Chapter 1

Setting the stage

1.1 Euclidean spaces and vectors

Let n be a natural number, i.e. n =1,2,3,.... The n-dimensional Euclidean
space is the set of odered n-tuples of real numbers. We denote this space by
R™. Then

R" ={x = (x1,22,...,2,) : X1, T2, ..., 2, € R}, (1.1)

where R denotes the set of real numbers. In fact, R = R xR x ... xR
the Cartesean product of R. Each element in x = (x1,29,...,2,) is called
a vector with components z1, x», ..., z,. Other notations for vectors can be

bold letters x or underlined letters x; however we will not use these in this

note.
The zero vector of R™ is simply 0 = (0,0, ...,0).
Let z = (z1,22,...,24),y = (Y1,¥2,-..,Yn) be two vectors in R™ and

¢ € R. We define the following operations:
Addition: x4+ y = (21 + y1, T2 + Y2, . - -, Tp + Yn),
Scalar product: cx = (cxy, ¢, . .., cxy),
Dot product: = -y = x1y1 + T2y + . . . TpYn.
The norm (or the length) of x is

1
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Denote —x = (—1)x = (—x1, =2, ..., —Tp).

Some immediate properties:
rty =yt (r+y)+z=a+(y+2),c(z+y) = crtey, v+ (-r) =0, (1.3)
|cx| = lef|z], | — x| = [=]. (1.4)
Proposition 1.1 (Cauchy-Schwar’s inequality). For any a,b € R™,
la - b] < allb]. (1.5)
Proof. See text, p.5. O

Example 1.2. For n =2, a = (a3, as), b = (b1, by) € R?, we have

Jarby + asha| < \Ja? + a3\ /3 + B3, (1.6)

For n =3, a = (ay, as, as), b= (by, by, b3) € R3, we have

la1by + agby + azbs| < \/a§+a§+a§ \/b§+b§+b§. (1.7)
Proposition 1.3 (The triangle inequality). For any a,b € R,
la + 0| < |a| + 0] (1.8)

Consequently,
ja—b] > |a| —1b] | (1.9)

Corollary 1.4. For any x,y,z € R",
[z —yl <o —z[+]|z -yl (1.10)
[ = | |yl = |z =yl ]. (1.11)
Relation between the norm of x and that of its components: Let x =
(r1,x9,...,2,) € R" and M = max{|z1], |xs|,...,|zs|}, then

M < |z| < v/nM. (1.12)
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1.2 Subsets of Euclidean space

Let a € R™ and r > 0. The (open) ball B(r,a) is the set of all points whose

distance to a is less than r,

B(r,a) ={z e R": |z —a| <r}. (1.13)
We can also define the closed ball

B'(r,a) ={z e R": |z —a| < r}. (1.14)

Let S be a subset of R". Then the complement of S in R" is S, the set

of all points in R™ that are not in S:
S¢=R"\S={xeR":z ¢S5} (1.15)

Example 1.5. If S = B(r,a), then ¢ = {& € R" : |z —a| > r}. If
S = B'(r,a), then S ={x € R" : |z —a| > r}.

Definition 1.6. Let S be a subset of R" and x € R".
x is called an interior point of S if there is r > 0 such that B(r,z) C S.
We denote the set of interior points of S by S™:

S = freR":3r>0,B(r,x) C S}. (1.16)

x is called a boundary point of S every ball centered at x intersect both

s and S¢ i.e.,
Vr > 0,B(r,z)NS # 0 and B(r,z) N.S° # 0. (1.17)

We denote by 0S the set of all boundary points of S called the boundary of
S:

0S={z eR":¥r>0,B(r,z) NS # 0 and B(r,z) N S #0}.  (1.18)

The closure of S is S = S UIS.

S is a neighborhood of x if z is an interior point of S.
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Definition 1.7. Let S be a subset of R™.
S is called open if it contains none of its boundary points: S N 9S = 0.

S is called closed if it contains all of its boundary points: 9S C S.

Note: R™ and the empty set () are both open and closed.
Two sets A and B are said to be disjoint if AN B = ().

Proposition 1.8. Let S be a subset of R". Then

a. S and its complement S¢ have the same boundary: 0S = 9(S°).

b. SIS, (S are mutually disjoint, i.e., S NS, (S) N SH JSN
(S€)mt are empty sets.

c. R" = Smtyags u(Se)nt,

Consequently, every point x € R™ belongs to exactly one of the following
sets S 99, (S°)int,
We also have S C S™ U AS, hence S = S™ U 95, therefore

Proposition 1.9. (5)¢ = (S°¢)int,

Proposition 1.10. Suppose S C R™.

a. S is open <= every point of S is an interior point of S <=
S = Sint.

b. S is closed <= S° is open.

Proposition 1.11. (i) If Sy and Sy are both open (or closed), so are S;U Sy
and S; N Sy.

(11) If {Sa}tacr is a fimily of open sets, then UaerS, is open.

(111) If {Sa}acr is a fimily of closed sets, then NyerSy 18 closed.
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1.3 Limits and continuity

Let n and k be two natural numbers. Let f be a function form R” to R¥,

a € R" and L € R*. We say the limit of f(x) as x aproaches a is L if
Ve>0,30>0,VzeR":0< |z —a|<d = |f(z)—L|<e. (1.19)

Notation:
lim f(z) = L. (1.20)

r—a

Proposition 1.12. The limit lim,_., f(z), if ezists, is unique.
Some equivalent statements of (1.19):

e If a =(ay,as,...,a,), then we have lim, ., f(z) = L if and only if

Ve > 0,30 > 0,V = (21, 29,...,2,) € R":

0 < |z—a| < max{|ri—a1|, |ra—as|, ..., |Tp—a,|} <0 = |f(z)—L| <e.
(1.21)

o If f = (fi,fo,..., fx) and L = (Ly, Lo,...,Ly), where each f; is a
function from R"™ to R then

lim f(z) =L <= lim fj(x) =L; forall j =1,2,..., k. (1.22)

r—a

Example 1.13. See text, p. 14, 15.

Proposition 1.14. Let f,g : R* - R™, a € R" and

lim f(z) =L, limg(z) =K. (1.23)

Then
(i) T, _o(f + g)(x) = L+ K.
In the case m = 1, we have
(1) lim, . (fg)(z) = LK.
(i5i) If L # 0, then @)
. gz K
N TE R

a f(x)
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Remark 1.15. We have

lim = L if and only if lim |f(x) — L| = 0. (1.24)

r—a

When L = 0, it becomes

lim f(z) = 0 if and only if lim |f(z)| = 0. (1.25)

Proposition 1.16 (“squeezing property”). Let f,g,h : R" — R satisfying
g(x) < f(z) < h(z) for all z € R™. Suppose a € R™ and

lim g(z) = lim h(x) = L € R™.

Tr—a r—a

Then lim,_,, f(x) = L.

Proposition 1.17. Let f : R" = R, a € R" and lim,_,, f(z) = L.
(1) If f(z) < M for all x € B(r,a) for somer >0 then L < M.
(i1) If f(x) > m for all x € B(r,a) for some r > 0 then L > m.

Definition 1.18. Let a € R", we say f is continuous at a if
lim f(z) = f(a), (1.26)
equivalently,
Ve >0,30 >0,VzeR": |[r—a| <0 = |f(z)—L| <e. (1.27)

Let U be a subset of R”. We say f is continuous on U if f is continuous

at every point a of U.

Proposition 1.19. Let U C R™ and f,g : R® — R™ be continuous on U.
Then (f +g) and (f - g) are continuous on U.

In the case m = 1, we have (fg) is continuous on U and (f/g) is contin-
uous on V=U\ g7 '({0}) ={z € U : g(z) # 0}.

Theorem 1.20. Let f : R — R¥ g : R¥ = R™, and U C R". If f is

continuous on U and g is continuous on f(U) then go f is continuous on U.

Theorem 1.21. Let f : R" — R™ be continuous and U be a subset of R™.
If U is open (resp. closed), then f~Y(U) is open (resp. closed).
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1.4 Sequences

Let A be a non-empty set. A sequence in A is a function f: N — A, that is,
for all k € N, x, = f(k) € A. Notation {xy}, {zx}3°, {zr}i,, .. -
Definition 1.22. Let {z;} be a sequence in R” and L € R". We say {z}

coverges to the limit L if

Ve>0,dK eNVEeN: k> K = |z, — L| <e. (1.28)
Notation:
i o = L

In this case, we say the sequence is convergent, otherwise the sequence is
divergent.
In the case m = 1 we have the following two definitions

lim zp =00 <= VM >0,FK e NVkeN: k> K = x, > M, (1.29)

k—o00

klimxkz—oo <~ VM >0,dK e NNVEeN: k> K = x, < —M.
(1.30)

If limy_ oo 7 = 00 or —00 then {x;} is divergent.

Limits of sequences have similar properties to those of limits of functions.

Theorem 1.23. Suppose S C R™ and x € R™. Then x belongs to the closure

of S if and only if there is a sequence in S coverging to x.

Corollary 1.24. Let S be a subset of R™. Then S is closed if and only if for

every sequence {xy} in S which converges to a € R™, we have a € S.

Theorem 1.25. Let S C R", f: S — R™ and a € S. Then the following
are equivalent

a. f is continuous at a.

b. For any sequence {xy} in S that converges to a, the sequence {f(xy)}

converges to f(a).
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Let {z1}32, be a sequence. Let k; be a strictly increasing function from
N to N, that is, k; € N for all j € N and k; > k; whenever j > [. Note
that the latter property is equivalent to k;j;1 > k; for all j € N. Then the

sequence {7y, }32, is called a subsequence of {z}}.

Lemma 1.26. Let k; be a strictly increasing function from N to N. Then
k; > 3 for all j € N.

Proposition 1.27. Let {z}32, be a convergent sequence in R™. Then any

subsequence {xy,; 152, of {x1} is convergent and

lim zy, = klim T
— 00

Jj—00
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1.5 Completeness
Let SC R and c € R.
e cis an upper bound of S if Vx € S, x < c.
e S is said to be bounded (from) above if it has an upper bound.

e cis a lower bound of S if Vx € S,z > c.

S is said to be bounded (from) below if it has an lower bound.

We say S is bounded if it is bounded above and below, equivalently there
are m, M € R such that m < x < M for all z € 5, or equivalently,
there is C' > 0 such that |z| < C for all x € S.

A least upper bound of S, called sup S, is an upper bound of S and is

smallest among the all upper bounds of S.

A greatest lower bound of S, called inf S, is a lower bound of S and is

largest among the all lower bounds of S.

Note that if sup S (or inf S) exists then it is unique.
Let A C B C R. Then

supA <sup B, infB <infA. (1.31)
Let ACR. Let B={—x:2 € A}. If sup A (resp. inf A) exists then
inf B=—supA (resp. supB = —inf A). (1.32)

Proposition 1.28. Let S C R. Then

(i) Vx € S,z < a,
a=supS <
(17) Ve > 0,329 € S 1 a — e < xp.

) (1) Ve € S,z > a,
a=inf§ <—
(17) Ve > 0,39 € St g < a + €.
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Remark 1.29. From Proposition 1.28 we see that if a =sup .S or a = inf S

then there is a sequence in S converging to a.

The Completeness Axiom. Let S be a non-empty subset of R which

is bounded above, then sup S exists.

Corollary 1.30. Let S be a non-empty subset of R which is bounded below,

then inf S exists.
Definition 1.31. Let {z;} be a sequence in R.

o {x}is increasing if v, > x; whenever k > j, or equivalently, x;11 > xy
for all k.

o {x}is decreasing if xj, < x; whenever k > j, or equivalently, z;11 < xy
for all k.

e {x} is monotone if it is increasing or decreasing.

o {11} is bounded above if the set {z; : k € N} is bounded above, that
is, there is M € R such that x;, < M for all k.

o {11} is bounded below if the set {zy : k € N} is bounded below, that
is, there is m € R such that x; > m for all £.

o {x} if bounded if it is bounded above and below, equivalently, there is
C' > 0 such that |zx| < C for all k.

Theorem 1.32. Fvery bounded monotone sequence in R is convergent. More
precisely,

(i) If {xx} is increasing and bounded above then
klim xp = sup{zy : k € N}. (1.33)
(i) If {x} is decreasing and bounded below then

lim z), = inf{xz; : k € N}. (1.34)

k—oo
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Theorem 1.33 (The nested interval theorem). Let I, = [ax,by] for k € N,
ag, by € R, ap < by, be a sequence of intervals that satisfy

(a) Iy DIy D I3 D ..., that is, Iy D Iy for all k.

(b) limy,_, o (b, — ax) = 0.
Then N2, I, = {c} for some c € R.

Using the nested interval theorem, we can prove

Theorem 1.34. Fvery bounded sequence in R has a convergent subsequence.
As a consequence, we have

Theorem 1.35. Every bounded sequence in R™ has a convergent subsequence.

Proposition 1.36. Let {x}} be a convergent sequence in R™. Then
(a) {xr} is bounded.

(b) roughly speaking, (xy — x;) — 0 as k,j — oco; more precisely,

Ve >0,3K e NVEeNVjeN: [(k>K)N (> K)|] = |z, —xj| <e.
(1.35)

Definition 1.37. A sequence in R" is called a Cauchy sequence if it satisfies
(1.35).

Proposition 1.38. Let {x}} be a Cauchy sequence in R™. Then it is bounded.
If, in addition, it has a convergent subsequence {xy;}52, then {wy} dtseft is

convergent and limy,_,o vy = lim;_o Ty,
Combining Theorem 1.35, Propositions 1.36 and 1.38, we obtain

Theorem 1.39. A sequence in R™ is convergent if and only if it is Cauchy.
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1.6 Compactness

Definition 1.40. A subset in R" is called compact if it is closed and bounded.

Theorem 1.41 (The Bozano-Weierstrass Theorem). Let S ba a subset of
R™. Then the following are equivalent

(a) S is compact

(b) Every sequence in S has a subsequence converging to a point which

belongs to S.
The raltion between compact sets and continuous functions:

Theorem 1.42. Let S C R"™ be compact and f : S — R™ be continuous.
Then f(S) is compact (as a subset of R™).

Corollary 1.43. Let S C R"™ be compact and f : S — R™ be continuous.

Definition 1.44. Let SCR", f: S — R, and a € S.

f(a) is the mazimum (largest value) of f on S if f(a) > f(x) for all
r€eS.

f(a) is the minimum (smallest value) of f on S if f(a) < f(z) for all
res.

Theorem 1.45 (The Extreme Value Theorem). Let S C R™ be compact and
f S — R™ be continuous. Then there are a,b € S such that f(a) is the

mazximum value of f on S and f(b) is the minimum value of f on S.
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1.7 Connectedness

Let S be a subset of R™.

e S is disconnected if there are non-empty sets S; and Sy such that
stlLJSg, Slﬂ52 :@, SQﬂgl :@ (136)

We call the above pair (Sy,52) a disconnection of S. (Note: they are

not unique.)
e S is connected if it is NOT disconnected.

Theorem 1.46. The connected subsets of R are the intervals, i.e.,
[av b>7 [CL, b]v (a7 b]? (CL, b)? [07 OO)7 (C, OO)? (—OO, C)7 (—OO, C]-

Proof. Skipped (see text). O

Notes: S is an interval in R if and only if
Ve,ye S\VzeR:x<z<y = z€ 8. (1.37)

Theorem 1.47. If S C R" is connected and f : S — R™ is continuous, then
f(S) is connected.

Proof. Proof by Contraposition: f(S) being disconnected implies S being
disconnected.

Suppose f(S) is disconnected then it has a disconnection (U, Us). Let
Si=fHU)={xeS:flx) eU}and Sy = f7YUy) ={z € S: f(x) €
Ui}. Then S;, S, are not empty and Sy U Sy = S. Suppose S; NSy # (), then
there is 29 € S; N Sy. There is a sequence {z;} in Sy such that x;, € S,
x — x9 as k — oo. Since f is continuous at xg € S: limyg_oo f(zx) = f(x0).
Note that f(zx) € Us, then f(zy) € Us. But we also have zo € S; which
implies f(z¢) € Uy, therefore f(zy) € Uy N Us. This contradicts the fact
that Uy N Uy = 0. Thus Sy NS, = (. Similarly, Sy N'S; = . Hence S is

disconnected. O
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Corollary 1.48 (The intermediate value theorem). Suppose S is connected
and f : S — R is continuous. If a,b € S, t € R and f(a) <t < f(b), then
there is ¢ € S such that f(c) =t.

Proof. We have f(S) is a connected subset of R, hence it is an interval. Since
f(a), f(b) € f(S), then we have the whole interval [f(a), f(b)] is contained
in f(S). Therefore t € f(S), which means that there is ¢ € S such that

t= f(c). O

Definition 1.49. A set S C R" is said to be arcwise connected (or pathwise
connected) if any two points in S can be joined by a continuous curve in S,
that is for any a,y € S, there is a continuous function ¢ : [0,1] — S such
that ¢(0) = a and g(1) = b.

Theorem 1.50. If S is arcwise connected, then S is connected.

Proof. Let S be arcwise connected. Suppose S is disconnected. Let (57, Ss)
be a disconnection of S. There are a € S; and b € S,. Since S is arcwise
connected there is a continuous function f : [0,1] — S such that f(0) = a
and f(1) = b. Note that T = f([0,1]) is connected. Let T} = S; NT and
Ty = SoNT. Then Ty, Ty are non-empty sets (containing a, b respectively.).
We have Ty N T, € S; NSy = 0, hence Ty N Ty = Q. Similarly, T, N Ty = 0.
Therefore, T' is disconnected, contradiction. Conclusion: S is connected. [

Let a,b,c € S. If there is a countinuous curve in S connecting a and b,
and one connectiong b and ¢, then there is one connecting a and ¢ (transitive
relation). Indeed, let f,g : [0,1] — S such that f(0) = a, f(1) = b and
g(0) =b,g(1) =c. Then let h:[0,1] — 5,

ht) = F(2t) if0<t<1/2,
g(21—1) if1/2<t<1.

(Verify the continuity of h at 1/2 using left and right limits.)
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Example 1.51. Balls, spheres in R? and disks, circles in R? are arcwise-
connected, hence connected.

Example 1 p.34 in the text. In R? let a = (—1,0),b = (1,0) and
S, = B(1,a),S, = B(1,b). Let S = S;US; and T = S; N S,. Then
S is disconnected. Since every point in T can be connected to the origin

(0,0) € T, we have T is arcwise connected, hence connected.

Note: A connected set is not necessarily arcwise connected. See text p.37

for an example of a set in R? which is connected but NOT arcwise-connected.
Theorem 1.52. If S is connected and open, then S is arcwise connected.

Proof. Let S be open and connected. Let a be a fixed point in S. We will
prove that we can connect a to any other points of S, hence showing that S
is arcwise connected.

Set S; = {x € S : z is joined by a continuous curve in S}.

Claim: S; = S. Then S is arcwise connected.

Proof of the claim: Suppose S; # S. Then Sy = 5\ S is not empty and
S =5,US,. Note: S; #0 and S; NS, = 0. We now show that S; NS, and
S, NS, are empty.

Let z € Sy, S being open implies there is a ball B(r,x) C S, r > 0. For
every y € B, there is a curve from a to x then x to y, hence y € S;. Therefore
B(1,z) is a subset of S;. Thus 2 ¢ S,. We then have S; N Sy = ().

Let 2 € S, there is a ball B = B(r,z) C S. Suppose z € S; then there is
y € BN Sy, hence we can find a continuous curve in S from a to y then y to
x. Thus z € S;, which is absurd since z € S; (S, N Sy = ). Hence = &€ S,
therefore S, N Sy = 0.

We have proved (S, S2) is a disconnection of S, which is impossible since
S is connected. Therefore the claim is true and the proof of the theorem is

complete. 0
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1.8 Uniform continuity

Let S C R" and f : S — R™ be continuous. We have
Vee S,Ve>0,30 >0,Vye S:|ly—z|<d = |f(z)— f(y)] <e. (1.38)

The above ¢§ in general depends on x,e. In some cases, J is independent
of z, then roughly speaking, the rate f(y) approaches f(z) as y approaches
x is controlled uniformly on the whole domain S.

Definition 1.53. A function f : S — R™ is uniformly continuous on S if
Ve>0,30 >0,Vze S,\Vye S:|y—z| <0 = |f(z)— fy)] <e. (1.39)

Example 1.54. The function f(x) = z? is not uniformly continuous on
(0,00). Suppose it is, let £ > 0, then there is 6 > 0 such that for any
x,y € (0,00) and 0 > 0, we have

y? —2?| = |y —zlly + 2| <e.
Take y = x + ¢ then 20x < e. So d < £/(2x) which goes to zero as x goes to

infinity which is a contradiction since 9§ is a fixed positive number.

Example 1.55. The function f(z) = sinz is uniformly continuous on R.
Indeed, by the Mean Value Theorem (next chapter), |f(z) — f(y)| = |z —
yl|| cos z| < |z —y|, where z € [z,y] or [y,z]. We can take § = ¢ in (1.39).

Example 1.56. The function f(z) = z? is uniformly continuous on every
bounded subsets of R. Suppose there is M > 0 such that |z| < M for all
x € S. Then for any z,y € S.

[f (@) = fW)l = |z —ylle +y| < 2M |z —y|.

We can take 6 = ¢/(2M) in (1.39). Note: We can use the Mean Value
Theorem as well.

Theorem 1.57. Suppose S is compact and f : S — R™ is continuous. Then

f is uniformly continuous.
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Proof. By contradiction. Suppose f is not uniformly continuous, then
deg > 0,V¥0 > 0,3z,y € S: |z —y| <0 and |f(z) — f(y)] > 0.  (1.40)

Take § = 1/k — 0. There are sequences {xy}, {yr} in S such that

| f (k) = fF(yr)] = eo. (1.41)

|z — Y| < 7
Since S is compact, there exist covergent subsequences {zy;}, {y,} whose
limits belong to S. By the first property of (1.41), we have

lim 73, = lim y;,, =z € S.

j—o00 j—o00
Since f is continuous at xo, lim; . | f(2x;) — f(y;)| = [f(z0) — f(20)| = 0
which contradicts the second property in (1.41). We conclude that f must

be uniformly continuous. O



