Math 4606. Fall 2006. Solutions to Homework 2

Section 1.1.

Problem 1. Given $x, y \in \mathbb{R}^n$.

a. Show that $|x + y|^2 = |x|^2 + 2x \cdot y + |y|^2$.

Solution. Using the definition of the norm in \mathbb{R}^n and the commutativity and associativity of the dot product, we have

$$|x + y|^{2} = (x + y) \cdot (x + y) = x \cdot x + x \cdot y + y \cdot x + y \cdot y$$
$$= |x|^{2} + x \cdot y + x \cdot y + |y|^{2}$$
$$= |x|^{2} + 2x \cdot y + |y|^{2}.$$

b. Show that $|x + y|^2 + |x - y|^2 = 2(|x|^2 + |y|^2)$. Solution. Using part (a),

$$|x+y|^2 = |x|^2 + 2x \cdot y + |y|^2,$$

 $|x - y|^2 = |x + (-y)|^2 = |x|^2 + 2x \cdot (-y) + |-y|^2 = |x|^2 - 2x \cdot y + |y|^2.$ Then sum the above two identities,

 $|x+y|^2 + |x-y|^2 = |x|^2 + 2x \cdot y + |y|^2 + |x|^2 - 2x \cdot y + |y|^2 = 2|x|^2 + 2|y|^2.$

Problem 6. Show that $||a| - |b|| \leq |a - b|$ for every $a, b \in \mathbb{R}^n$. Solution. Let a and b be any vectors in \mathbb{R}^n . By the triangle inequality,

$$|a| = |a - b + b| \le |a - b| + |b|,$$

hence $|a| - |b| \le |a - b|$. Similarly

$$|b| - |a| = |b - a + a| - |a| \le |b - a| + |a| - |a| = |a - b|.$$

Since both |a| - |b| and its opposite -(|a| - |b|) = |b| - |a| are less than or equaled to |a - b|, so is its absolute value ||a| - |b||.

Section 1.2.

Problem 2. Let S an a subset of \mathbb{R}^n . a. Show that S^{int} is open.

Solution. Let $x \in S^{\text{int}}$ be given. Since x is an interior point of S, then by definition there is r > 0 such that the ball B(r, x) is a subset of S. We will show that this ball, indeed, is a subset of S^{int} .

Let $y \in B(r, x)$. Since B(r, x) is an open set (Example 1 in the text which was also done in class) there is $r_1 > 0$ such that $B(r_1, y) \subset B(r, x)$ which implies that $B(r_1, y) \subset S$, hence y is an interior point of S, or $y \in S^{\text{int}}$. Thus $B(r, x) \subset S^{\text{int}}$.

We have just showed that every point $x \in S^{\text{int}}$ is an interior point of S^{int} (let not be confused with interior point of S). Then by Proposition 1.4 (in the text), S^{int} must be open. The proof is complete.

b. Show that ∂S is closed.

Solution. We know that $\partial S = \mathbb{R}^n \setminus \{S^{\text{int}} \cup (S^c)^{\text{int}}\}$. By part (a), S^{int} and $(S^c)^{\text{int}}$ are open, so is there union $S^{\text{int}} \cup (S^c)^{\text{int}}$. Thefore ∂S is closed, by Proposition 1.4(b).

c. Show that \overline{S} is closed.

Solution. We know that $\overline{S} = \mathbb{R}^n \setminus (S^c)^{\text{int}}$. By part (a), $(S^c)^{\text{int}}$ is open, therefore \overline{S} is closed.

Problem 4. Let S_1 and S_2 be two closed subsets of \mathbb{R}^n . Show that $S_1 \cup S_2$ and $S_1 \cap S_2$ are closed.

Solution. By Proposition 1.4(b), S_1^c and S_2^c are open, hence their union $S_1^c \cup S_2^c$ and and intersection $S_1^c \cap S_2^c$ are open. Since $(S_1 \cup S_2)^c = S_1^c \cap S_2^c$ and $(S_1 \cap S_2)^c = S_1^c \cup S_2^c$, we have $(S_1 \cup S_2)^c$ and $(S_1 \cap S_2)^c$, therefore $S_1 \cup S_2$ and $S_1 \cap S_2$ are closed.

Problem 6. Give an example of closed sets S_k , $k \in \mathbb{N}$, such that $\bigcup_{k=1}^{\infty} S_k$ is not closed.

Solution. There are many examples. Here is one of them. Let $S_k = [0, 2 - \frac{1}{k}], k \in \mathbb{N}$, be closed set in \mathbb{R} . Their union $S = \bigcup_{k=1}^{\infty} S_k$ is [0, 2) is not closed. How to prove S = [0, 2)? First $S_k \subset [0, 2)$ for all k, so $S \subset [0, 2)$. Suppose [0, 2) is not a subset of S then there is $x_0 \in [0, 2)$ but $x_0 \notin S$. This implies $x_0 \notin S_k$ for all k. Take a large natural number $K > 1/(2 - x_0)$, then $x_0 < 2 - (1/K)$ hence $x_0 \in S_K$, contradiction. Therefore $[0, 2) \subset S$. Thus S = [0, 2).

Question: Why isn't [0, 2) closed?