
Math 4606. Fall 2006.

Solutions to Homework 7

Section 1.7.

Problem 4. Suppose S1 and S2 are connected subsets in Rn with S1∩S2 6= ∅.
(a) Show that S1 ∪ S2 is notnnected.

(b) Is S1 ∩ S2 connected?

Solution. (a) Suppose S = S1 ∪ S2 is not connected. Then there is a discon-

nection (V1, V2) of S, ie.,

(1) V1, V2 6= ∅, S = V1 ∪ V2, V1 ∩ V̄2 = V2 ∩ V̄1 = ∅.

Since S1 ∩ S2 6= ∅, there is a ∈ S1 ∩ S2. Also a ∈ S = V1 ∪ V2, we have a ∈ V1

or a ∈ V2. Without loss of generality, we assume a ∈ V1. Since

∅ 6= V2 = V2 ∩ S = V2 ∩ (S1 ∪ S2) = (V2 ∩ S1) ∪ (V2 ∩ S2),

we have V2 ∩ S1 6= ∅ or V2 ∩ S2 6= ∅.
Case 1: V2 ∩S1 6= ∅. Let T1 = V1 ∩S1 and T2 = V2 ∩S1. We have T2 6= ∅ by

assumption, and T1 6= ∅ since it contains a. Also,

T1 ∪ T2 = T1 = (V1 ∩ S1) ∪ (V2 ∩ S1) = (V1 ∪ V2) ∩ S1 = S ∩ S1 = S1.

Furthermore, T1 ⊂ V1, T2 ⊂ V2, hence T1 ∩ T̄2 ⊂ V1 ∩ V̄2 = ∅ which implies

T1 ∩ T̄2 = ∅. Similarly, T2 ∩ T̄1 = ∅. Therefore (T1, T2) is a disconnection of S1

which contradicts the fact that S1 is connected.

Case 2: V2 ∩ S2 6= ∅. Let T1 = V1 ∩ S2 and T2 = V2 ∩ S2. Using these sets,

we can prove similarly that S2 is disconnected which is absurd.

We find contradiction in both cases, hence we conclude that S is connected.

(b) Break a (very thin) doughnut into halves and slide one slightly over

the other. This gives a picture of two sets in R2 which are connected with

non-empty intersection but their intersection is disconnected. Indeed, that

intersection is the union of two regions staying far apart from each other. This

is not a real proof but we can easily write down many other examples. For

instance, in R2, take S1 to be the unit circle and S2 to be the x-axis.

Problem 10. Let S be a connected set in R2 that contains (1, 3) and (4,−1).

Show that S contains at least one point on the line y = x.

Solution. Let f(x, y) = y − x. Then f is continuous. We have f(1, 3) = 2

and f(4,−1) = −5. Note that f(4,−1) < 0 < f(1, 3). Since S is connected

containing (1, 3) and (4,−1), and f is continuous, then by the intermediate
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value theorem there is (a, b) ∈ S such that f(a, b) = 0, hence a = b or the

point (a, b) of S belongs to the line y = x.

Note: A similar example was given in lectures.

Section 1.8.

Problem 3. Let S ⊂ Rn and f, g : S → Rm be uniformly continuous. Show

that f + g is uniformly continuos on S.

Solution. Let ε > 0. Since f is uniformly continuous, there is δ1 > 0, so

that for x, y ∈ S with |x − y| < δ1 we have |f(x) − f(y)| < ε/2. Similarly,

there is δ2 > 0, so that for x, y ∈ S with |x− y| < δ2 we have |g(x)− g(y)| <
ε/2. Let δ = min{δ1, δ2} > 0. For any x, y ∈ S such that |x− y| < δ, we have

|x− y| < δ1, |x− y| < δ2 and by the triangle inequality

|(f + g)(x)− (f + g)(y)| = |f(x)− f(y) + g(x)− g(y)|

≤ |f(x)− f(y)|+ |g(x)− g(y)|

<
ε

2
+

ε

2
.

Hence |(f + g)(x)− (f + g)(y)| < ε. Therefore, f + g is uniformly continuos

on S.

Problem 4. (a) Suppose S ⊂ Rn and f : S → Rm is uniformly continuous

and {xk} is a Cauchy sequence in S. Show that {f(xk)} is a Cauchy sequence

in Rm.

(b) Give an example of a Cauchy sequence in (0,∞) and a continuous func-

tion f : (0,∞) → R such that {f(xk)} is not Cauchy.

Solution. (a) Let ε > 0. Since f is uniformly continuous, there is δ > 0, so

that for x, y ∈ S:

(2) |x− y| < δ =⇒ |f(x)− f(y)| < ε.

Since {xk} is Cauchy, there is K ∈ N such that if k, j > K we have |xk−xj| < δ.

Now with such K ∈ N and for any k, j > K, we again have |xk − xj| < δ and

hence (2) implies |f(xk)− f(xj)| < ε. Therefore, {f(xk)} is a Cauchy sequence

in Rm.

(b) We can take f(x) = 1/x and xk = 1/k.


