
Chapter 8 Sequences of Functions

In this chapter, we consider sequences of functions,{fn(x)}∞n=1, defined on a set A, fn : A→ R. We define
pointwise convergence and uniform convergence of the functions to a function f(x) as n → ∞. Whether the
convergence is pointwise or uniform has important consequences for the limiting function f .

Examples:

1. fn(x) =
x

n
for x ∈ R. Compute lim

n→∞
fn(x).

2. gn(x) = xn for x ∈ [−1, 1]. Compute lim
n→∞

gn(x), if it exists.

3. hn(x) =
x2 + nx

n
for x ∈ R. Compute lim

n→∞
hn(x).

4. Fn(x) =
sin(nx+ n)

n
for x ∈ R. Compute lim

n→∞
Fn(x).
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Definition of Pointwise Convergence on A0: Let {fn}∞n=1 be a sequence of functions with fn : A → R.
The sequence {fn} converges pointwise to a function f on A0 ⊆ A, if for each x ∈ A0, limn→∞ fn(x) = f(x).
That is, for each ε > 0 and each x ∈ A0, there is a natural number K(ε, x) such that if n ≥ K(ε, x), then

|fn(x)− f(x)| < ε.

Definition of Uniform Convergence on A0 Let {fn}∞n=1 be a sequence of functions with fn : A→ R. The
sequence {fn} converges uniformly to a function f on A0 ⊆ A, if for each ε > 0, there is a natural number
K(ε) such that if n ≥ K(ε), then

|fn(x)− f(x)| < ε for all x ∈ A0.

Question: Which set(s) of functions {fn}, {gn}, {hn}, {Fn} converge uniformly on [0, 1]? on R?
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We will define the uniform norm for a function f : A→ R and apply it to the sequence of functions {fn}
defined on A. In general, a norm ρ defined on a set of real-valued functions FA is a mapping: ρ : FA → [0,∞)
with the following three properties:

1. ρ(f + g) ≤ ρ(f) + ρ(g)

2. ρ(af) = |a|ρ(f) for any a ∈ R.

3. If ρ(f) = 0, then f = 0 (zero function).

The uniform norm is applied to bounded real-valued functions f : A→ R, where f(A) is bounded.

Definition: Let f : A→ R be a bounded function. The uniform norm of f on A is defined as

‖f‖A := sup{|f(x)| : x ∈ A}.

It follows for any ε > 0,
‖f‖A ≤ ε iff |f(x)| ≤ ε for all x ∈ A.

Show that the uniform norm satisfies the three norm properties. All of the previous examples fn, gn, hn
and Fn are bounded provided the domain is restricted to an interval of finite length, e.g., [−2, 2] or (0, 1).

1. The uniform norm for A = [−2, 2]: ‖fn‖A = sup{|x/n| : x ∈ [−2, 2]} =
2

n
.

2. The uniform norm for B = (0, 1): ‖gn‖B = sup{|xn| : x ∈ (0, 1)} = 1.

3. The uniform norm for A = [−2, 2]: ‖hn‖A = sup{|x2/n+ x| : x ∈ [−2, 2]} =
4

n
+ 2.

4. The uniform norm for A = [−2, 2]: ‖Fn‖A = sup{| sin(nx + n)/n| : x ∈ [−2, 2]} =
1

n
. In fact, we can

extend the domain to R and we get the same norm.

The following lemma allows us to use the uniform norm to check for uniform convergence.

Lemma 1. A sequence {fn}∞n=1 of bounded functions defined on A converges uniformly on A iff ‖fn − f‖A
converges to zero.

Proof. Prove necessary and sufficient conditions.

Consider the previous four examples that have the following pointwise limit functions, f(x) = 0 g(x) = 0,
h(x) = x and F (x) = 0. Which ones of the four sequences of functions converge uniformly to their pointwise
limit?

1. ‖fn − f‖A = sup{|x/n− 0| : x ∈ [−2, 2]} =
2

n
→ 0 as n→∞.

2. ‖gn − g‖B = sup{|xn − 0| : x ∈ (0, 1)} = 1.

3. ‖hn − h‖A = sup{|x2/n+ x− x| : x ∈ [−2, 2]} =
4

n
→ 0 as n→∞.

4. ‖Fn − 0‖A = sup{| sin(nx+ n)/n| : x ∈ [−2, 2]} =
1

n
→ 0 as n→∞.

Example: Prove: Let {fn} and {gn} be bounded uniformly convergent sequences. Then the sequence {fngn}
is uniformly convergent (Problem # 23).

There is another criterion to show uniform convergence of a sequence of functions. This criterion is known
as the Cauchy Criterion for Uniform Convergence. It is useful in cases where an explicit formula for the
pointwise limit function is not known. This criterion will be used in the next section to verify results about
the limiting function when the convergence is uniform!
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Theorem 1 (Cauchy Criterion for Uniform Convergence). Let {fn} be a sequence of bounded functions defined
on A. Then this sequence converges uniformly to a bounded function f iff for every ε > 0, there is a natural
number H(ε) such that for all m,n ≥ H(ε), then

‖fm(x)− fn(x)‖A < ε for all x ∈ A.

Alternately,
|fn(x)− fm(x)| < ε for all x ∈ A and for m,n ≥ H(ε).

This criterion is used to prove the result about Interchange of Limit and Integral.

Example: (Triangle Functions) Consider the continuous triangle function fn(x), positive for x ∈ (0, 2/n)
and zero otherwise. The maximum height of the triangle function is at the midpoint x = 1/n with height
fn(1/n) = n. Thus, the area of the triangle function is (1/2)bh = (1/2)(2/n)(n) = 1. See Figure 8.2.1.

Therefore, the definite integral of the triangle function over [0, 1],
∫ 1
0 fn(x) dx = 1 for all n.

Consider the sequence of the triangle functions {fn}∞n=1. The sequence converges pointwise to the zero function
f(x) = 0. ∫ 1

0
fn(x) dx = 1 and

∫ 1

0
f(x) dx = 0

The integral of the triangle functions does not converge to the integral of their pointwise limit! That is, for
this example, the limit and the integral cannot be interchanged:

lim
n→∞

∫ 1

0
fn 6=

∫ 1

0
lim
n→∞

fn.

Interchange of Limits

In this section, it is shown that if the sequence of functions converges uniformly to f , then the limit can be
taken inside the integral (limit and integral can be interchanged). It is also shown that the uniform convergence
of a sequence of continuous functions guarantees that the function to which they converge is also continuous.

Theorem 2 (Uniform Convergence of Continuous Functions). Let {fn} be a sequence of continuous functions
defined on a set A that converges uniformly to a function f on A. Then f is continuous on A.

To show continuity of f on A, select an arbitrary point c ∈ A and show if ε > 0, there exists δ > 0 such
that for |x− c| < δ, then |f(x)− f(c)| < ε.

Proof. Let ε > 0. Since the sequence of functions converges uniformly on A, there exists a natural number
K(ε/3) such that

|fn(x)− f(x)| < ε

3

for all x ∈ A and n ≥ K. Let n be a fixed integer, n ≥ K and let c be an arbitrary point in A. By the triangle
inequality,

|f(x)− f(c)| = |f(x)− fn(x) + fn(x)− fn(c) + fn(c)− f(c)|
≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− f(c)|
< ε/3 + |fn(x)− fn(c)|+ ε/3.

Since fn is continuous at x = c, there exists δ > 0 such that |fn(x)− fn(c)| < ε/3. Therefore, for this same δ,
if |x− c| < δ, then applying the previous inequalities implies |f(x)− f(c)| < ε. Since c is an arbitrary point in
A, f is continuous on A.

Question: Consider the sequence of functions {fn}, {gn}, {hn} and {Fn} defined on the set A = [−1, 1].
Which sequence does NOT converge uniformly?
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Exercise 8.2 # 1: Let fn(x) =
xn

1 + xn
. Each function fn is continuous and bounded on [0, 2]. See figure

below.

(a) Compute the pointwise limit f of {fn} on [0, 2]. Is the function f continuous?
(b) Does the sequence converge uniformly?
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The converse of the Theorem Uniform Convergence of Continuous Functions is FALSE.

FALSE: If f is continuous and f is the pointwise limit of a sequence of continuous functions {fn}, then
the sequence converges uniformly. See Exercises 8.1 # 5, # 15 with fn(x) = sin(nx)/(1 + nx), x ∈ [0, 2]. See
figure below.
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There are two results regarding sequences of Riemann integrable functions. One important question is
whether the limit can be moved inside the integral (interchange of limit and integral). The first result requires
that the sequence be uniformly convergent. The second result requires a uniformly bounded sequence and the
pointwise limit must also be Riemann integrable.

Theorem 3 (Interchange of Limit and Integral). Let {fn} be a sequence of Riemann integrable functions
on [a, b] (fn ∈ R[a, b]) and suppose the sequence {fn} converges uniformly to a function f on [a, b]. Then
f ∈ R[a, b] and

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
lim
n→∞

fn(x) dx.

Example: (Triangle Functions) The sequence of triangle functions {fn} on [0, 2/n] with height n, graphed in
Figure 8.2.1, do not converge uniformly.
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The following Bounded Convergence Theorem does not require uniform convergence of {fn} but it does
require that the pointwise limit be Riemann integrable and the functions fn must be uniformly bounded. It is
also known as the Lebesgue’s Dominated Convergence Theorem. The proof requires measure theory.

Theorem 4 (Bounded Convergence Theorem). Let {fn} be a sequence of Riemann integrable functions on
[a, b] (fn ∈ R[a, b]) that converges pointwise to a Riemann integrable function f on [a, b] (f ∈ R[a, b]). In
addition, suppose that the functions {fn} are uniformly bounded, that is, there exists a constant B such that
|fn(x)| ≤ B for all n and x ∈ [a, b], then

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
lim
n→∞

fn(x) dx.

Example: (Triangle Functions) The sequence of triangle functions {fn} on [0, 2/n] with height n do NOT
satisfy the Bounded Convergence Theorem. They are not uniformly bounded,

sup{|fn(x)| : x ∈ [0, 1]} = n→∞.

The last theorem is about the derivatives of a sequence. We need conditions on convergence of the deriva-
tives. Uniform convergence of a sequence of differentiable functions {fn} to f does NOT imply that the
function f is differentiable. We require the sequence of derivatives {f ′n} converge uniformly to g, then f ′ = g
(See Theorem 8.2.3). We will verify a stronger result that assumes the derivatives converge uniformly and are
continuous and apply the Fundamental Theorems of Calculus.

Symbolically,
fn → f, f ′n ⇒ g, and f ′n continuous, then f ′ = g.

Theorem 5 (Uniform Convergence of Derivatives). Let fn : [a, b] → R and let {fn} be a sequence that
converges pointwise to f on [a, b] (fn → f). Suppose each derivative f ′n is continuous on [a, b] and the sequence
of derivatives {f ′n} converges uniformly to g on [a, b] (fn ⇒ g). Then f(x)−f(a) =

∫ x
a g(t) dt and f ′(x) = g(x)

for all x ∈ [a, b].

Proof. Since fn is differentiable and f ′n is continuous on [a, b], then we can apply the Fundamental Theorem
of Calculus (Part I) to fn:

fn(x)− fn(a) =

∫ x

a
f ′n(t) dt.

Take the limit as n→∞ of both sides: limn→∞(fn(x)− fn(a)) = f(x)− f(a) = limn→∞
∫ x
a f
′
n(t) dt. Because

the sequence {f ′n} converges uniformly to g and each f ′n is Riemann integrable, by the Theorem on Interchange
of Limit and Integral, the limit can be brought inside the integral:

f(x)− f(a) = lim
n→∞

∫ x

a
f ′n(t) dt =

∫ x

a
lim
n→∞

f ′n(t) dt =

∫ x

a
g(t) dt

Also, g is continuous on [a, b]. (Why?) By the Fundamental Theorem of Calculus (Part II), f ′(x) = g(x) for
all x ∈ [a, b].

Exercise 8.2 # 10: Let gn(x) = e−nx/n for x ≥ 0. What can you say about lim gn and lim g′n?
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Series of Functions

The theorems on sequences of functions apply to series of functions:

∞∑
n=1

fn(x).

The expression for the infinite series is also written as
∑
fn or as

∞∑
n=1

fn. Convergence of the series is defined in

terms of convergence of its partial sums (Chapter 3). Pointwise convergence, uniform convergence and absolute
convergence of a series of functions are defined below.

Definition:. Let fn : A→ R. The sequence of partial sums of the infinite series
∑
fn is the sequence {sn}

where sn : A→ R is defined by

s1(x) = f1(x)

s2(x) = f1(x) + f2(x)

...

sn(x) = f1(x) + · · ·+ fn(x) =

n∑
k=1

fk(x).

The infinite series
∑
fn converges pointwise to f on A if the sequence of partial sums {sn} converge

pointwise to f on A, i.e.,

lim
n→∞

sn(x) = lim
n→∞

n∑
k=1

fk(x) = f(x) for x ∈ A.

The infinite series
∑
fn converges uniformly to f on A if the sequence of partial sums {sn} converges

uniformly to f on A, i.e., for every ε > 0, there exists a natural number K(ε) such that for n ≥ K(ε),

|sn(x)− f(x)| =

∣∣∣∣∣
n∑

k=1

fk(x)− f(x)

∣∣∣∣∣ < ε for all x ∈ A.

The infinite series
∑
fn converges absolutely to f on A if the infinite series

∑
|fn| converges pointwise to

a function on A. But
∑
fn(x) = f(x) does NOT imply

∑
|fn(x)| = |f(x)|, e.g.,

∑
(−0.5)n

Example: Recall the formula for a geometric series

∞∑
n=0

arn = a(1 + r + r2 + · · ·+ rn + · · · ) =

{ a

1− r
|r| < 1,

diverges, |r| ≥ 1.

Now consider the continuous functions fn(x) = xn and the infinite series

∞∑
n=1

fn(x) =

∞∑
n=1

xn = x+ x2 + · · ·+ xn + · · · .

For |x| < 1, that is, for x in the open interval (−1, 1) this series converges pointwise to a function f(x).

(a) What is the function f(x)?
(b) Does this series converge absolutely for |x| < 1?

We will discuss uniform convergence for this series after we discuss the Weierstrass M-Test.

The previous theorems on Cauchy Criterion for Uniform Convergence, Uniform Convergence of Continuous
Functions, Interchange of Limit and Integral, and Uniform Convergence of Derivatives (Theorems 1, 2, 3 and
5) apply to series of functions. To verify an infinite series converges, it is necessary to show that its sequence
of partial sums {sn} converges. The Cauchy Criterion for a sequence of functions {fn}: for m,n > H(ε),
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|fm(x)− fn(x)| < ε. For a sequence of partial sums {sn}, the criterion is |sm(x)− sn(x)| < ε which for m > n
is written as follows: ∣∣∣∣∣

m∑
k=1

fk(x)−
n∑

k=1

fk(x)

∣∣∣∣∣ = |fn+1(x) + fn+2(x) + · · ·+ fm(x)| < ε.

The four Theorems 1, 2, 3, and 5 are stated in terms of the convergence of the infinite series
∑
fn.

Theorem 6 (Cauchy Criterion for Uniform Convergence (Series)). Let fn : A→ R. The infinite series
∑
fn

converges uniformly to a function f iff for every ε > 0, there is a natural number H(ε) such that for all
m > n ≥ H(ε), then

|fn+1(x) + fn+2(x) + · · ·+ fm(x)| < ε for all x ∈ A.
Theorem 7 (Uniform Convergence of Continuous Functions (Series)). Let fn : A→ R be continuous for each
n ∈ N. If the infinite series

∑
fn converges uniformly to a function f on A, then f is continuous on A.

Theorem 8 (Interchange of Limit and Integral (Series)). Let fn : [a, b]→ R be Riemann integrable functions
on [a, b] (fn ∈ R[a, b]) and suppose the infinite series

∑
fn converges uniformly to a function f on [a, b]. Then

f ∈ R[a, b] and

lim
n→∞

∫ b

a

n∑
k=1

fk(x) dx =

∫ b

a
lim
n→∞

n∑
k=1

fk(x) dx =

∫ b

a
f(x) dx.

Theorem 9 (Uniform Convergence of Derivatives (Series)). Let fn : [a, b]→ R and let
∑
fn converge pointwise

to f on [a, b]. Suppose each derivative f ′n is continuous on [a, b] and the series of derivatives
∑
f ′n converges

uniformly to g on [a, b]. Then f(x)− f(a) =
∫ x
a g(t) dt and

∞∑
n=1

f ′n(x) = f ′(x) = g(x), for all x ∈ [a, b].

The following theorem is called the Weierstrass M-Test. This test gives sufficient conditions for uniform
convergence of a series of functions.

Theorem 10 (Weierstrass M-Test). Let fn : A→ R and let {Mn} be a sequence of positive real numbers such
that the absolute value of fn satisfies |fn(x)| ≤ Mn for all x ∈ A and n ∈ N. If the infinite series

∑
Mn is

convergent, then the infinite series
∑
fn converges uniformly for all x ∈ A.

To verify this theorem, two Cauchy convergence criteria are applied to series, Theorem 3.7.4 to
∑
Mn and

Theorem 6 given above or Theorem 9.4.5 to
∑
fn(x). Cauchy Criteria are iff statements.

Proof. Let ε > 0. The convergence of the positive series
∑
Mn implies the Cauchy Criterion holds. There

exists a natural number K(ε) such that for m > n ≥ K(ε), then

Mn+1 +Mn+2 + · · ·+Mm < ε.

Consider
∑
fn(x) and show the sequence of partial sums {sn(x)} satisfy the Cauchy Criterion for Uniform

Convergence. For m > n > K(ε),

|sm(x)− sn(x)| = |fn+1(x) + fn+2(x) + · · ·+ fm(x)|
≤ |fn+1(x)|+ |fn+2(x)|+ · · ·+ |fm(x)|
≤ Mn+1 +Mn+2 + · · ·+Mm < ε

for all x ∈ A. The preceding inequality shows that the Cauchy Criterion holds for Uniform Convergence of∑
fn(x) on A.

Example: Now we return to the infinite series
∑
xn. This series converges pointwise and absolutely to

f(x) = x/(1−x) on the open interval (−1, 1). Consider a closed and bounded interval [−a, a] ⊆ (−1, 1). Then
|fn(x)| = |xn| ≤ an for all x ∈ [−a, a]. For Mn = an, it is a geometric series

∑
an which converges for |a| < 1.

By the Weierstrass M-Test, the infinite series
∑
xn converges uniformly for x ∈ [−a, a] ⊆ (−1, 1).

(a) The Weierstrass M-Test does not apply on the open interval (−1, 1). Why?

(b) Show that the infinite series
∑
xn does not converge uniformly on (−1, 1). (Hint: Consider ‖sm−sn‖(−1,1)

for m = 2n.)
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Exercise: Note that the Cauchy Criterion for Uniform Convergence of Series does not mention bounded
functions. Prove that if the functions fn are bounded, |fn(x)| ≤ Mn for all x ∈ A, and the series

∑
fn

converges uniformly on A to a function f , then f is bounded. (Hint: Write |f(x)| = |f(x)− sn(x) + sn(x)|.)

Tests for Convergence and Divergence of Series

Please refer to the summary on Tests for Convergence and Divergence of Series
∑
an that you

learned in Calculus II. We will review definitions of conditional and absolute convergence, alternating series,

ratio and root tests, comparison tests, and specific series including geometric series, harmonic series and p-

series. You may use the summary on Tests for Convergence and Divergence of Series for Exam

# 2.

These tests for convergence and divergence are discussed in Sections 9.1 through 9.3. Some new definitions

will be introduced such as “grouping of series” and “rearrangement of series”, as well as some new theorems

about convergence of series, such as Dirichlet’s Test and Abel’s Test. Then we will return to section 9.4 and

discuss power series, Taylor series, and Fourier series.
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