
Chapter 6

Infinite series

We briefly review this chapter in order to study series of functions in chap-

ter 7. We cover from the beginning to Theorem 6.17 in the text excluding

Theorem 6.6 and Rabbe’s test (Theorem 6.16) from section 6.2.

39



40 CHAPTER 6. INFINITE SERIES



Chapter 7

Functions Defined by Series

and Integrals

We focus on sequences and series of functions and their uniform convergence.

We only present a summary for Section 7.3. The first two sections are rear-

rangements of those in the text.

7.1 Sequences of functions

Let S be a subset of R
n and for each k ∈ N, fk is a function from S to

R
m. Let f : S → R

m. We want to understand what “fk converges to f as

k → ∞” means and the relations between fk and f .

Pointwise convergence. We say fk → f pointwise on S if

∀x ∈ S, lim
k→∞

fk(x) = f(x).

However, this kind of convergence is not good enough when we consider

the continuity, integrability or differentiability of f .

Uniform convergence. We say {fk} converges uniformly on S to f if

∀ε > 0, ∃K > 0, ∀k ∈ N :
[

k > K =⇒ (∀x ∈ S, |fk(x) − f(x)| < ε)
]

.

Some books use the notation: fk ⇉ f .
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We say {fk} is uniformly convergent if its converges uniformly to some

function f .

Note that if fk → f uniformly then obviously fk → f pointwise.

Theorem 7.1. The sequence {fk} converges to f uniformly on S if and only

if

lim
k→∞

Mk = 0, (7.1)

where

Mk = sup{|fk(x) − f(x)| : x ∈ S}. (7.2)

Corollary 7.2. If there are Ck ≥ 0 such that

|fk(x) − f(x)| ≤ Ck, for all x ∈ S,

and

lim
k→∞

Ck = 0,

then fk → f uniformly on S.

In practice, we find f(x) = limk→∞ fk(x) first (i.e. find pointwise limits

of fk), then prove or disprove (7.1).

As with sequences of vectors we have the notion of Cauchy sequences.

Definition 7.3. A sequence {fk} of functions on S is uniformly Cauchy if

∀ε > 0, ∃K > 0, ∀k, j ∈ N :
[

k, j > K =⇒ (∀x ∈ S, |fk(x) − fj(x)| < ε)
]

,

or equivalently,

∀ε > 0, ∃K > 0, ∀k, j ∈ N :
[

k, j > K =⇒ sup{|fk(x)−fj(x)| : x ∈ S} < ε
]

.

Theorem 7.4. The sequence {fk} is uniformly convergent on S if and only

if it is uniformly Cauchy.

Theorem 7.5. Suppose fk → f uniformly on S. If each fk is continuous on

S, then so is f .
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Theorem 7.6. Let a, b ∈ R and a < b. Suppose fk (for k ∈ N) and f are

integrable on [a, b] and fk → f uniformly on [a, b]. Then

∫ b

a

lim
k→∞

fk(x)dx =

∫ b

a

f(x)dx = lim
k→∞

∫ b

a

fk(x)dx.

Theorem 7.7. Let {fk} be a sequence of functions of class C1 on an interval

[a, b]. Suppose that fk → f pointwise and f ′

k → g uniformly on [a, b]. Then

f is of class C1 on [a, b] and f ′ = g.

7.2 Series of functions

Let S ⊂ R
m′

(m′ is used to avoid the conflict with the following index n) and

fn : S → R
m. Define the partial sum

sk = f1 + f2 + . . . + fk =

k
∑

n=1

fn. (7.3)

Then {sk} is a sequence of functions and is considered as an infinite series
∑

∞

n=1
fn.

We say that the series
∑

∞

1
fn is uniformly convergent if the sequence of

partial sums {sk} is uniformly convergent. The limit of the series is, as usual,

the limit of the partial sums.

Note: we can consider (such as for power series) the infinite series of the

form
∑

∞

n=0
fn. Of course, in this case, fn is defined for all n ≥ 0.

Theorem 7.8 (Cauchy criterion). The series
∑

∞

1
fn is uniformly convergent

on S if an only if

∀ε > 0, ∃K > 0, ∀k, j ∈ N :

j > k > K =⇒ sup{|fk+1(x) + fk+2(x) + . . . + fj(x)| : x ∈ S} < ε. (7.4)

Corollary 7.9. If
∑

∞

1
fn is uniformly convergent on S then

lim
n→∞

(

sup{|fn(x)| : x ∈ S}
)

= 0, (7.5)
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or equivalently, fn → 0 uniformly on S.

Consequently, if fn does not converge to zero uniformly on S then
∑

∞

1
fn

is not uniformly convergent on S.

Theorem 7.10 (The Weierstrass M-test). Suppose there are Mn ≥ 0 for

n ∈ N such that

(i) |fn(x)| ≤ Mn, for all n ∈ N and x ∈ S, and

(ii)
∑

∞

1
Mn < ∞.

Then
∑

∞

1
fn is absolutely and uniformly convergent on S.

Theorem 7.11. Suppose each fn is continuous on S and
∑

∞

1
fn converges

to f uniformly on S. Then f is continuous on S.

Theorem 7.12. Let a, b ∈ R and a < b. Suppose each fn is continuous on

[a, b] and
∑

∞

1
fn converges to f pointwise on [a, b].

(i) If
∑

∞

1
fn converges uniformly on [a, b] then

∫ b

a

∞
∑

1

fk(x)dx =

∫ b

a

f(x)dx =
∞

∑

1

∫ b

a

fk(x)dx. (7.6)

(ii) If each fk is of class C1 on [a, b] and
∑

∞

1
f ′

k is uniformly convergent then

f ∈ C1([a, b]) and

d

dx

[

∞
∑

1

fn(x)
]

= f ′(x) =

∞
∑

1

f ′

k(x) (7.7)

7.3 Power series

We consider the infinite series of the form

∞
∑

0

anxn, an, x ∈ R.

This is called a power series. Note that when x = 0 the series is convergent

and its limit is zero.
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Theorem 7.13. For any power series
∑

∞

0
anxn, there is a number R ∈

[0,∞] such that we have the following.

(i) The series is absolutely convergent for |x| < R.

The series is divergent for |x| > R.

The series is uniformly convergent on [−r, r] for any 0 ≤ r < R.

(ii) Let f(x) =
∑

∞

0
anxn whenever it is defined. Then

The function f is continuous on (−R, R).

The function f is of class C1 on (−R, R), and

f ′(x) =

∞
∑

1

nanxn−1, x ∈ (−R, R). (7.8)

For a, b ∈ (−R, R), the function f is integrable on [a, b] and

∫ b

a

f(x)dx =
∞

∑

0

∫ b

a

anxndx. (7.9)

In particular, for x ∈ (−R, R), we have

∫ x

0

f(t)dt =
∞

∑

0

an

n + 1
xn+1. (7.10)

Such R above is called the radius of convergence of the series. Note that

R can be 0 which means the series is divergent for any x 6= 0; and R can be

∞ which means the series is absolutely convergent for all x ∈ R.

R can be defined by

R = sup{|x| :
∞

∑

0

anxn converges}. (7.11)

How to compute R ? In fact R = 1/L where L ∈ [0,∞] is determined by

L = lim
n→∞

|an+1|

|an|
or L = lim

n→∞

n

√

|an|, (7.12)

whenever it exists, or in general,

L = lim sup
n→∞

n

√

|an|. (7.13)


