
Chapter 1

Setting the stage

1.1 Euclidean spaces and vectors

Let n be a natural number, i.e. n = 1, 2, 3, . . .. The n-dimensional Euclidean

space is the set of odered n-tuples of real numbers. We denote this space by

R
n. Then

R
n = {x = (x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ R}, (1.1)

where R denotes the set of real numbers. In fact, R
n = R × R × . . . × R

the Cartesean product of R. Each element in x = (x1, x2, . . . , xn) is called

a vector with components x1, x2, . . . , xn. Other notations for vectors can be

bold letters x or underlined letters x; however we will not use these in this

note.

The zero vector of R
n is simply 0 = (0, 0, . . . , 0).

Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) be two vectors in R
n and

c ∈ R. We define the following operations:

Addition: x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

Scalar product: cx = (cx1, cx2, . . . , cxn),

Dot product: x · y = x1y1 + x2y2 + . . . xnyn.

The norm (or the length) of x is

|x| =
√

x · x =
√

x2
1 + x2

2 + . . . + x2
n. (1.2)
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Denote −x = (−1)x = (−x1,−x2, . . . ,−xn).

Some immediate properties:

x+y = y+x, (x+y)+z = x+(y+z), c(x+y) = cx+cy, x+(−x) = 0, (1.3)

|cx| = |c||x|, | − x| = |x|. (1.4)

Proposition 1.1 (Cauchy-Schwar’s inequality). For any a, b ∈ R
n,

|a · b| ≤ |a||b|. (1.5)

Proof. See text, p.5.

Example 1.2. For n = 2, a = (a1, a2), b = (b1, b2) ∈ R
2, we have

|a1b1 + a2b2| ≤
√

a2
1 + a2

2

√

b2
1 + b2

2. (1.6)

For n = 3, a = (a1, a2, a3), b = (b1, b2, b3) ∈ R
3, we have

|a1b1 + a2b2 + a3b3| ≤
√

a2
1 + a2

2 + a2
3

√

b2
1 + b2

2 + b2
3. (1.7)

Proposition 1.3 (The triangle inequality). For any a, b ∈ R
n,

|a + b| ≤ |a| + |b|. (1.8)

Consequently,

|a − b| ≥ | |a| − |b| |. (1.9)

Corollary 1.4. For any x, y, z ∈ R
n,

|x − y| ≤ |x − z| + |z − y|. (1.10)

|x| ≥ | |y| − |x − y| |. (1.11)

Relation between the norm of x and that of its components: Let x =

(x1, x2, . . . , xn) ∈ R
n and M = max{|x1|, |x2|, . . . , |xn|}, then

M ≤ |x| ≤
√

nM. (1.12)
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1.2 Subsets of Euclidean space

Let a ∈ R
n and r > 0. The (open) ball B(r, a) is the set of all points whose

distance to a is less than r,

B(r, a) = {x ∈ R
n : |x − a| < r}. (1.13)

We can also define the closed ball

B′(r, a) = {x ∈ R
n : |x − a| ≤ r}. (1.14)

Let S be a subset of R
n. Then the complement of S in R

n is Sc, the set

of all points in R
n that are not in S:

Sc = R
n \ S = {x ∈ R

n : x 6∈ S}. (1.15)

Example 1.5. If S = B(r, a), then Sc = {x ∈ R
n : |x − a| ≥ r}. If

S = B′(r, a), then Sc = {x ∈ R
n : |x − a| > r}.

Definition 1.6. Let S be a subset of R
n and x ∈ R

n.

x is called an interior point of S if there is r > 0 such that B(r, x) ⊂ S.

We denote the set of interior points of S by S int:

S int = {x ∈ R
n : ∃r > 0, B(r, x) ⊂ S}. (1.16)

x is called a boundary point of S every ball centered at x intersect both

s and Sc, i.e.,

∀r > 0, B(r, x) ∩ S 6= ∅ and B(r, x) ∩ Sc 6= ∅. (1.17)

We denote by ∂S the set of all boundary points of S called the boundary of

S:

∂S = {x ∈ R
n : ∀r > 0, B(r, x) ∩ S 6= ∅ and B(r, x) ∩ Sc 6= ∅}. (1.18)

The closure of S is S̄ = S ∪ ∂S.

S is a neighborhood of x if x is an interior point of S.
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Definition 1.7. Let S be a subset of R
n.

S is called open if it contains none of its boundary points: S ∩ ∂S = ∅.
S is called closed if it contains all of its boundary points: ∂S ⊂ S.

Note: R
n and the empty set ∅ are both open and closed.

Two sets A and B are said to be disjoint if A ∩ B = ∅.

Proposition 1.8. Let S be a subset of R
n. Then

a. S and its complement Sc have the same boundary: ∂S = ∂(Sc).

b. S int, ∂S, (Sc)int are mutually disjoint, i.e., S int ∩ ∂S, (Sc)int ∩S int, ∂S ∩
(Sc)int are empty sets.

c. R
n = S int ∪ ∂S ∪ (Sc)int.

Consequently, every point x ∈ R
n belongs to exactly one of the following

sets S int, ∂S, (Sc)int.

We also have S ⊂ S int ∪ ∂S, hence S̄ = S int ∪ ∂S, therefore

Proposition 1.9. (S̄)c = (Sc)int.

Proposition 1.10. Suppose S ⊂ R
n.

a. S is open ⇐⇒ every point of S is an interior point of S ⇐⇒
S = S int.

b. S is closed ⇐⇒ Sc is open.

Proposition 1.11. (i) If S1 and S2 are both open (or closed), so are S1∪S2

and S1 ∩ S2.

(ii) If {Sα}α∈I is a fimily of open sets, then ∪α∈ISα is open.

(iii) If {Sα}α∈I is a fimily of closed sets, then ∩α∈ISα is closed.
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1.3 Limits and continuity

Let n and k be two natural numbers. Let f be a function form R
n to R

k,

a ∈ R
n and L ∈ R

k. We say the limit of f(x) as x aproaches a is L if

∀ε > 0, ∃δ > 0, ∀x ∈ R
n : 0 < |x − a| < δ =⇒ |f(x) − L| < ε. (1.19)

Notation:

lim
x→a

f(x) = L. (1.20)

Proposition 1.12. The limit limx→a f(x), if exists, is unique.

Some equivalent statements of (1.19):

• If a = (a1, a2, . . . , an), then we have limx→a f(x) = L if and only if

∀ε > 0, ∃δ > 0, ∀x = (x1, x2, . . . , xn) ∈ R
n :

0 < |x−a| < max{|x1−a1|, |x2−a2|, . . . , |xn−an|} < δ =⇒ |f(x)−L| < ε.

(1.21)

• If f = (f1, f2, . . . , fk) and L = (L1, L2, . . . , Lk), where each fj is a

function from R
n to R then

lim
x→a

f(x) = L ⇐⇒ lim
x→a

fj(x) = Lj for all j = 1, 2, . . . , k. (1.22)

Example 1.13. See text, p. 14, 15.

Proposition 1.14. Let f, g : R
n → R

m, a ∈ R
n and

lim
x→a

f(x) = L, lim
x→a

g(x) = K. (1.23)

Then

(i) limx→a(f + g)(x) = L + K.

In the case m = 1, we have

(ii) limx→a(fg)(x) = LK.

(iii) If L 6= 0, then

lim
x→a

g(x)

f(x)
=

K

L
.
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Remark 1.15. We have

lim
x→a

= L if and only if lim
x→a

|f(x) − L| = 0. (1.24)

When L = 0, it becomes

lim
x→a

f(x) = 0 if and only if lim
x→a

|f(x)| = 0. (1.25)

Proposition 1.16 (“squeezing property”). Let f, g, h : R
n → R satisfying

g(x) ≤ f(x) ≤ h(x) for all x ∈ R
n. Suppose a ∈ R

n and

lim
x→a

g(x) = lim
x→a

h(x) = L ∈ R
m.

Then limx→a f(x) = L.

Proposition 1.17. Let f : R
n → R, a ∈ R

n and limx→a f(x) = L.

(i) If f(x) ≤ M for all x ∈ B(r, a) for some r > 0 then L ≤ M .

(ii) If f(x) ≥ m for all x ∈ B(r, a) for some r > 0 then L ≥ m.

Definition 1.18. Let a ∈ R
n, we say f is continuous at a if

lim
x→a

f(x) = f(a), (1.26)

equivalently,

∀ε > 0, ∃δ > 0, ∀x ∈ R
n : |x − a| < δ =⇒ |f(x) − L| < ε. (1.27)

Let U be a subset of R
n. We say f is continuous on U if f is continuous

at every point a of U .

Proposition 1.19. Let U ⊂ R
n and f, g : R

n → R
m be continuous on U .

Then (f + g) and (f · g) are continuous on U .

In the case m = 1, we have (fg) is continuous on U and (f/g) is contin-

uous on V = U \ g−1({0}) = {x ∈ U : g(x) 6= 0}.

Theorem 1.20. Let f : R
n → R

k, g : R
k → R

m, and U ⊂ R
n. If f is

continuous on U and g is continuous on f(U) then g ◦ f is continuous on U .

Theorem 1.21. Let f : R
n → R

m be continuous and U be a subset of R
m.

If U is open (resp. closed), then f−1(U) is open (resp. closed).
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1.4 Sequences

Let A be a non-empty set. A sequence in A is a function f : N → A, that is,

for all k ∈ N, xk = f(k) ∈ A. Notation {xk}, {xk}∞1 , {xk}∞k=1
, . . ..

Definition 1.22. Let {xk} be a sequence in R
n and L ∈ R

n. We say {xk}
coverges to the limit L if

∀ε > 0, ∃K ∈ N, ∀k ∈ N : k > K =⇒ |xk − L| < ε. (1.28)

Notation:

lim
k→∞

xk = L.

In this case, we say the sequence is convergent, otherwise the sequence is

divergent.

In the case m = 1 we have the following two definitions

lim
k→∞

xk = ∞ ⇐⇒ ∀M > 0, ∃K ∈ N, ∀k ∈ N : k > K =⇒ xk > M, (1.29)

lim
k→∞

xk = −∞ ⇐⇒ ∀M > 0, ∃K ∈ N, ∀k ∈ N : k > K =⇒ xk < −M.

(1.30)

If limk→∞ xk = ∞ or −∞ then {xk} is divergent.

Limits of sequences have similar properties to those of limits of functions.

Theorem 1.23. Suppose S ⊂ R
n and x ∈ R

n. Then x belongs to the closure

of S if and only if there is a sequence in S coverging to x.

Corollary 1.24. Let S be a subset of R
n. Then S is closed if and only if for

every sequence {xk} in S which converges to a ∈ R
n, we have a ∈ S.

Theorem 1.25. Let S ⊂ R
n, f : S → R

m and a ∈ S. Then the following

are equivalent

a. f is continuous at a.

b. For any sequence {xk} in S that converges to a, the sequence {f(xk)}
converges to f(a).
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Let {xk}∞k=1
be a sequence. Let kj be a strictly increasing function from

N to N, that is, kj ∈ N for all j ∈ N and kj > kl whenever j > l. Note

that the latter property is equivalent to kj+1 > kj for all j ∈ N. Then the

sequence {xkj
}∞j=1 is called a subsequence of {xk}.

Lemma 1.26. Let kj be a strictly increasing function from N to N. Then

kj ≥ j for all j ∈ N.

Proposition 1.27. Let {xk}∞k=1
be a convergent sequence in R

n. Then any

subsequence {xkj
}∞j=1 of {xk} is convergent and

lim
j→∞

xkj
= lim

k→∞

xk.
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1.5 Completeness

Let S ⊂ R and c ∈ R.

• c is an upper bound of S if ∀x ∈ S, x ≤ c.

• S is said to be bounded (from) above if it has an upper bound.

• c is a lower bound of S if ∀x ∈ S, x ≥ c.

• S is said to be bounded (from) below if it has an lower bound.

• We say S is bounded if it is bounded above and below, equivalently there

are m, M ∈ R such that m ≤ x ≤ M for all x ∈ S, or equivalently,

there is C > 0 such that |x| ≤ C for all x ∈ S.

• A least upper bound of S, called sup S, is an upper bound of S and is

smallest among the all upper bounds of S.

• A greatest lower bound of S, called inf S, is a lower bound of S and is

largest among the all lower bounds of S.

Note that if sup S (or inf S) exists then it is unique.

Let A ⊂ B ⊂ R. Then

sup A ≤ sup B, inf B ≤ inf A. (1.31)

Let A ⊂ R. Let B = {−x : x ∈ A}. If sup A (resp. inf A) exists then

inf B = − sup A (resp. sup B = − inf A). (1.32)

Proposition 1.28. Let S ⊂ R. Then

a = sup S ⇐⇒







(i) ∀x ∈ S, x ≤ a,

(ii) ∀ε > 0, ∃x0 ∈ S : a − ε < x0.

a = inf S ⇐⇒







(i) ∀x ∈ S, x ≥ a,

(ii) ∀ε > 0, ∃x0 ∈ S : x0 < a + ε.
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Remark 1.29. From Proposition 1.28 we see that if a = sup S or a = inf S

then there is a sequence in S converging to a.

The Completeness Axiom. Let S be a non-empty subset of R which

is bounded above, then sup S exists.

Corollary 1.30. Let S be a non-empty subset of R which is bounded below,

then inf S exists.

Definition 1.31. Let {xk} be a sequence in R.

• {xk} is increasing if xk ≥ xj whenever k > j, or equivalently, xk+1 ≥ xk

for all k.

• {xk} is decreasing if xk ≤ xj whenever k > j, or equivalently, xk+1 ≤ xk

for all k.

• {xk} is monotone if it is increasing or decreasing.

• {xk} is bounded above if the set {xk : k ∈ N} is bounded above, that

is, there is M ∈ R such that xk ≤ M for all k.

• {xk} is bounded below if the set {xk : k ∈ N} is bounded below, that

is, there is m ∈ R such that xk ≥ m for all k.

• {xk} if bounded if it is bounded above and below, equivalently, there is

C > 0 such that |xk| < C for all k.

Theorem 1.32. Every bounded monotone sequence in R is convergent. More

precisely,

(i) If {xk} is increasing and bounded above then

lim
k→∞

xk = sup{xk : k ∈ N}. (1.33)

(ii) If {xk} is decreasing and bounded below then

lim
k→∞

xk = inf{xk : k ∈ N}. (1.34)
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Theorem 1.33 (The nested interval theorem). Let Ik = [ak, bk] for k ∈ N,

ak, bk ∈ R, ak ≤ bk, be a sequence of intervals that satisfy

(a) I1 ⊃ I2 ⊃ I3 ⊃ . . ., that is, Ik ⊃ Ik+1 for all k.

(b) limk→∞(bk − ak) = 0.

Then ∩∞

k=1
Ik = {c} for some c ∈ R.

Using the nested interval theorem, we can prove

Theorem 1.34. Every bounded sequence in R has a convergent subsequence.

As a consequence, we have

Theorem 1.35. Every bounded sequence in R
n has a convergent subsequence.

Proposition 1.36. Let {xk} be a convergent sequence in R
n. Then

(a) {xk} is bounded.

(b) roughly speaking, (xk − xj) → 0 as k, j → ∞; more precisely,

∀ε > 0, ∃K ∈ N, ∀k ∈ N, ∀j ∈ N : [(k > K) ∧ (j > K)] =⇒ |xk − xj| < ε.

(1.35)

Definition 1.37. A sequence in R
n is called a Cauchy sequence if it satisfies

(1.35).

Proposition 1.38. Let {xk} be a Cauchy sequence in R
n. Then it is bounded.

If, in addition, it has a convergent subsequence {xkj
}∞j=1 then {xk} itseft is

convergent and limk→∞ xk = limj→∞ xkj
.

Combining Theorem 1.35, Propositions 1.36 and 1.38, we obtain

Theorem 1.39. A sequence in R
n is convergent if and only if it is Cauchy.
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1.6 Compactness

Definition 1.40. A subset in R
n is called compact if it is closed and bounded.

Theorem 1.41 (The Bozano-Weierstrass Theorem). Let S ba a subset of

R
n. Then the following are equivalent

(a) S is compact

(b) Every sequence in S has a subsequence converging to a point which

belongs to S.

The raltion between compact sets and continuous functions:

Theorem 1.42. Let S ⊂ R
n be compact and f : S → R

m be continuous.

Then f(S) is compact (as a subset of R
m).

Corollary 1.43. Let S ⊂ R
n be compact and f : S → R

m be continuous.

Definition 1.44. Let S ⊂ R
n, f : S → R, and a ∈ S.

f(a) is the maximum (largest value) of f on S if f(a) ≥ f(x) for all

x ∈ S.

f(a) is the minimum (smallest value) of f on S if f(a) ≤ f(x) for all

x ∈ S.

Theorem 1.45 (The Extreme Value Theorem). Let S ⊂ R
n be compact and

f : S → R
m be continuous. Then there are a, b ∈ S such that f(a) is the

maximum value of f on S and f(b) is the minimum value of f on S.
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1.7 Connectedness

Let S be a subset of R
n.

• S is disconnected if there are non-empty sets S1 and S2 such that

S = S1 ∪ S2, S1 ∩ S̄2 = ∅, S2 ∩ S̄1 = ∅. (1.36)

We call the above pair (S1, S2) a disconnection of S. (Note: they are

not unique.)

• S is connected if it is NOT disconnected.

Theorem 1.46. The connected subsets of R are the intervals, i.e.,

[a, b), [a, b], (a, b], (a, b), [c,∞), (c,∞), (−∞, c), (−∞, c].

Proof. Skipped (see text).

Notes: S is an interval in R if and only if

∀x, y ∈ S, ∀z ∈ R : x < z < y =⇒ z ∈ S. (1.37)

Theorem 1.47. If S ⊂ R
n is connected and f : S → R

m is continuous, then

f(S) is connected.

Proof. Proof by Contraposition: f(S) being disconnected implies S being

disconnected.

Suppose f(S) is disconnected then it has a disconnection (U1, U2). Let

S1 = f−1(U1) = {x ∈ S : f(x) ∈ U1} and S2 = f−1(U2) = {x ∈ S : f(x) ∈
U1}. Then S1, S2 are not empty and S1 ∪S2 = S. Suppose S1 ∩ S̄2 6= ∅, then

there is x0 ∈ S1 ∩ S̄2. There is a sequence {xk} in S2 such that xk ∈ S2,

xk → x0 as k → ∞. Since f is continuous at x0 ∈ S: limk→∞ f(xk) = f(x0).

Note that f(xk) ∈ U2, then f(x0) ∈ Ū2. But we also have x0 ∈ S1 which

implies f(x0) ∈ U1, therefore f(x0) ∈ U1 ∩ Ū2. This contradicts the fact

that U1 ∩ Ū2 = ∅. Thus S1 ∩ S̄2 = ∅. Similarly, S2 ∩ S̄1 = ∅. Hence S is

disconnected.
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Corollary 1.48 (The intermediate value theorem). Suppose S is connected

and f : S → R is continuous. If a, b ∈ S, t ∈ R and f(a) < t < f(b), then

there is c ∈ S such that f(c) = t.

Proof. We have f(S) is a connected subset of R, hence it is an interval. Since

f(a), f(b) ∈ f(S), then we have the whole interval [f(a), f(b)] is contained

in f(S). Therefore t ∈ f(S), which means that there is c ∈ S such that

t = f(c).

Definition 1.49. A set S ⊂ R
n is said to be arcwise connected (or pathwise

connected) if any two points in S can be joined by a continuous curve in S,

that is for any a, y ∈ S, there is a continuous function g : [0, 1] → S such

that g(0) = a and g(1) = b.

Theorem 1.50. If S is arcwise connected, then S is connected.

Proof. Let S be arcwise connected. Suppose S is disconnected. Let (S1, S2)

be a disconnection of S. There are a ∈ S1 and b ∈ S2. Since S is arcwise

connected there is a continuous function f : [0, 1] → S such that f(0) = a

and f(1) = b. Note that T = f([0, 1]) is connected. Let T1 = S1 ∩ T and

T2 = S2 ∩ T . Then T1, T2 are non-empty sets (containing a, b respectively.).

We have T1 ∩ T̄2 ⊂ S1 ∩ S̄2 = ∅, hence T1 ∩ T̄2 = ∅. Similarly, T2 ∩ T̄1 = ∅.
Therefore, T is disconnected, contradiction. Conclusion: S is connected.

Let a, b, c ∈ S. If there is a countinuous curve in S connecting a and b,

and one connectiong b and c, then there is one connecting a and c (transitive

relation). Indeed, let f, g : [0, 1] → S such that f(0) = a, f(1) = b and

g(0) = b, g(1) = c. Then let h : [0, 1] → S,

h(t) =







f(2t) if 0 ≤ t < 1/2,

g(21 − 1) if 1/2 ≤ t ≤ 1.

(Verify the continuity of h at 1/2 using left and right limits.)
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Example 1.51. Balls, spheres in R
3 and disks, circles in R

2 are arcwise-

connected, hence connected.

Example 1 p.34 in the text. In R
2, let a = (−1, 0), b = (1, 0) and

S1 = B(1, a), S2 = B(1, b). Let S = S1 ∪ S2 and T = S1 ∩ S̄2. Then

S is disconnected. Since every point in T can be connected to the origin

(0, 0) ∈ T , we have T is arcwise connected, hence connected.

Note: A connected set is not necessarily arcwise connected. See text p.37

for an example of a set in R
2 which is connected but NOT arcwise-connected.

Theorem 1.52. If S is connected and open, then S is arcwise connected.

Proof. Let S be open and connected. Let a be a fixed point in S. We will

prove that we can connect a to any other points of S, hence showing that S

is arcwise connected.

Set S1 = {x ∈ S : x is joined by a continuous curve in S}.
Claim: S1 = S. Then S is arcwise connected.

Proof of the claim: Suppose S1 6= S. Then S2 = S \ S1 is not empty and

S = S1 ∪ S2. Note: S1 6= ∅ and S1 ∩ S2 = ∅. We now show that S1 ∩ S̄2 and

S2 ∩ S̄1 are empty.

Let x ∈ S1, S being open implies there is a ball B(r, x) ⊂ S, r > 0. For

every y ∈ B, there is a curve from a to x then x to y, hence y ∈ S1. Therefore

B(1, x) is a subset of S1. Thus x 6∈ S̄2. We then have S1 ∩ S̄2 = ∅.
Let x ∈ S2, there is a ball B = B(r, x) ⊂ S. Suppose x ∈ S̄1 then there is

y ∈ B ∩ S1, hence we can find a continuous curve in S from a to y then y to

x. Thus x ∈ S1, which is absurd since x 6∈ S1 (S1 ∩ S2 = ∅). Hence x 6∈ S̄1,

therefore S2 ∩ S̄1 = ∅.
We have proved (S1, S2) is a disconnection of S, which is impossible since

S is connected. Therefore the claim is true and the proof of the theorem is

complete.
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1.8 Uniform continuity

Let S ⊂ R
n and f : S → R

m be continuous. We have

∀x ∈ S, ∀ε > 0, ∃δ > 0, ∀y ∈ S : |y − x| < δ =⇒ |f(x) − f(y)| < ε. (1.38)

The above δ in general depends on x, ε. In some cases, δ is independent

of x, then roughly speaking, the rate f(y) approaches f(x) as y approaches

x is controlled uniformly on the whole domain S.

Definition 1.53. A function f : S → R
m is uniformly continuous on S if

∀ε > 0, ∃δ > 0, ∀x ∈ S, ∀y ∈ S : |y − x| < δ =⇒ |f(x) − f(y)| < ε. (1.39)

Example 1.54. The function f(x) = x2 is not uniformly continuous on

(0,∞). Suppose it is, let ε > 0, then there is δ > 0 such that for any

x, y ∈ (0,∞) and δ > 0, we have

|y2 − x2| = |y − x||y + x| < ε.

Take y = x + δ then 2δx < ε. So δ < ε/(2x) which goes to zero as x goes to

infinity which is a contradiction since δ is a fixed positive number.

Example 1.55. The function f(x) = sin x is uniformly continuous on R.

Indeed, by the Mean Value Theorem (next chapter), |f(x) − f(y)| = |x −
y|| cos z| ≤ |x − y|, where z ∈ [x, y] or [y, x]. We can take δ = ε in (1.39).

Example 1.56. The function f(x) = x2 is uniformly continuous on every

bounded subsets of R. Suppose there is M > 0 such that |x| ≤ M for all

x ∈ S. Then for any x, y ∈ S.

|f(x) − f(y)| = |x − y||x + y| ≤ 2M |x − y|.

We can take δ = ε/(2M) in (1.39). Note: We can use the Mean Value

Theorem as well.

Theorem 1.57. Suppose S is compact and f : S → R
m is continuous. Then

f is uniformly continuous.
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Proof. By contradiction. Suppose f is not uniformly continuous, then

∃ε0 > 0, ∀δ > 0, ∃x, y ∈ S : |x − y| < δ and |f(x) − f(y)| ≥ ε0. (1.40)

Take δ = 1/k → 0. There are sequences {xk}, {yk} in S such that

|xk − yk| <
1

k
, |f(xk) − f(yk)| ≥ ε0. (1.41)

Since S is compact, there exist covergent subsequences {xkj
}, {ykj

} whose

limits belong to S. By the first property of (1.41), we have

lim
j→∞

xkj
= lim

j→∞

ykj
= x0 ∈ S.

Since f is continuous at x0, limj→∞ |f(xkj
) − f(ykj

)| = |f(x0) − f(x0)| = 0

which contradicts the second property in (1.41). We conclude that f must

be uniformly continuous.


