Math 4606. Fall 2006.

Solutions to Homework 7

Section 1.7.

Problem 4. Suppose S; and Sy are connected subsets in R™ with S; NS, # (.

(a) Show that S; U S; is notnnected.

(b) Is S; N Sy connected?

Solution. (a) Suppose S = S; U S is not connected. Then there is a discon-
nection (Vi, V,) of S, ie.,

(1) Vi,Vo£0, S=ViuVy, VinVya=V,nV; =0.

Since S; NSy # (), there is a € S1NSy. Alsoa € S =V, UV;, we have a € V)

or a € V5. Without loss of generality, we assume a € V;. Since
DA£VL=VonNS=VaN(S1USy) = (1anS)U(VanSy),

we have Vo NSy # () or V5N Sy # 0.
Case 1: ‘/gﬂsl#@ Let le‘/lﬂSI andngVQF]Sl. WehaveTgsé@by

assumption, and T; # () since it contains a. Also,
U, =T1=WVinS)Hu(VonsS) =MWV uUuli)nsS =5SnNS; =5;.

Furthermore, Ty C V4, Ty C Vs, hence Ty N T, C V3 N Vo = () which implies
Ty N'Ty = . Similarly, T, N Ty = (. Therefore (T}, T5) is a disconnection of S
which contradicts the fact that S; is connected.

Case 2: Vo Sy # (. Let Ty = ViN Sy and Ty, = Vo N S,. Using these sets,
we can prove similarly that Sy is disconnected which is absurd.

We find contradiction in both cases, hence we conclude that S is connected.

(b) Break a (very thin) doughnut into halves and slide one slightly over
the other. This gives a picture of two sets in R? which are connected with
non-empty intersection but their intersection is disconnected. Indeed, that
intersection is the union of two regions staying far apart from each other. This
is not a real proof but we can easily write down many other examples. For
instance, in R?, take S; to be the unit circle and S5 to be the z-axis.

Problem 10. Let S be a connected set in R? that contains (1, 3) and (4, —1).
Show that S contains at least one point on the line y = x.

Solution. Let f(x,y) =y — x. Then f is continuous. We have f(1,3) = 2
and f(4,—1) = —5. Note that f(4,—1) < 0 < f(1,3). Since S is connected

containing (1,3) and (4, —1), and f is continuous, then by the intermediate
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value theorem there is (a,b) € S such that f(a,b) = 0, hence a = b or the
point (a,b) of S belongs to the line y = x.

Note: A similar example was given in lectures.

Section 1.8.

Problem 3. Let S C R™ and f,g: S — R™ be uniformly continuous. Show
that f + ¢ is uniformly continuos on S.

Solution. Let € > 0. Since f is uniformly continuous, there is §; > 0, so
that for z,y € S with |x — y| < §; we have |f(x) — f(y)| < €/2. Similarly,
there is do > 0, so that for z,y € S with |z — y| < d2 we have |g(z) — g(y)| <
£/2. Let § = min{0y,02} > 0. For any z,y € S such that |z — y| < §, we have

|z — y| < 41, |x — y| < 62 and by the triangle inequality

(f+9)(x) = (f+9)W)|=I|f(x) = fly) +g(z) — g(v)]
<[f(z) = fW)]+]9(z) — g(v)|
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Hence |(f + g)(z) — (f + 9)(y)| < e. Therefore, f + g is uniformly continuos
on S.

Problem 4. (a) Suppose S C R" and f : S — R™ is uniformly continuous

and {x;} is a Cauchy sequence in S. Show that {f(x})} is a Cauchy sequence
in R™.

(b) Give an example of a Cauchy sequence in (0, c0) and a continuous func-
tion f : (0,00) — R such that {f(xx)} is not Cauchy.

Solution. (a) Let € > 0. Since f is uniformly continuous, there is § > 0, so

that for x,y € S:

(2) -yl <6 = [f(z) - fy)l <e.

Since {x} is Cauchy, there is K € N such that if k, j > K we have |z,—x;| < 0.
Now with such K € N and for any k,j > K, we again have |z, — z;| < 0 and

hence (2) implies | f(x) — f(z;)| < e. Therefore, { f(x))} is a Cauchy sequence
in R™.

(b) We can take f(z) =1/x and z, = 1/k.




