which defines a
commutative operation on M/N by adding representatives of equivalence classes,
and the equivalence class of the identity is an identity. Thus M/N is a monoid. The
projection p : M ! M/N (p(m) is the class ofm) is an epimorphism, p(N) = 0, and
any monoid homomorphism q : M ! Q with q(N) = 0 factors uniquely through p.
Note, however, that we can have M/N = 0 but N 6= M , for example Q⇤/Z⇥. Thus
p�1(0) can be strictly larger than N .
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If N is a subgroup of the monoid M , M/N is the set of N orbits in M where
N acts by translation.

The set of invertible elements U(M) of M is its maximal subgroup. The set of
elements a 2 M whose equivalence classes in M/N are invertible is {a 2 M |9b 2
M,n 2 N such that a + b + n 2 N}. The monoid M/U(M) has no units except
the identity.

We will be considering the following monoids. In the definitions we sometimes
consider R as a commutative ring and sometimes as a di↵erential ring, and similarly
for di↵erential projective R modules.

Definition 1. MP (R) denotes the set of isomorphism classes of finitely gener-
ated projective R modules with the operation induced by direct sum and the identity
the isomorphism class of 0.

MP di↵(R) denotes denotes the set of isomorphism classes of di↵erential finitely
generated projective R modules with the operation induced by direct sum and the
identity the isomorphism class of 0.

MF (R) denotes the submonoid of MP (R) whose elements are isomorphism
classes of free R modules.

MF di↵(R) denotes the submonoid of MP di↵(R) whose elements are isomor-
phism classes of di↵erential projective modules of the form (R(n), Z).

MF di↵
0

(R) denotes the submonoid of MP di↵(R) whose elements are isomor-
phism classes of di↵erential projective modules of the form (R(n), 0).

PCM(R) and K̃0(R) both denote MP (R)/MF (R)
PCMdi↵(R) denotes MP di↵(R)/MF di↵

0
(R)

FCMdi↵(R) denotes MF di↵(R)/MF di↵
0

(R)
PCM(R) is called the projective class monoid of R.
PCMdi↵(R) is called the di↵erential projective class monoid of R.
FCMdi↵(R) is called the di↵ferential free module class monoid of R.

All of the monoids in Definition 1 are functors.
Using Definiton 1 and the definition of quotient monoids we see that if P and Q

are finitely generated projective R modules (respectively di↵erential finitely gener-
ated projectiveRmodules) then their classes in PCM(R) (respectively PCMdi↵(R))
will be equal provided for some m and n P�R(n) is isomorphic to Q�R(m) (respec-
tively P � (R(n), 0) is di↵erentially isomorphic to Q� (R(m), 0)). In particular, P is
zero in PCM(R) (respectively PCMdi↵(R)) provided for some m and n P �R(n)

is isomorphic to R(m) (respectively P � (R(n), 0) is di↵erentially isomorphic to
(R(m), 0)). In this case P is called stably free (respectively stably di↵erentially
trivial.

Proposition 1. PCM(R) is a group isomorphic to K0(R)/ < [R] >. If
R is connected, PCM(R) is isomorphic to the kernel of the rank homomorphism
K0(R) ! Z.

Proof. Let P be a finitely generated projective R module. The existence of
a Q such that P � Q is a free module shows that the class of Q is an inverse
to the class of P in MP (R)/MF (R). Thus PCM(R) is a group. Hence the
map MP (R) ! PCM(R) factors through K0(R), and since [R] 7! 0 it factors
through K0(R)/ < [R] >. On the other hand, the monoid map MP (R) ! K0(R)
maps MF (R) into < [R] > so that MP (R) ! K0(R)/ < [R] > factors through
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MP (R)/MF (R). The composites in either order are the identity, so PCM(R)
is isomorphic to K0(R)/ < [R] >. Suppose R is connected, so that the rank
homomorphism rk : K0(R) ! Z is defined. Then < [R] > \Ker(rk) = 0 and
Ker(rk)+ < [R] >= K0(R) so that K0(R)/ < [R[> is isomorphic to Ker(rk). ⇤

The kernel of rk is denoted Rk0(R) in [2, p. 459]. Sometimes the kernel of rk
is called the reduced K group and denoted K̃0(R); we have made the definition so
that the latter always denotes PCM(R) whether R is connected or not.

The homomorphism MP di↵(R) ! MP (R) by dropping the derivation is sur-
jective [4, Theorem 2, p. 4341], so the induced map PCMdi↵(R) ! PCM(R) is
an epimorphism. This map carries FCMdi↵(R) to 0. In fact we have the following:

Proposition 2. The map PCMdi↵(R) ! PCM(R) is an epimorphism. The
map p : PCMdi↵(R)/FCMdi↵(R) ! PCM(R) is an isomorphism

Proof. As we have remarked, [4, Theorem 2, p. 4341] implies the first asser-
tion and so p is an epimorphism. To see that it is an isomorphism, we first show
that it is a homomorphism of groups and then show it has trivial kernel. To see
that PCMdi↵(R)/FCMdi↵(R) is a group, let P be a di↵erential finitely generated
projective R module. By [4, Corollary 3 p. 4342] there is a di↵erential projective
module Q such that P � Q is of the form P (A) for some A. That is, the class of
P plus the class of Q in MP di↵(R) lies in MF di↵(R). Thus MP di↵(R)/MF di↵(R)
is a group, hence so is its image PCMdi↵(R)/FCMdi↵(R). Now suppose again
that P is a di↵erential finitely generated projective module such that its class in
PCMdi↵(R)/FCMdi↵(R) is sent to 0 by p. Thus as projective R modules P and
0 have the same class in PCM(R), so there are m and n such that P � R(n) is
isomorphic to R(m). Thus, using the given di↵erential structure on P , P � (R(n), 0)
is a di↵erential module free (of rank m) as an R module and hence of the form
(R(m), Z). It follows that the class of P in PCMdi↵(R)/FCMdi↵(R) is trivial.
Thus p has trivial kernel, so is injective, and hence an isomorphism. ⇤

Informally, Proposition 2 can be understood as asserting that the classification
of di↵erential projective R modules comes down to the classification of those which
are free as R modules, since when the latter are nullified the di↵erential structures
on projective modules only depend on the R module structure. More formally:

Corollary 1. If FCMdi↵(R) = 0 then PCMdi↵(R) = PCM(R).

Corollary 2. If PCM(R) = 0 then FCMdi↵(R) = PCMdi↵(R).

Proof. (Of Corollary 2.) As remarked above, it is possible for the quotient
of a monoid by a proper submonoid to not be trivial. We argue as in the proof
of Proposition 2. Since PCM(R) = 0, for any projective R module P there are
m,n such that P � R(n) is isomorphic to R(m). Now suppose P has a di↵erential
structure. Then so does P � (R(n), 0), which is then isomorphic to (R(m), A) for
some A. Since the class of (R(m), A) is in FCMdi↵(R), so is the class of P�(R(n), 0),
and this is the same as the class of P . ⇤

Proposition 2 is also, in a way, a statement about the functor from di↵erential
modules to modules. A counterpart to that is the functor from modules over the
constants to di↵erential modules, which results in the following:
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Proposition 3. The functor P0 7! R ⌦RD P0 induces a group isomorphism
q : PCM(RD) ! U(PCMdi↵(R)).

Proof. The functor induces a map MP (RD) ! MP di↵(R). If P0 is a free
RD module of finite rank, then R ⌦RD P0 belongs to MF di↵

0
(R), so the functor

passes to a homomorphism PCM(RD) ! PCMdi↵(R). If P0 is a finitely generated
projective RD module, and Q0 is a finitely generated projective RD module such
that P0 �Q0 is free, then in PCMdi↵(R) the classes R⌦RD P0 and R⌦RD Q0 add
up to the class of 0, and hence are inverses of each other. Thus the homomorphism
PCM(RD) ! PCMdi↵(R) has image in the units of the range. Suppose P is
a di↵erential finitely generated projective module whose class in PCMdi↵(R) is
invertible. Then there exist m, n, and a di↵erential finitely generated projective
module Q such that P � Q � (R(n), 0) is isomorphic to (R(m), 0). In particular,
P is a di↵erential direct summand of (R(m), 0). By [4, Theorem 1, p. 4340], this
means that P is of the form R ⌦RD P0 where P0 is a finitely generated projective
RD module. This shows that q is group epimorphism. Suppose that the class of
P0 is in the kernel of q. Then the classes of R ⌦RD P0 and 0 are the same in
PCMdi↵(R) so there are m, n such that (R ⌦RD P0) � (R(n), 0) is di↵erentially
isomorphic to (R(m), 0). Also (R⌦RD P0)� (R(n), 0) is di↵erentially isomorphic to
R⌦RD (P0� (RD)(n)) and (R(m), 0) is di↵erentially isomorphic to R⌦RD (RD)(m).
Taking constants and applying [4, Lemma 1 p. 4340] we see that P0 � (RD)(n) is
RD isomorphic to (RD)(m). That is, P0 and 0 are the same class in PCM(RD).
Thus q has trivial kernel and hence is an isomorphism. ⇤

The functor P0 7! R⌦RDP0 also induces a group homomorphism PCM(RD) !
PCM(R). This need not be either injective or surjective, in general. However
Proposition 3 enables the identification of its kernel.

Corollary 3. The kernel of � : PCM(RD) ! PCM(R) is, under the iso-
morphism q of Proposition 3, U(FCMdi↵(R)).

Proof. The inclusionRD ! R induces the group homomorphism PCM(RD) !
PCM(R). The kernel of this homomorphism is given by classes of finitely gener-
ated projective RD modules P0 such that P = R⌦RD P0 is a stably free R module:
there are m, n such that P �R(n) = R⌦RD (P0 � (RD)(n)) is isomorphic to R(m).
Since P0 and P0� (RD)(n) give rise to the same class in PCM(RD), we can replace
the former by the latter and assume that P is actually R free. So the class of P as
a di↵erential module lies in FCMdi↵(R). Since it comes from PCM(RD) it also
lies in U(PCMdi↵(R)) and hence in FCMdi↵(R) \ U(PCMdi↵(R)). Thus q of the
kernel lies in this intersection; since under the morphism PCMdi↵(R) ! PCM(R),
FCMdi↵(R) goes to zero, it is isomorphic to the kernel under q. We claim this in-
tersection is U(FCMdi↵(R)), which will complete the proof. That U(FCMdi↵(R))
is contained in the intersection is clear. On the other hand the intersection, being
the kernel of a group homomorphism, is a (sub)group in FCMdi↵(R) and hence
conatined in its group of units. ⇤

Using Proposition 3 we have the following consequences of Corollaries 1 and 2:

Corollary 4. If FCMdi↵(R) = 0 then PCM(RD) ! PCM(R) is an iso-
morphism.
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Proof. Suppose FCMdi↵(R) = 0. By Corollary 1, PCMdi↵(R) = PCM(R).
By Proposition 1, PCM(R) is a group, hence PCMdi↵(R) = U(PCMdi↵(R),
so by Proposition 3 PCM(RD) maps isomorphically to PCMdi↵(R) and hence
PCM(RD) ! PCM(R) is an isomorphism. ⇤

Corollary 5. If PCM(RD) = 0 then PCMdi↵(R) has no invertible elements.

Proof. Combine Corollary 2 and Proposition 3. ⇤

Proposition 2 implies that if PCMdi↵(R) = 0 then PCM(R) = 0. Of course
if PCMdi↵(R) = 0 then so does its submonoid PCMdi↵(R). Then Corollary 4
implies that PCM(RD) = PCM(R) = 0. We record this fact, along with the
similar assertion under the stronger assumption that all di↵erential projective R
modules are trivial:

Corollary 6. If PCMdi↵(R) = 0 then PCM(RD) = PCM(R) = 0. If
all finitely generated di↵erential projective R modules are trivial, then all finitely
generated projective R modules and all finitely generated projective RD modules are
free.

Proof. For the second assertion, let P be a finitely generated projective R
module. Let DP be a di↵erential structure on P . Since P with DP is trivial, its
underlying module P is free. Let Q be a finitely generated projective RD module.
Since R ⌦RD Q is trivial, it is di↵erentially isomorphic to (R, 0)(n) for some n. It
follows that Q = (R⌦RD Q)D = ((R, 0)(n))D = (RD)(n). ⇤

In Proposition 5 below we will see a partial converse of Corollary 6
We have recalled the fact that every finitely generated projective R module

carries a di↵erential structure. Choosing such a structure for each finitely generated
projective R module amounts to a map from the set of finitely generated projective
R modules to the set of di↵erential projective R modules which is a right inverse
to the forgetful function from the latter to the former. Suppose the choices could
be made so that: isomorphic modules had equivalent di↵erential structures; the
structure on a direct sum was the direct sum of the structures on each summand;
and the structure on R was (R, 0). Informally, we would say we have a canonical
choice of di↵erential structure. Or in other words, suppose there were a right
inverse  to the epimorphism PCMdi↵(R) ! PCM(R). Since (by Proposition 1)
PCM(R) is a group, so is  (PCM(R)), which is isomorphic to it. Now suppose
that R is such that PCM(RD) = 0 and PCM(R) 6= 0. Then by Corollary 5
PCMdi↵(R) has no invertible elements, so its subgroup  (PCM(R)) is trivial.
This contradiction means that for such a ring R there is no canonical choice for
di↵erential structures on projective modules. For a concrete example of such an R
we can take the Picard–Vessiot ring R of a Picard–Vessiot extension of a di↵erential
field F with di↵erential Galois groupG such that F [G] has non stably free projective
modules. Then RD = F so PCM(RD) = 0 while PCM(R) = PCM(F [G]) 6= 0.

3. Trivial Di↵erential Projective Class Monoid

We consider the condition that PCMdi↵(R) = 0, or that all projective di↵er-
ential modules are stably trivial. We are going to see that this condition is quite
restrictive, much more so than the corresponding condition that all projectives are
stably free.
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If PCMdi↵(R) = 0, then the submonoid FCMdi↵(R) is also trivial. A partial
converse also holds:

Proposition 4. If PCMdi↵(R) = 0 then FCMdi↵(R) = 0. If FCMdi↵(R) =
0 and PCM(RD) = 0 then PCMdi↵(R) = 0.

Proof. We have already noted the first implication. So suppose FCMdi↵(R) =
0 and let P be a finitely generated di↵erential projective module. Then there is
a di↵erential projective Q such that P � Q is free as an R module which, as an
element of FCMdi↵(R) must be 0. Thus the class of P is invertible in PCMdi↵(R).
Proposition 3 and the assumption that PCM(RD) = 0 imply that the class of P
is 0. ⇤

The second implication of Proposition 4 says that if all di↵erential R modules
which are free as R modules are stably trivial, and if all projective RD modules
are stably free, then all di↵erential projective R modules are stably trivial. This
compares to the corresponding non–di↵erential condition that all projective mod-
ules are stably free. The stronger condition, namely that all projective modules
are free, has often been investigated. The di↵erential analogue would be the condi-
tion that all di↵erential protectives are trivial. As it happens, the di↵erential and
non–di↵erential conditions are related:

Proposition 5. If all finitely generated projective RD modules are free, then
every stably trivial finitely generated di↵erential projective R module P is trivial.

Proof. The hypothesis is that there are m,n such that P � (R(m), 0) is iso-
morphic to (R(n), 0). In particular, P is a di↵erential direct summand of a trivial
di↵erential module. As remarked several times previously, this implies that P is of
the form R⌦RD P0 for some finitely generated projective RD module P0. Since by
assumption P0 is free, say for rank k, P di↵erentially isomorphic to (R(k), 0) and
hence trivial. (Of course k = m� n.) ⇤

If ⌘ : R ! S is a di↵erential ring homomorphism, then there is an induced
monoid homomorphism h : PCMdi↵(R) ! PCMdi↵(S) which carries the sub-
monoid FCMdi↵(R) of PCMdi↵(R) to the submonoid FCMdi↵(S) of PCMdi↵(S).
If ⌘ is surjective, h need not be, but the restriction of h to FCMdi↵(R) is. If it
happens that PCM(SD) = 0, then we can use this to see when PCMdi↵(R) 6= 0.

Corollary 7. Let ⌘ : R ! S be a surjective di↵erential homomorphism of
di↵erential rings. Assume PCM(SD) = 0. If PCMdi↵(R) = 0 then PCMdi↵(S) =
0.

Proof. If PCMdi↵(R) = 0, then by Proposition 4 FCMdi↵(R) = 0. Since
⌘ is surjective, this implies that FCMdi↵(S) = 0. Then by Proposition 4 again,
PCMdi↵(S) = 0. ⇤

If S is a simple di↵erential ring, then SD is a field, so all projective S modules
are free, and in particular PCM(SD) = 0. So if R ! S is a surjection with S
simple, and if PCMdi↵(R) = 0, then PCMdi↵(S) = 0.

Corollary 8. Let R be a di↵erential ring with PCMdi↵(R) = 0. Then for
every maximal di↵erential ideal I of R, PCMdi↵(R/I) = 0.
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Note that in general R/I, for I maximal di↵erential, may have di↵erential
projective modules which are not obtained from di↵erential projective R modules
by reduction modulo I. Indeed every di↵erential R module, projective or not,
reduces to a di↵erential projective R/I module [1].

We consider as examples a class of di↵erential rings whose di↵erential projective
class monoids are never trivial.

We will be using some facts about Picard–Vessiot extensions, which we now
briefly recall ([7, Chapter 1]). Let F be a characteristic zero di↵erential field with
algebraically closed field of constants C. Let P = (F (n), A) be a finitely generated
di↵erential projective F module. A di↵erential field extension E ◆ F is called a
Picard–Vessiot extension of F for P provided: (1) ED = C; (2) E ⌦F P is trivial;
and (3) No proper di↵erential subfield of E containing F satisfies (1) and (2).
Picard–Vessiot extensions exist and are unique up to isomorphism. Now suppose
P1 and P2 are finitely generated projective di↵erential F modules which represent
the same class in PCMdi↵(F ). That is, there are m,n such that P1 � (R, 0)(m)

and P2 � (R, 0)|(n) are isomorphic. Let Ei be a Picard–Vessiot extension for Ei.
Since E1 ⌦F P1 has a basis of constants, so does E1 ⌦F (P1 � (R, 0)(m)). Because
of the isomorphism, E1 ⌦F (P2 � (R, 0)(n)) also has a basis of constants. In other
words, E1⌦F (P2�(R, 0)(n)) is trivial. Thus E1⌦F P2 is stably trivial, and then by
Proposition 5 E1 ⌦F P2 is trivial, i.e. has a basis of constants. Since also ED

1
= C,

E1 contains a Picard–Vessiot extension for P2. Similarly, E2 contains a Picard–
Vessiot extension of P1. We conclude that E1 and E2 are isomorphic di↵erential F
algebras. If we choose all Picard–Vessiot extensions of F insode the same Picard–
Vessiot closure of F , then we even have E1 = E2. Conversely, if the Picard–Vessiot
extensions for P1 and P2 are not equal, then P1 and P2 have di↵erent classes in
PCMdi↵(F ). This same reasoning applies to sets of di↵erential F modules with
more than two members, indeed to sets of any cardinality:

Proposition 6. Let F be a characteristic zero di↵erential field with alge-
braically closed field of constants C. Let {Pi|i 2 I} be a set of finitely generated
di↵erential projective F modules and for each i 2 I let Ei be a Picard–Vessiot ex-
tension of F for Pi, all inside a chosen Picard–Vessiot closure of F . Suppose all the
Ei’s are distinct. Then the classes of the Pi’s are distinct elements of PCMdi↵(F ).

Next we look at a�ne di↵erential algebras over F :

Proposition 7. Let F be a characteristic zero di↵erential field with alge-
braically closed field of constants C. Suppose that F has Picard–Vessiot extensions
of arbitrarily large transcendence degree over F . (This is a relatively mild condi-
tion satisfied for F = C and F = C(x).) Let R be a di↵erential R algebra which is
finitely generated as an F algebra. Then PCMdi↵(R) 6= 0.

Proof. By Corollary 8 it is enough to show that for some maximal di↵erential
Ideal I of R PCMdi↵(R/I) 6= 0. Thus we can replace R by R/I and assume that
R is di↵erentially simple. It follows that the quotient field E of R is an extension
of F whose field of constants is also C [6]. Note that E has finite transcendence
degree over F , so there are finitely generated di↵erential modules over F which do
not have Picard–Vesiot extensions in E. In particular, this means there is some
matrix A over F such that P (A) = (F (n), A) does not have a basis of constants over
E, and hence does not have one over R. Thus P (A) is not a trivial di↵erential R
module. Since RD is the field C, all projective RD modules are free. Proposition 5
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then implies that P (A) is not even stably trivial, and hence its class in PCMdi↵(R)
is non–trivial. ⇤

As noted in the statement of Proposition 7, the result applies to di↵erential
a�ne C algebras, none of which, including polynomial rings or Laurent polynomial
rings, can have trivial di↵erential projective class monoids. We consider finally a
specific algebra of this latter type, which illustrates the distinction between equiv-
alence in the monoid and equivalence in the corresponding K group.

Example 1. Let S = C[a, b, c, u, u�1, v, v�1] be the di↵erential ring where
D(↵) = 0 for ↵ 2 C, D(a) = D(b) = D(c) = 0, D(u) = (a�c)u and D(v) = (b�c)v.
Let A be the diagonal matrix with entries a, c and let B be the diagonal ma-
trix with entries b, c. We will see that P (A) = (S, a) � (S, c) is isomorphic to
P (B) = (S, b) � (S, c) but that there is no n such that (S, a) � (S, 0)(n) is isomor-
phic to (S, a)� (S, 0)(n).

Let T0 be the matrix


0 u
v 1

�

Then T0 is invertible, and a calculation shows that T 0
0
= AT0 � T0B. Thus

T0 gives a di↵erential isomorphism from P (A) to P (B). Now suppose we have an
invertible (n + 1) ⇥ (n + 1) matrix T = [tij ] giving an isomorphism from (S, a) �
(S, 0)(n) = (S(n+1), diag(a, 0, . . . , 0)) to (S, a)�(S, 0)(n) = (S(n+1), diag(b, 0, . . . , 0)).
Then T 0 = diag(a, 0, . . . , 0)T � Tdiag(b, 0, . . . , 0) so t0

11
= (a� b)t11, t01i = at1i and

t0i1 = �bti1 for i > 1, and otherwise t0ij = 0. Thus we need to calculate derivatives
in S. Let R = C[a, b, c] so that S = R[u, v][(uv)�1]. Then t 2 S can be written
t = (

P
p,q apqu

pvq)(uv)�l where apq 2 R and p, q, l are non–negative integers. Then

t0 = (
P

p,q apq(p(a� c)+ q(b� c)� l((a� c)+ (b� c))upvq)(uv)�l. Suppose we have
t0 = (a � b)t. Comparing terms shows that for all p, q apq(a � b) = apq(p(a � c) +
q(b� c)� l(a� c+ b� c). If apq 6= 0 then a� b = (p� l)a+ (q� l)b+ (2l� p� q)c
so p � l = q � l = 1 and 2l � p � q = 0. These conditions imply that l = 1 and
p = q = 0. Thus t = a00(uv)�1. This then implies that t0 = �(a� c+ b� c)t and
(a � b)t 6= (a � c + b � c)t unless t = 0. Thus in the matrix T t11 = 0. Similar
calculations show that if t0 = at then t = 0 so that in the matrix T t1i = 0 for i > 1.
Thus the whole first column of T consists of zeros. Thus there is no invertible ma-
trix T giving a di↵erential isomorphism. Thus (S, a) and (S, c) are not equivalent
in PCMdi↵(S). Since (S, a)� (S, c) is isomorphic to (S, b)� (S, c), (S, a) and (S, b)
are equivalent in Kdi↵

0
(S).
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