Math 4606. Fall 2006. Solutions to Homework 7

Section 1.7.

Problem 4. Suppose S_1 and S_2 are connected subsets in \mathbb{R}^n with $S_1 \cap S_2 \neq \emptyset$. (a) Show that $S_1 \cup S_2$ is notnnected.

(b) Is $S_1 \cap S_2$ connected?

Solution. (a) Suppose $S = S_1 \cup S_2$ is not connected. Then there is a disconnection (V_1, V_2) of S, i.e.,

(1)
$$V_1, V_2 \neq \emptyset, \quad S = V_1 \cup V_2, \quad V_1 \cap \overline{V}_2 = V_2 \cap \overline{V}_1 = \emptyset.$$

Since $S_1 \cap S_2 \neq \emptyset$, there is $a \in S_1 \cap S_2$. Also $a \in S = V_1 \cup V_2$, we have $a \in V_1$ or $a \in V_2$. Without loss of generality, we assume $a \in V_1$. Since

$$\emptyset \neq V_2 = V_2 \cap S = V_2 \cap (S_1 \cup S_2) = (V_2 \cap S_1) \cup (V_2 \cap S_2),$$

we have $V_2 \cap S_1 \neq \emptyset$ or $V_2 \cap S_2 \neq \emptyset$.

Case 1: $V_2 \cap S_1 \neq \emptyset$. Let $T_1 = V_1 \cap S_1$ and $T_2 = V_2 \cap S_1$. We have $T_2 \neq \emptyset$ by assumption, and $T_1 \neq \emptyset$ since it contains a. Also,

$$T_1 \cup T_2 = T_1 = (V_1 \cap S_1) \cup (V_2 \cap S_1) = (V_1 \cup V_2) \cap S_1 = S \cap S_1 = S_1.$$

Furthermore, $T_1 \subset V_1, T_2 \subset V_2$, hence $T_1 \cap \overline{T}_2 \subset V_1 \cap \overline{V}_2 = \emptyset$ which implies $T_1 \cap \overline{T}_2 = \emptyset$. Similarly, $T_2 \cap \overline{T}_1 = \emptyset$. Therefore (T_1, T_2) is a disconnection of S_1 which contradicts the fact that S_1 is connected.

Case 2: $V_2 \cap S_2 \neq \emptyset$. Let $T_1 = V_1 \cap S_2$ and $T_2 = V_2 \cap S_2$. Using these sets, we can prove similarly that S_2 is disconnected which is absurd.

<u>We find contradiction</u> in both cases, hence we conclude that S is connected. (b) Break a (very thin) doughnut into halves and slide one slightly over the other. This gives a picture of two sets in \mathbb{R}^2 which are connected with non-empty intersection but their intersection is disconnected. Indeed, that intersection is the union of two regions staying far apart from each other. This is not a real proof but we can easily write down many other examples. For instance, in \mathbb{R}^2 , take S_1 to be the unit circle and S_2 to be the *x*-axis.

Problem 10. Let S be a connected set in \mathbb{R}^2 that contains (1,3) and (4,-1). Show that S contains at least one point on the line y = x.

Solution. Let f(x, y) = y - x. Then f is continuous. We have f(1,3) = 2and f(4,-1) = -5. Note that f(4,-1) < 0 < f(1,3). Since S is connected containing (1,3) and (4,-1), and f is continuous, then by the intermediate value theorem there is $(a, b) \in S$ such that f(a, b) = 0, hence a = b or the point (a, b) of S belongs to the line y = x.

Note: A similar example was given in lectures.

Section 1.8.

Problem 3. Let $S \subset \mathbb{R}^n$ and $f, g : S \to \mathbb{R}^m$ be uniformly continuous. Show that f + g is uniformly continuous on S.

Solution. Let $\varepsilon > 0$. Since f is uniformly continuous, there is $\delta_1 > 0$, so that for $x, y \in S$ with $|x - y| < \delta_1$ we have $|f(x) - f(y)| < \varepsilon/2$. Similarly, there is $\delta_2 > 0$, so that for $x, y \in S$ with $|x - y| < \delta_2$ we have $|g(x) - g(y)| < \varepsilon/2$. Let $\delta = \min\{\delta_1, \delta_2\} > 0$. For any $x, y \in S$ such that $|x - y| < \delta$, we have $|x - y| < \delta_1$, $|x - y| < \delta_2$ and by the triangle inequality

$$\begin{aligned} |(f+g)(x) - (f+g)(y)| &= |f(x) - f(y) + g(x) - g(y)| \\ &\leq |f(x) - f(y)| + |g(x) - g(y)| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}. \end{aligned}$$

Hence $\frac{|(f+g)(x) - (f+g)(y)| < \varepsilon}{\varepsilon}$. Therefore, f+g is uniformly continuos on S.

Problem 4. (a) Suppose $S \subset \mathbb{R}^n$ and $f : S \to \mathbb{R}^m$ is uniformly continuous and $\{x_k\}$ is a Cauchy sequence in S. Show that $\{f(x_k)\}$ is a Cauchy sequence in \mathbb{R}^m .

(b) Give an example of a Cauchy sequence in $(0, \infty)$ and a continuous function $f: (0, \infty) \to \mathbb{R}$ such that $\{f(x_k)\}$ is not Cauchy.

Solution. (a) Let $\varepsilon > 0$. Since f is uniformly continuous, there is $\delta > 0$, so that for $x, y \in S$:

(2)
$$|x-y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Since $\{x_k\}$ is Cauchy, there is $K \in \mathbb{N}$ such that if k, j > K we have $|x_k - x_j| < \delta$. Now with such $K \in \mathbb{N}$ and for any k, j > K, we again have $|x_k - x_j| < \delta$ and hence (2) implies $|f(x_k) - f(x_j)| < \varepsilon$. Therefore, $\{f(x_k)\}$ is a Cauchy sequence in \mathbb{R}^m .

(b) We can take f(x) = 1/x and $x_k = 1/k$.