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1. Introduction
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Lagrangian and Eulerian descriptions.

We study the long-time dynamics of the incompressible, viscous fluid flows
in the three-dimensional space.
A. Lagrangian description: trajectory x(t) = x(t, x0) ∈ R3 with initial fluid
particle (or material point) x(0, x0) = x0.

Recent work on short-time properties mostly for inviscid fluids: N.
Besse and U. Frisch (2017), G. Camliyurt and I. Kukavica (2018), P.
Constantin, I. Kukavica, and V. Vicol (2016), P. Constantin and J.
La. (2019), P. Constantin, V. Vicol, and J. Wu. (2015), M.
Hernandez (2019).

2D dynamics (topological equivalence): T. Ma and S. Wang (book:
2005).

Solutions have better regularity.

Issues with viscosity.

Long-time dynamics is little known.

L. Hoang (Texas Tech) Asymptotic analysis of the Lagrangian trajectories 9.21.2020 Texas Tech 4



B. Eulerian description: velocity field u(x , t) and pressure p(x , t), where
x ∈ R3 is the independent spatial variable representing each fixed position
in the fluid.

Easy to write PDEs even for viscous fluids: Navier–Stokes equations.
They have been studied extensively.

Global weak solutions exist.

Many results on long-time dynamics, still much is not known.

C. Relation:
x ′ = u(x , t).

The solutions x(t) of this system are called the Lagrangian trajectories.
D. Our approach:

Solve for u(x , t) from Navier–Stokes equations. Then study x(t) from
the ODE.

It works sometimes.
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The Navier–Stokes equations

The Eulerian description turns out to be simpler for deriving the set of
equations that govern the fluid flows. They are called the Navier–Stokes
equations (NSE), {

ut − ν∆u + (u · ∇)u = −∇p,
div u = 0.

where ν > 0 is the kinematic viscosity, and the unknowns are the velocity
u(x , t) and pressure p(x , t).
Initial condition u(x , 0) = u0(x), where u0 is a given initial vector field.

L. Hoang (Texas Tech) Asymptotic analysis of the Lagrangian trajectories 9.21.2020 Texas Tech 6



Settings

Dirichlet boundary condition (DBC). Let Ω be an bounded, open,
connected set in R3 with C∞ boundary.
The boundary condition u = 0 on ∂Ω× (0,∞).
Spatial periodicity condition (SPC). Fix a vector
L = (L1, L2, L3) ∈ (0,∞)3. We consider u(·, t) and p(·, t) to be L-periodic
for t > 0.
Here, a function g defined on R3 is called L-periodic if

g(x + Liei ) = g(x) for i = 1, 2, 3 and all x ∈ R3.

Define domain Ω = (0, L1)× (0, L2)× (0, L3) in this case.
A function g is said to have zero average over Ω if∫

Ω
g(x)dx = 0.
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Notation

Hm = Wm,2, for m ∈ N, denotes the standard Sobolev space.

In the (DBC) case, let V be the set of divergence-free vector fields in
C∞c (Ω)3.
Define X to be the set of functions in

⋂∞
m=1 H

m(Ω)3 that are
divergence-free and vanish on the boundary ∂Ω, and denote Ω∗ = Ω̄.

In the (SPC) case, let V be the set of L-periodic trigonometric
polynomial vector fields on R3 which are divergence-free and have
zero average over Ω.
Define X = V, and denote Ω∗ = R3.

In both cases, define space H (respectively, V ) to be the closure of V
in L2(Ω) (respectively, H1(Ω)).
The Leray projection P is the orthogonal projection from L2(Ω) to H.
The Stokes operator is (−P∆) defined on V ∩H2(Ω).
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Exponential decaying rates

• Denote the spectrum of the Stokes operator by {Λk : k ∈ N}, where
Λk ’s are positive, strictly increasing to infinity.
• Let S be the additive semigroup generated by νΛk ’s, that is,

S =
{
ν

N∑
j=1

Λkj : N, k1, . . . , kN ∈ N
}
.

• We arrange the set S as a sequence (µn)∞n=1 of positive, strictly
increasing numbers. Clearly,

lim
n→∞

µn =∞,

µn + µk ∈ S ∀n, k ∈ N.
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Foias–Saut asymptotic expansions

Assumption

Fix a Leray–Hopf weak solution u(x , t) (with u(·, t) valued in H) and a
Lagrangian trajectory x(t).

x(t) ∈ C 1([T ,∞),Ω) in the (DBC) case, or

x(t) ∈ C 1([T ,∞),R3) in the (SPC) case.

Foias–Saut (1987) proved that the solution u(x , t) has an asymptotic
expansion,

u(·, t) ∼
∞∑
n=1

qn(·, t)e−µnt in Hm(Ω),

for any m ∈ N, where qj(·, t)’s are polynomials in t with values in
X ⊂ C∞(Ω∗)3.
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Asymptotic expansions

Let (X , ‖ · ‖) be a normed space and (αn)∞n=1 be a sequence of strictly
increasing non-negative numbers. A function f : [T ,∞)→ X , for some
T ∈ R, is said to have an asymptotic expansion

f (t) ∼
∞∑
n=1

fn(t)e−αnt in X ,

where fn(t) is an X -valued polynomial, if one has, for any N ≥ 1, that

∥∥∥f (t)−
N∑

n=1

fn(t)e−αnt
∥∥∥ = O(e−(αN+εN)t) as t →∞,

for some εN > 0.
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In fact, q1(x , t) is independent of t, hence we write

q1(x , t) = q1(x) ∈ X .

According to the Foias–Saut expansion with m = 2, we have

∥∥∥u(·, t)−
N∑

n=1

qn(·, t)e−µnt
∥∥∥
H2(Ω)3

= O(e−(µN+δN)t),

for any N ∈ N, and some δN > 0.
By Morrey’s embedding theorem, it follows that

sup
x∈Ω∗

∣∣∣u(x , t)−
N∑

n=1

qn(x , t)e−µnt
∣∣∣ = O(e−(µN+δN)t).
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In particular, letting N = 1, we infer

sup
x∈Ω∗

|u(x , t)| ≤ sup
x∈Ω∗

|q1(x)|e−µ1t +O(e−(µ1+δ1)t) = O(e−µ1t).

Therefore, there is C0 > 0 such that

sup
x∈Ω∗

|u(x , t)| ≤ C0e
−µ1t for all t ≥ T .

Taking x = x(t) gives

∣∣∣u(x(t), t)−
N∑

n=1

qn(x(t), t)e−µnt
∣∣∣ = O(e−(µN+δN)t),

|u(x(t), t)| ≤ C0e
−µ1t for all t ≥ T .
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2. Results and proofs
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Convergence of the Lagrangian trajectories

x ′(t) = u(x(t), t).

Proposition (H. 2020)

The limit x∗
def
== limt→∞ x(t) exists and belongs to Ω∗, and

|x(t)− x∗| = O(e−µ1t).

Proof. For t ≥ T , we have x(t) = x(T ) +
∫ t
T u(x(τ), τ)dτ.

Since |u(x(t), t)| ≤ Ce−µ1t for t ≥ T ,

x∗ = lim
t→∞

x(t) = x(T ) +

∫ ∞
T

u(x(τ), τ)dτ which exists in R3.

Obviously, x∗ ∈ Ω∗. Error estimate:

|x(t)− x∗| =
∣∣∣ ∫ ∞

t
u(x(τ), τ)dτ

∣∣∣ ≤ ∫ ∞
t

C0e
−µ1τdτ = C0µ

−1
1 e−µ1t .
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Consideration I. (SPC) or x∗ ∈ Ω for (DBC).

Foias–Saut expansion: u(x , t) ∼
∑

qn(x , t)e−µnt . Write

qn(x , t) =
dn∑
k=0

tkqn,k(x), where dn ≥ 0, and qn,k ∈ X .

The Taylor expansion: for any s ≥ 0,

qn,k(x) =
s∑

m=0

1

m!
Dm
x qn,k(x∗)(x − x∗)

(m) + gn,k,s(x),

where Dm
x qn,k denotes the m-th order derivative of qn,k (m-linear

mapping), and gn,k,s ∈ C (Ω∗)3 satisfying

gn,k,s(x) = O(|x − x∗|s+1) as x → x∗.

Then

qn(x , t) =
dn∑
k=0

tk
[ s∑
m=0

1

m!
Dm
x qn,k(x∗)(x − x∗)

(m) + gn,k,s(x)
]
.
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Rewrite

qn(x , t) =
s∑

m=0

Qn,m(x∗, t)(x − x∗)
(m) +

dn∑
k=0

tkgn,k,s(x),

where

Qn,m(x∗, t) =
dn∑
k=0

tk

m!
Dm
x qn,k(x∗) =

1

m!
Dm
x qn(x∗, t).

In particular,

Qn,0(x∗, t) = qn(x∗, t), Qn,1(x∗, t) = Dxqn(x∗, t),

Qn,2(x∗, t) =
1

2
D2
xqn(x∗, t).

Note that Qn,m(x∗, t) is a polynomial in t valued in the space of m-linear
mappings from (R3)m to R3.
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Above, x(t)→ x∗ as t →∞. Denote z(t) = x(t)− x∗. Then

|z(t)| = O(e−µ1t).

We have

qn(x(t), t) =
s∑

m=0

Qn,m(x∗, t)z(t)(m) +
dn∑
k=0

tkO(|z(t)|s+1),

thus

qn(x(t), t) =
s∑

m=0

Qn,m(x∗, t)z(t)(m) +O(e−(µ1(s+1)−δ)t) ∀δ > 0.
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Heuristic arguments

Assume z(t) ∼
∑∞

n=1 ζn(t)e−µnt .

z ′(t) = x ′(t) = u(x(t), t) = u(x(t), t) ∼
∞∑
k=1

qk(x(t), t)e−µk t ,

∞∑
n=1

(ζ ′n(t)− µnζn(t))e−µnt ∼
∞∑
k=1

∞∑
m=0

Qk,m(x∗, t)z(t)(m)e−µk t

∼
∞∑
k=1

∞∑
m=0

Qk,m(x∗, t)(
∑
j1

ζj1(t)e−µj1 t , . . . ,
∑
jm

ζjm(t)e−µjm t)e−µk t

∼
∞∑
k=1

∞∑
m=0

∑
j1,j2,...,µjm

Qk,m(x∗, t)(ζj1(t), . . . , ζjm(t))e−(µj1 +...+µjm )te−µk t .

Then

ζ ′n(t)− µnζn(t) =
∑

µk+µj1 +µj2 +...+µjm=µn

Qk,m(x∗, t)(ζj1(t), . . . , ζjm(t)).
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Theorem (H. 2020)

Under Consideration I, there exist polynomials ζn : R→ R3, for n ≥ 0,
such that solution x(t) has an asymptotic expansion,

x(t) ∼ x∗ +
∞∑
n=1

ζn(t)e−µnt in R3,

where each ζn, for n ≥ 1, is the unique polynomial solution of the
following differential equation

ζ ′n(t)− µnζn(t) =
∑

µk+µj1 +µj2 +...+µjm=µn

Qk,m(x∗, t)(ζj1(t), . . . , ζjm(t)).

for all t ∈ R.
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Remarks on ζn(t)

ζ ′n(t)− µnζn(t) =
∑

µk+µj1 +µj2 +...+µjm=µn

Qk,m(x∗, t)(ζj1(t), . . . , ζjm(t)).

Equation for ζn(t) is linear. The RHS comes from previous steps.
The RHS sum is finitely many. In fact, for each n ≥ 1, and integers
M ≥ µn/µ1 − 1, K ≥ n, J ≥ n − 1, one has

∑
µk+µj1 +µj2 +...+µjm=µn

=
M∑

m=0

K∑
k=1

J∑
j1,...,jm=1,

µk+µj1 +µj2 +...+µjm=µn

Examples

ζ ′1(t)− µ1ζ1(t) = q1(x∗),

ζ ′2(t)− µ2ζ2(t) = Dxq1(x∗)ζ1(t) + q2(x∗, t),

ζ ′3(t)− µ3ζ3(t) =
1

2
D2
xq1(x∗)(ζ1(t), ζ1(t)) + Dxq2(x∗, t)ζ1(t) + q3(x∗, t).
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Proof I

By induction. First step. We have

z ′(t) = x ′(t) = u(x(t), t) = q1(x(t))e−µ1t +O(e−(µ1+δ1)t)

= [q1(x∗) +O(e−µ1t/2)]e−µ1t +O(e−(µ1+δ1)t)

= q1(x∗)e
−µ1t +O(e−(µ1+ε1)t).

Let w0(t) = eµ1tz(t). Then

w ′0(t)− µ1w0(t) = q1(x∗) +O(e−ε1t).

By Approximation Lemma: there is polynomial ζ1(t) such that

|w0(t)− ζ1(t)| = O(e−ε1t).

Multiplying by e−µ1t gives

|z(t)− e−µ1tζ1(t)| = O(e−(µ1+ε1)t).
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Proof II. Approximation lemma

Let (X , ‖ · ‖X ) be a Banach space. Let p : R→ X be a polynomial, and
‖g(t)‖X ≤ Me−δt for t ≥ t∗, for some M, δ > 0.
Let γ > 0. Suppose that y : [t∗,∞)→ X solves

y ′(t)− γy(t) = p(t) + g(t) for t > t∗,

and satisfies
lim
t→∞

(e−γt‖y(t)‖X ) = 0.

Then there exists a unique polynomial q : R→ X such that

‖y(t)− q(t)‖X ≤
M

γ + δ
e−δt for all t ≥ t∗.

More precisely, q(t) is the unique polynomial solution of

q′(t)− γq(t) = p(t) for t ∈ R,

and can be explicitly defined by

q(t) = −
∫ ∞
t

eγ(t−τ)p(τ)dτ.
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Proof III. Sketch of the induction step

Let zN(t) =
∑N

n=1 ζn(t)e−µnt and z̃N(t) = z(t)− zN(t).
Denote J̃n =

∑
µk+µj1 +µj2 +...+µjm=µn

Qk,m(x∗, t)(ζj1(t), . . . , ζjm(t)).

Induction hypothesis:

ζ ′n − µnζn = J̃n for (1 ≤ n ≤ N) and |z̃N(t)| = O(e−(µN+εN)t).

Define wN(t) = eµN+1t z̃N(t).

w ′N = µN+1wN + eµN+1t
(
z ′ −

N∑
n=1

e−µnt(ζ ′n − µnζn)
)
.

Approximate z ′(t) = u(x(t), t) same as in heuristic arguments. Need to
control the errors.
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Let sN+1 ∈ N: sN+1 ≥ µN+1/µ1 − 1.
Calculations give

z ′(t) =
N+1∑
k=1

sN+1∑
m=0

Qk,m(x∗, t)z(t)(m)e−µk t +O(e−(µN+1+δ̂N+1)t),

with
z(m) = (z , z , . . . , z) (m times.)

Write z(t) =
∑N

j=1 ζj(t)e−µj t +O(e−(µN+1+δ̂N+1)t). Then

z ′(t) =
N+1∑
k=1

sN+1∑
m=0

N∑
j1,...,jm=1

Qk,m(x∗, t)(ζj1 , . . . , ζjm)e−(µk+µj1 +...+µjm )t

+
N+1∑
k=1

sN+1∑
m=1

(e−(µN+εN/2)t))e−µk t +O(e−(µN+1+δ̂N+1)t).
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Observation µN + µk ∈ S and is greater than µN . Then µN + µk ≥ µN+1.
Also, µk + µj1 + . . .+ µjm ∈ S, then

µk + µj1 + . . .+ µjm = µn for some n ∈ N.

Split the first sum on the RHS: n ≤ N + 1 and n ≥ N + 2. We obtain

z ′(t) =
N+1∑
n=1

Jn(t)e−µnt +O(e−(µN+1+εN+1)t),

Jn(t) =
N+1∑
k=1

sN+1∑
m=0

N∑
j1,...,jm=1,

µk+µj1 +µj2 +...+µjm=µn

Qk,m(x∗, t)(ζj1(t), . . . , ζjm(t)).
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Combine calculations

w ′N = µN+1wN + eµN+1t
N∑

n=1

e−µnt
{
Jn− (ζ ′n−µnζn)

}
+ JN+1 +O(e−εN+1t).

Note Jn = J̃n. Then

w ′N − µN+1wN = JN+1 +O(e−εN+1t).

Applying Approximation Lemma, one has∣∣∣wN(t)− ζN+1(t)
∣∣∣ = O(e−εN+1t).

Multiplying by e−µN+1t gives∣∣∣z̃N(t)− ζN+1(t)e−µN+1t
∣∣∣ = O(e−(µN+1+εN+1)t).
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Consideration II. (DBC) with x∗ ∈ ∂Ω

Theorem (H. 2020)

Under Consideration II, one has

|x(t)− x∗| = O(e−µt) for all µ > 0.

Proof. Recall |z(t)−
∑N

n=1 ζn(t)e−µnt | = O(e−(µn+εn)t).
Explicit formula:

ζn(t) = −
∫ ∞
t

eµn(t−τ)
{
qn(x∗, τ)

+
sn∑

m=1

n−1∑
k,j1,...,jm=1,

µk+µj1 +µj2 +...+µjm=µn

Qk,m(x∗, τ)(ζj1(τ), . . . , ζjm(τ))
}
dτ.

Note qn(x∗, t) = 0 for all n.
When n = 1, one has ζ1(t) = −q1(x∗)/µ1. Thus, ζ1(t) = 0.
Recursively, ζ2(t) = 0, ζ3(t) = 0, etc.
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(SPC) without the zero average condition

Let (u(x , t), p(x , t)) be a L-periodic, classical solution the NSE on
R3 × (0,∞).
Let x(t) ∈ R3 be a Lagrangian trajectory corresponding to u(x , t).

Theorem (H. 2020)

There exist x∗ ∈ R3 and polynomials Xn : R→ R3, for n ∈ N, such that

x(t) ∼ (x∗ + U0t) +
∞∑
n=1

Xn(t)e−µnt in R3,

where U0 = (L1L2L3)−1
∫

Ω u(x , 0)dx.
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Proof.

Galilean transformation. Set

v(X , t) = u(X + U0t, t)− U0 and P(X , t) = p(X + U0t, t).

Then (v ,P) is a solution, L-periodic, and v(·, t) has zero average.
Let X (t) = x(t)− U0t. We have

X ′(t) = x ′(t)−U0 = u(x(t), t)−U0 = v(x(t)−U0t, t)+U0−U0 = v(X (t), t).

Applying above result (for zero average solutions) to v(X , t) and X (t)
yields

X (t) ∼ x∗ +
∞∑
n=1

Xn(t)e−µnt .

Consequently, we obtain

x(t) = X (t) + U0t ∼ (x∗ + U0t) +
∞∑
n=1

Xn(t)e−µnt .
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THANK YOU!
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