
Math 4606. Fall 2006.

Solutions to Homework 8

Note: this homework assignment is not collected.

Section 2.1.

Problem 1. Suppose f is differentiable on an interval I and that f ′(x) > 0

for all x ∈ I except for finitely many points at which f ′(x) = 0. Show that f

is strictly increasing on I.

Solution. Note that by using the mean value theorem (same way as in

Theorem 2.8 of the textbook), we have:

(1) If f is continuous on [a, b] and f ′(x) > 0 for all x ∈ (a, b),

then f is strictly increasing on [a, b].

Let a, b ∈ I and a < b. Denote C = {x ∈ I : f ′(x) = 0}, then f ′(x) > 0 for

all x ∈ I \ C.

Case 1: (a, b) ∩ C = ∅. Then f ′(x) > 0 for all x ∈ (a, b) and by (1) we have

f(a) < f(b).

Case 2: (a, b) ∩ C 6= ∅. Then there are N ≥ 1 and ci ∈ C, for i ≤ N , such

that a < c1 < c2 < . . . < cN < b. Since f is continuous at a, b and ci, for

i ≤ N , we apply (1) to [a, c1], [cN , b] and each [ci, ci+1] for i ≤ N − 1, and

obtain f(a) < f(c1) ≤ f(c2) ≤ . . . ≤ f(cN) < f(b). (Note that if N = 1 we

only consider [a, c1] and [c1, b]). Therefore f(a) < f(b). The proof is complete.

Problem 2. Let

f(x) =

x2 sin( 1
x
) if x 6= 0,

0 if x = 0.

Show that f ′(x) exists for all x ∈ R, but f ′(x) is discontinuous at x = 0.

Solution. Easy to see that for x 6= 0,

(2) f ′(x) = 2x sin(
1

x
) + x2(− 1

x2
) cos(

1

x
) = 2x sin(

1

x
)− cos(

1

x
).

At x = 0, consider h 6= 0 and

(3)

∣∣∣∣f(h)− f(0)

h− 0

∣∣∣∣ = |h sin(
1

h
)| ≤ |h| → 0 as h → 0.

Hence limh→0
f(h)−f(0)

h−0
= 0 which gives f ′(0) = 0. Thus f is differentiable every

where.
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Considering (2), we have limx→0 2x sin( 1
x
) = 0 and limx→0 cos( 1

x
) does not

exist (why?). Hence limx→0 f ′(x) does not exists (why?). Therefore f ′(x) is

discontinuous at 0.

Problem 5. Let f be continuous on [a, n] and differentiable on (a, b). Suppose

that the right-hand limit

(4) lim
x→a+

f ′(x) = L exists.

Show that the right-hand derivative f ′+(a) defined by

(5) f ′+(a) = lim
h→0+

f(a + h)− f(a)

h

also exists and equals L.

Solution. For h ∈ (0, b− a), using the mean value theorem we have

f(a + h)− f(a)

h
= f ′(ch)

for some ch ∈ (a, a + h). When h → 0+, we have ch → a+ and it follows from

(4) that limh→0+ f ′(ch) = L. Therefore

lim
h→0+

f(a + h)− f(a)

h
= lim

h→0+
f ′(ch) = L

Thus f ′+(a) = L.

Problem 6a. Let f be three times differentiable on an open interval I con-

taining a. Show that

(6) lim
h→0

f(a + 2h)− 2f(a + h) + f(a)

h2
= f ′′(a).

Solution. There is δ > 0 such that (a− 3δ, a + 3δ) ⊂ I. In the following, we

only consider |h| < δ. For x ∈ (a− 2δ, a + 2δ), define

g(x) =
f(x + h)− f(x)

h
.

We have g′(x) = f ′(x+h)−f ′(x)
h

, for x ∈ (a− 2δ, a + 2δ).

First consider h > 0. Note that a + 2h, a + h, a ∈ (a, a + 2δ), then

f(a + 2h)− 2f(a + h) + f(a)

h2
=

g(a + h)− g(a)

h
.

Applying the mean value theorem to g,

g(a + h)− g(a)

h
= g′(yh) =

f ′(yh + h)− f ′(yh)

h
,
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where yh ∈ (a, a+h) ⊂ (a, a+ δ) which gives yh +h ∈ (a, a+2h) ⊂ (a, a+2δ).

Applying the mean value theorem again to f ′, we obtain

f(a + 2h)− 2f(a + h) + f(a)

h2
=

f ′(yh + h)− f ′(yh)

h
= f ′′(zh),

where zh ∈ (yh, yh + h) ⊂ (a, a + 2h) ⊂ I, hence zh → a+ as h → 0+. Since

f is three times differentiable, we have f ′′ is differentiable hence continuous,

thus

lim
h→0+

f(a + 2h)− 2f(a + h) + f(a)

h2
= lim

h→0+
f ′′(zh) = f ′′(a).

Similarly, one can prove the other one-sided limit

lim
h→0−

f(a + 2h)− 2f(a + h) + f(a)

h2
= f ′′(a).

Therefore (6) follows.


