
Chapter 3

The Implicit Function Theorem

and Its Applications

We present the Inverse Mapping Theorem first (Theorem 3.18 in the text)

and then the Implicit Function Theorem (Theorem 3.9 in the text)

Theorem 3.1 (The inverse mapping theorem). Let U and V be open sets

in R
n and a ∈ U . Let f : U → V be a mapping of class C1 and b =

f(a). Suppose Df(a) is invertible, that is, detDf(a) 6= 0. Then there exist

neighborhoods M ⊂ U of a and N ⊂ V of b, so that f is a one-to-one map

from M onto N , and the inverse map f−1 from N to M is also of class C1.

Moreover, if x ∈ M and y = f(x) ∈ N , then D(f−1)(y) = [Df(x)]−1.

Read the example on p. 138 of the textbook.

Let F : R
n × R

k → R
k. For x ∈ R

n, y ∈ R
k, F (x, y) = (F1, F2, . . . , Fk) ∈

R
k. We use the following notation

DxF =
(

∂xj
Fi

)

1≤i≤k
1≤j≤n

=













∂x1
F1 ∂x2

F1 . . . ∂xn
F1

∂x1
F2 ∂x2

F2 . . . ∂xn
F2

...
...

...
...

∂x1
Fk ∂x2

Fk . . . ∂xn
Fk













,
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DyF =
(

∂yj
Fi

)

1≤i,j≤k
=













∂y1
F1 ∂y2

F1 . . . ∂yk
F1

∂y1
F2 ∂y2

F2 . . . ∂yk
F2

...
...

...
...

∂y1
Fk ∂y2

Fk . . . ∂yk
Fk













.

Note that DxF is a k×n matrix, DyF is a k×k matrix and the derivative

of F is

DF = ( DxF DyF ),

a k × (n + k) matrix.

Theorem 3.2. Let U ⊂ R
n × R

k be open and F : U → R
k is of class C1.

Let a ∈ R
n, b ∈ R

k such that (a, b) ∈ U . Suppose F (a, b) = 0 and the matrix

B = DyF (a, b) is invertible, that is, detB 6= 0. Then there are positive

numbers r0 and r1 such that

(i) For all x ∈ B(r0, a), there exists unique y ∈ B(r1, b) such that (x, y) ∈

U and F (x, y) = 0.

We define the function f : B(r0, a) → B(r1, b) as follows: for each x ∈

B(r0, a), f(x) is that unique y ∈ B(r1, b).

(ii) The function f above is of class C1 and F (x, f(x)) = 0 for all x ∈

B(r0, a). Consequently, for x ∈ B(r0, a) and y = f(x), we have

Df(x) = −[DyF (x, y)]−1DxF (x, y),

whenever DyF (x, y) is invertible.

Example 3.3. Consider the problem of solving

x − yu2 = 0, xy + uv = 0 (3.1)

for u and v as functions of x and y.

Let n = k = 2. Set F = (F1, F2) = (x − yu2, xy + uv). We have

A = D(x,y)F =

(

1 −u2

y x

)

,
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B = D(u,v)F =

(

−2yu 0

v u

)

.

We have detD(u,v)F (x, y, u, v) = −2yu2. Therefore, for any solution (x0, y0, u0, v0)

of (3.1) such that y0u0 6= 0, we can solve (3.1) for (u, v) = f(x, y) =

(u(x, y), v(x, y)) nearby the given point (x0, y0, u0, v0).

For example, let (x0, y0, u0, v0) = (1, 1, 1,−1) be a solution of (3.1). We

want to find also Df(1, 1). We have

A = D(x,y)F (1, 1, 1,−1) =

(

1 −1

1 1

)

,

B = D(u,v)F (1, 1, 1,−1) = D(u,v)F =

(

−2 0

−1 1

)

.

It is known that if ad − bc 6= 0, the inverse matrix of

(

a b

c d

)

is

(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.

We have detB = −2 6= 0 and hence B−1 =

(

−1/2 0

−1/2 1

)

. Thus

Df(1, 1) = −B−1A = −

(

−1/2 0

−1/2 1

)(

1 −1

1 1

)

= −

(

−1/2 1/2

1/2 3/2

)

=

(

1/2 −1/2

−1/2 −3/2

)

.

This implies

∂xu(1, 1) = 1/2, ∂yu(1, 1) = −1/2, ∂xv(1, 1) = −1/2, ∂yv(1, 1) = −3/2.


