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The Navier-Stokes equations

• The Navier-Stokes equations (NSE) in R3:
∂u

∂t
+ (u · ∇)u − ν∆u +∇p + Ωe3 × u = 0,

div u = 0,

u(x , 0) = u0(x),

with viscosity ν > 0, velocity field u(x , t) ∈ R3, pressure p(x , t) ∈ R,
initial velocity u0(x).
• Let L > 0 and Ω = (0, L)3. The L-periodic solutions:

u(x + Lej) = u(x) for all x ∈ R3, j = 1, 2, 3,

where {e1, e2, e3} is the canonical basis in R3.
Zero average condition ∫

Ω
u(x)dx = 0,

Throughout L = 2π and ν = 1.
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Functional setting

Let V be the set of R3-valued 2π-periodic trigonometric polynomials which
are divergence-free and satisfy the zero average condition.

H = closure of V in L2(Ω)3 = H0(Ω)3,

V = closure of V in H1(Ω)3, D(A) = closure of V in H2(Ω)3.

Norm on H: |u| = ‖u‖L2(Ω). Norm on V : ‖u‖ = |∇u|.
The Stokes operator:

Au = −∆u for all u ∈ D(A).

The bilinear mapping:

B(u, v) = PL(u · ∇v) for all u, v ∈ D(A).

PL is the Leray projection from L2(Ω) onto H.
Let Ju = e3 × u. The functional form of the NSE:

du(t)

dt
+ Au(t) + B(u(t), u(t)) + ΩPLJPLu = 0, t > 0,

u(0) = u0.
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Non-rotation case Ω = 0. Foias-Saut asymptotic expansion

Foias-Saut (1987) for a solution u(t):

u(t) ∼
∞∑
n=1

qj(t)e−jt ,

where qj(t) is a V-valued polynomial in t. This means that for any N ∈ N,

m ∈ N, the remainder vN(t) = u(t)−
∑N

j=1 qj(t)e−jt satisfies

‖vN(t)‖Hm(Ω) = O(e−(N+ε)t)

as t →∞, for some ε = εN,m > 0.

Theorem (H.-Martinez 2017)

The Foias-Saut expansion holds in all Gevrey spaces:

‖eσA1/2
vN(t)‖Hm(Ω) = O(e−(N+ε)t),

for any σ > 0, ε ∈ (0, 1).
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Gevrey classes

• Spectrum of A is {|k|2 : k ∈ Z3, k 6= 0} = {Λn} ⊂ N.
• Additive semigroup is {µn = n ∈ N}.
• For α ≥ 0, σ ≥ 0, define

AαeσA
1/2

u =
∑
k 6=0

|k|2αû(k)eσ|k|e ik·x, for u =
∑
k6=0

û(k)e ik·x ∈ H.

The domain of AαeσA
1/2

is

Gα,σ = D(AαeσA
1/2

) = {u ∈ H : |u|α,σ
def
== |AαeσA1/2

u| <∞}.

• Compare the Sobolev and Gevrey norms:

|Aαu| = |(Aαe−σA1/2
)eσA

1/2
u| ≤

(2α

eσ

)2α
|eσA1/2

u|.

• For any numbers α ≥ 1/2, σ ≥ 0, any functions v ,w ∈ Gα+1/2,σ one has

|B(v ,w)|α,σ ≤ Kα|v |α+1/2,σ|w |α+1/2,σ.
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Poincaré wave

Let S = PLJPL. For u0 ∈ H, set w(t) = eΩtSu0.
Note that S is anti-Hermitian and unitary on H, isometric on D(Aα) for
all α.
Fourier-series:

etSu =
∑

Ek(t)uk,

where Ek(t) is a 3× 3 matrix defined by

Ek(t)z = cos(k̃3t) z + sin(k̃3t) k̃× z ∀z ∈ C3,

with k̃ = k/|k|. We have

|Ek(t)z| = |z|, (Ek(t))∗ = Ek(−t).

The semigroup etS is analytic in t ∈ R, its adjoint operator is

(etS)∗ = e−tS ,

unitary on H and isometric on D(AαeσA
1/2

) for all α, σ.
Consequently,

|etSu|α,σ = |u|α,σ.
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Change of variables

Let u(t) be a solution of Rot-NSE. Set v(t) = etΩSu(t). Then v(t) solves

dv

dt
+ Av + BΩ(t, v , v) = 0, v(0) = v0 = u0,

where

BΩ(t, u, v) = B(Ωt, u, v), B(t, u, v) = etSB(e−tSu, e−tSv).

Note that
〈B(t, u, v), v〉 = 0.

Lemma

For any numbers α ≥ 1/2, σ ≥ 0, any functions v ,w ∈ Gα+1/2,σ and any
t ∈ R, one has

|B(t, v ,w)|α,σ ≤ Kα|v |α+1/2,σ|w |α+1/2,σ.
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Leray-Hopf weak solutions

Define

b(t, u, v ,w) = b(e−tSu, e−tSv , e−tSw), bΩ(t, u, v ,w) = b(Ωt, u, v ,w).

A Leray-Hopf weak solution v(t) of Wav-NSE is a mapping from [0,∞) to
H such that

v ∈ C ([0,∞),Hw) ∩ L2
loc([0,∞),V ), v ′ ∈ L

4/3
loc ([0,∞),V ′),

and satisfies

d

dt
〈v(t),w〉+ 〈〈v(t),w〉〉+ bΩ(t, v(t), v(t),w) = 0

in the distribution sense in (0,∞), for all w ∈ V , and the energy inequality

1

2
|v(t)|2 +

∫ t

t0

‖v(τ)‖2dτ ≤ 1

2
|v(t0)|2

holds for t0 = 0 and almost all t0 ∈ (0,∞), and all t ≥ t0.
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S- and SS- polynomials

Let X be a linear space.
1 A function g : R→ X is an X -valued S-polynomial if it is a finite sum

of the functions in the collection{
tm(cos(ωt))Z , tm(sin(ωt))Z : m ∈ N ∪ {0}, ω ∈ R, Z ∈ X

}
.

In this case we can write

g(t) =
N∑

n=0

gn(t)tn, where gn(t) =
Nn∑
j=0

(
An,j cos(ωn,j t)+Bn,j sin(ωn,j t)

)
,

with non-negative numbers ωn,j ’s are strictly increasing in j ≥ 0.
2 A function g : R→ X is an X -valued SS-polynomial if it is a finite

sum of the functions in the set{
tm cos

(
a cos(ωt) + b sin(ωt) + ct + d

)
Z ,

tm sin
(
a cos(ωt) + b sin(ωt) + ct + d

)
Z :

m ∈ N ∪ {0}, a, b, c , d , ω ∈ R, Z ∈ X
}
.

L. Hoang (Texas Tech) Asymptotic Expansions for Rotating Incompressible Viscous Fluids
Binghamton 10.12.2019 11



Asymptotic expansions

Let (X , ‖ · ‖) be a normed space and (αn)∞n=1 be a sequence of strictly
increasing non-negative numbers. A function f : [T ,∞)→ X , for some
T ∈ R, is said to have an asymptotic expansion

f (t) ∼
∞∑
n=1

fn(t)e−αnt in X ,

where fn(t) is an X -valued polynomial, or S-polynomial, or SS-polynomial,
if one has, for any N ≥ 1, that

∥∥∥f (t)−
N∑

n=1

fn(t)e−αnt
∥∥∥ = O(e−(αN+εN)t) as t →∞,

for some εN > 0.
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2. Main results

Expansions of the solutions with zero averages
Expansions without the zero average condition
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With zero average condition

Two main expansions, one for v(t) and one for u(t).

Theorem

For any Leray-Hopf weak solution v(t) of Wav-NSE, there exist V-valued
S-polynomials qn’s, for all n ∈ N, such that if α, σ > 0 and N ≥ 1 then

∣∣∣v(t)−
N∑

n=1

qn(t)e−µnt
∣∣∣
α,σ

= O
(
e−µt

)
as t →∞, ∀µ ∈ (µN , µN+1).

Since u(t) = e−ΩtSv(t), we immediately obtain the expansion for u(t).
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Theorem

Let u(t) be any Leray-Hopf weak solution of Rot-NSE. Then there exist
V-valued S-polynomials Qn’s, for all n ∈ N, such that it holds, for any
α, σ > 0 and N ≥ 1, that

∣∣∣u(t)−
N∑

n=1

Qn(t)e−µnt
∣∣∣
α,σ

= O
(
e−µt

)
as t →∞, ∀µ ∈ (µN , µN+1).

Proof. Let v(t) = eΩtSu(t). Then v(t) is a Leray-Hopf weak solution of
Wav-NSE. Hence v(t) admits an asymptotic expansion. Rewrite the
remainder estimate in terns of u(t) as

∣∣∣eΩtS
(
u(t)−

N∑
n=1

qn(t)e−ΩtSe−µnt
)∣∣∣
α,σ

=
∣∣∣u(t)−

N∑
n=1

Qn(t)e−µnt
∣∣∣
α,σ
,

where Qn(t) = e−ΩtSqn(t) are also S-polynomials.
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Without the zero average condition

Galilean transformation. For t ≥ 0, let

U(t) =
1

L3

∫
u(x , t)dx .

When t = 0, denote

U0 = U(0) =
1

L3

∫
u(x , 0)dx =

1

L3

∫
u0(x)dx .

Integrating the equation Rot-NSE over the domain gives

U ′(t) + ΩJU(t) = 0.

Hence,

U(t) = e−ΩtJU0 =

 cos(Ωt) sin(Ωt) 0
− sin(Ωt) cos(Ωt) 0

0 0 1

U0.
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Let

V (t) =

∫ t

0
U(τ)dτ =

1

Ω

 sin(Ωt) 1− cos(Ωt) 0
cos(Ωt)− 1 sin(Ωt) 0

0 0 Ωt

U0.

Then V (0) = 0 and V ′(t) = U(t). Define for t ≥ 0,

w(x , t) = u(x + V (t), t)− U(t), ϑ(x , t) 7→ p(x + V (t), t),

Then w(·, t) has zero average for each t, (w , ϑ) is a L-periodic solution of
the NSE:

wt −∆w + (w · ∇)w + ΩJw = −∇ϑ,

div w = 0,

w(x , 0) = w0(x)
def
== u0(x)− U0(x).
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Theorem

Let u(x , t) ∈ C 2,1
x ,t (R2 × (0,∞)) ∩ C (R3 × [0,∞)) be a L-periodic solution

of the NSE. There exist V-valued SS-polynomials Q̃n(t)’s, for all n ∈ N,
such that

u(t) ∼ U(t) +
∞∑
n=1

Q̃(t)e−µnt in G̃α,σ for all α, σ > 0.

Formal proof. We have

u(x , t) = U(t) + w(x − V (t), t) ∼ U(t) +
∞∑
n=1

Qn(x − V (t), t)e−µnt .

Note

e ik·(x−V (t)) = e ik·xe−ik·V (t) = e ik·x(cos(k · V (t))− i sin(k · V (t))).

Suppose

Qn(x , t) =
∑

Q̂n,k(t)e ik·x .

L. Hoang (Texas Tech) Asymptotic Expansions for Rotating Incompressible Viscous Fluids
Binghamton 10.12.2019 18



Then

Qn(x − V (t), t) =
∑

Q̂n,k(t)e ik·xe ik·xe−ik·V (t)

=
∑

Q̂n,k(t)e ik·x(cos(k · V (t))− i sin(k · V (t))).

Because V (t) already contains cos(bt) and sin(bt) terms, so u(x , t) will
contain terms of the forms

cos(a cos(bt)), cos(a sin(bt)), sin(a cos(bt)), sin(a sin(bt)),

and

tm cos(a cos(bt)), tm cos(a sin(bt)), tm sin(a cos(bt)), tm sin(a sin(bt)).
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3. Proofs
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Proof for the zero average case

Theorem (same as H.-Martinez 2017)

Let v0 ∈ H and v(t) be a Leray-Hopf weak solution of Wav-NSE. For any
σ > 0, there exist T ,Dσ > 0 such that

|v(t)|1/2,σ+1 ≤ Dσe
−t ∀t ≥ T .

Moreover, for any α ≥ 0 there exists Dα,σ > 0 such that

|v(t)|α+1/2,σ ≤ Dα,σe
−t ∀ t ≥ T .
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Induction statement

Let σ > 0 be fixed. We prove the following statement

(TN)
For any N ≥ 1, there exist V-valued S-polynomials qn’s for
n = 1, 2, . . . ,N, such that

∣∣∣v(t)−
N∑

n=1

qn(t)e−µnt |α,σ = O(e−(µN+ε)t) as t →∞,

for all α > 0, and some ε = εN,α > 0. Moreover, each

vn(t)
def
== qn(t)e−µnt , for n = 1, 2, . . . ,N, solves

v ′n + Avn +
∑

1≤m,k≤n−1
µm+µk=µn

BΩ(t, vm, vk) = 0 ∀t ∈ R.
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Induction step

Let vn(t) = qn(t)e−µnt , v̄N(t) =
∑N

n=1 vn(t) and ṽN(t) = v(t)− v̄N(t).
Let wN(t) = eµN+1t ṽN(t), and wN,k(t) = RΛk

wN(t) for k ∈ N.
We have

d

dt
wN,k + (Λk − µN+1)wN,k = −

∑
µm+µj=µN+1

RΛk
BΩ(t, qm, qj) + RΛk

HN(t).

There exist TN > 0 and MN > 0 such that

|HN(TN + t)|α,σ ≤ MNe
−δN t ∀t ≥ 0.
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Approximation lemma

Let (X , ‖ · ‖) be a Banach space. Suppose y(t) solves

y ′(t) + βy(t) = p(t) + g(t),

where β = const. ∈ R, p(t) is an X -valued S-polynomial, and

‖g(t)‖ ≤ Me−δt ∀t ≥ 0, for some M, δ > 0.

There exists q(t) is an X -valued S-polynomial that satisfies

q′(t) + βq(t) = p(t), t ∈ R,

and the following estimates hold:

1 If β > 0 then

‖y(t)− q(t)‖2 ≤ 2e−2βt‖y(0)− q(0)‖2 + 2t

∫ t

0
e−2β(t−τ)‖g(τ)‖2dτ.

2 If either (a) β = 0, or (b) β < 0 and limt→∞(eβt‖y(t)‖) = 0, then

‖y(t)− q(t)‖2 ≤
( M

δ − β

)2
e−2δt .
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We will apply the Lemma to space X = RΛk
H with X -norm ‖ · ‖ = | · |α,σ,

solution y(t) = wN,k(TN + t), constant β = Λk − µN+1, S-polynomial

p(t) = −
∑

µm+µj=µN+1

RΛk
BΩ(TN + t, qm(TN + t), qj(TN + t)),

function g(t) = RΛk
HN(TN + t), numbers M = MN and δ = δN .

We obtain S-polynomials pN+1,k(t) to approximate wN,k(TN + t).
Define

qN+1(t) =
∞∑
k=1

pN+1,k(t − T ).

Then RΛk
pN+1(t) = pN+1,k(t − T ).

We have remainder estimate

|wN(t + T )− qN+1(t + T )|2α,σ = O(e−δN t).

which implies
|wN(t)− qN+1(t)|α,σ = O(e−δN t/2).

Need to check the ODE for qN+1(t), but it is OK.
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THANK YOU!

L. Hoang (Texas Tech) Asymptotic Expansions for Rotating Incompressible Viscous Fluids
Binghamton 10.12.2019 26


	The Navier-Stokes systems
	NSE for rotating fluids
	Foias-Saut asymptotic expansion
	Poincaré wave and change of variables
	Forms of expansions

	Main results
	Expansions of the solutions with zero averages
	Expansions without the zero average condition

	Proofs
	Thank you

