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The Navier-Stokes equations

e The Navier-Stokes equations (NSE) in R3:

0
8—L;+(u-V)u—1/Au+Vp+Qe3XUZO’
div u =0,

u(x,0) = u%(x),
with viscosity v > 0, velocity field u(x, t) € R3, pressure p(x, t) € R,
initial velocity u®(x).
e Let L >0and Q = (0,L)3. The L-periodic solutions:

u(x + Ley) = u(x) for all x € R3,j = 1,2, 3,

where {er, e, €3} is the canonical basis in R3.
Zero average condition

Throughout L =27 and v = 1.
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Functional setting

Let V be the set of R3-valued 27-periodic trigonometric polynomials which
are divergence-free and satisfy the zero average condition.

H = closure of V in L?(Q)* = H(Q)3,

V = closure of V in H(Q)3, D(A) = closure of V in H*(Q)3.
Norm on H: |u| = [|u]|;2(q)- Norm on V: [lu| = [Vu].
The Stokes operator:

Au = —Au for all u € D(A).
The bilinear mapping:
B(u,v) =P (u-Vv) for all u,v € D(A).
PP, is the Leray projection from L?(2) onto H.
Let Ju = e3 x u. The functional form of the NSE:
du(t)

pm + Au(t) + B(u(t), u(t)) + QP JPu=0, t >0,

u(0) = u°.

L. Hoang (Texas Tech) Asymptotic Expansions for Rotating Incompressible Viscous Fluids Binghamton 10.12.2019



Non-rotation case €2 = 0. Foias-Saut asymptotic expansion

Foias-Saut (1987) for a solution u(t):
u(t) ~ > gi(t)e ™,
n=1

where gj(t) is a V-valued polynomial in t. This means that for any N € N,

m € N, the remainder vy(t) = u(t) — Zszl qj(t)e ™t satisfies

v ()| m(a) = O(e~ (Vo))

as t — 00, for some € = ey, > 0.

Theorem (H.-Martinez 2017)

The Foias-Saut expansion holds in all Gevrey spaces:
oAl/2 -0 —(N—+e)t
€7 vn(t)[|ym(@) = O(e ),

for any o >0, € € (0,1).
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Gevrey classes

e Spectrum of Ais {|k|?: k € Z3,k # 0} = {A,} C N.
e Additive semigroup is {u, = n € N}.
e For a >0, 0 > 0, define

A% Ay =3 [k2ea(k)eMe®*, for u= 3" a(k)e™* € H.

k£0 k£0
The domain of Ao‘e"Al/2 is
oo = D(A%A) = {u € H: [u|a, 2L |A%e" A U] < o0}

e Compare the Sobolev and Gevrey norms:

A% = [(A%e 7)) < (22) T erh 2y
eo

e For any numbers a > 1/2, o > 0, any functions v,w € G,,1/5, one has

|B(V7 W)|o¢,0 < KQ|V‘a+1/2,a‘W|a+1/2,U’

L. Hoang (Texas Tech) Asymptotic Expansions for Rotating Incompressible Viscous Fluids Binghamton 10.12.2019 7



Poincaré wave

Let S =P, JP,. For u® € H, set w(t) = e u0.

Note that S is anti-Hermitian and unitary on H, isometric on D(A%) for
all a.

Fourier-series:

eSu= Z Ex(t)uy,
where Ey(t) is a 3 x 3 matrix defined by
E(t)z = cos(kst)z + sin(kst)k x z ¥z € C3,
with k = k/|k|. We have
|E(t)z] = |z|,  (E(t))" = E(—1).
The semigroup e®® is analytic in t € R, its adjoint operator is
(ets)* _ e—ts7

0.A1/2)

unitary on H and isometric on D(A%e for all a, 0.

Consequently,
¥ g = |ula.
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Change of variables

Let u(t) be a solution of Rot-NSE. Set v(t) = e u(t). Then v(t) solves

% + Av + Bq(t,v,v) =0, v(0)= VA
where
Bale,.v) = B(OL 1), B(e, 1) = EB(e~ S 50)
Note that

(B(t,u,v),v) =0.

For any numbers a > 1/2, o > 0, any functions v,w € Gu41/2, and any
t € R, one has

|B(ta v, W)|Oc70 < Ka|v|a+1/2,a|w|a+1/2,a-
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Leray-Hopf weak solutions

Define
b(t,u,v,w) = b(e Pu e v, e Bw), bq(t,u,v,w) = b(Qt,u,v,w).

A Leray-Hopf weak solution v(t) of Wav-NSE is a mapping from [0, c0) to
H such that

v € C([0,00), Hy) N L2.([0,00), V), V' € L3(]0,00), V'),

loc
and satisfies

%Mt), w) + (v(t), w)) + ba(t, v(t), v(t), w) =0

in the distribution sense in (0, 00), for all w € V/, and the energy inequality
1 2 ‘ 2 1 2
SO+ [ llv(T)IIFdT < Slv(t)]
to

holds for to = 0 and almost all tp € (0,00), and all t > ty.
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S- and SS- polynomials

Let X be a linear space.
@ A function g : R — X is an X-valued S-polynomial if it is a finite sum
of the functions in the collection

{t’"(cos(wt))Z, tM(sin(wt))Z :me NU{0}, we R, Z € x}.

In this case we can write

N N,
g(t) = gn(t)t", where go(t) = (Anjcos(wpjt)+Bnsin(wn,t)),
n=0 j=0

with non-negative numbers wj, j's are strictly increasing in j > 0.
@ A function g : R — X is an X-valued SS-polynomial if it is a finite
sum of the functions in the set

{t'" cos (acos(wt) + bsin(wt) + ct + d)Z,
t™ sin (acos(wt) + bsin(wt) + ct + d) Z :
meNU{0}, a,bc,dweR, Ze X}.
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Asymptotic expansions

Let (X, |- ||) be a normed space and ()72 ; be a sequence of strictly
increasing non-negative numbers. A function f : [T, 00) — X, for some
T € R, is said to have an asymptotic expansion

t)NZf e~ in X,

where f,(t) is an X-valued polynomial, or S-polynomial, or SS-polynomial,
if one has, for any N > 1, that

= O(e(WFenty a5t — oo,

for some gy > 0.
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2. Main results

m Expansions of the solutions with zero averages
m Expansions without the zero average condition
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With zero average condition

Two main expansions, one for v(t) and one for u(t).

Theorem

For any Leray-Hopf weak solution v(t) of Wav-NSE, there exist V-valued
S-polynomials q,'s, for all n € N, such that if a,o > 0 and N > 1 then

= (’)(e_“t) as t— 00, Yu € (un,Unr1)-

Since u(t) = e~¥v(t), we immediately obtain the expansion for u(t).
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Theorem

Let u(t) be any Leray-Hopf weak solution of Rot-NSE. Then there exist
V-valued S-polynomials Q,’s, for all n € N, such that it holds, for any
a,0>0and N > 1, that

‘ (t) — ZQ e Hnt

Proof. Let v(t) = e?*Su(t). Then v(t) is a Leray-Hopf weak solution of
Wav-NSE. Hence v(t) admits an asymptotic expansion. Rewrite the
remainder estimate in terns of u(t) as

’thS (u(t) _ EN: qn(t)e—QtSe—unt>
n=1

where @,(t) = e~5q,(t) are also S-polynomials.

= (’)(e_’”) as t—o00, Vu € (un,nt1)-

a,0
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Without the zero average condition

Galilean transformation. For t > 0, let

Integrating the equation Rot-NSE over the domain gives

U'(t) + QJU(t) = 0.

Hence,
cos(Qt) sin(Qt) 0
U(t) = e Uy = | —sin(Qt) cos(Qt) 0] Uo.
0 0 1
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Let

2

¢ 1 sin(Qt) 1—cos(Qt) O
V(t) = / U(r)dr = (cos(Qt) -1  sin(Qt) 0 ) Uo.
0 0 0 Qt
Then V(0) = 0 and V’(t) = U(t). Define for t > 0,
w(x, t) = u(x+ V(t),t) — U(t), J(x,t)— p(x+ V(t),1t),

Then w(-, t) has zero average for each t, (w,?) is a L-periodic solution of

the NSE:
we — Aw + (w - V)w + Qiw = =V,

div w = 0,

w(x,0) = wo(x) 2L uo(x) — Uo(x).
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Theorem

Let u(x,t) € CX +(R2 x (0,00)) N C(R3 x [0,00)) be a L-periodic solution
of the NSE. There exist V-valued SS-polynomials Q,(t)’s, for all n € N,
such that

u(t) ~ Z et in Gy for all a0 > 0.

Formal proof. We have
u(x, t) = U(t) + w(x — V(t), +ZQ,, x — V(t), t)e

Note

ek (x=V(t)) — gik-x g=ik-V(t) — e**(cos(k - V(t)) — isin(k - V(t))).

t)=> Qnil(t)e™™.

Suppose
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Then
Qn(x — V(t),t) = Z @n t eik-xeikxefik-v(t)
= Qui(t)e™(cos(k - V(t)) - isin(k - V(t))).

Because V/(t) already contains cos(bt) and sin(bt) terms, so u(x, t) will
contain terms of the forms

cos(acos(bt)), cos(asin(bt)), sin(acos(bt)),sin(asin(bt)),
and

t"™ cos(acos(bt)), t" cos(asin(bt)), t" sin(acos(bt)), t™ sin(asin(bt)).
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3. Proofs

L. Hoang (Texas Tech)

ymptotic Expansions for Rotating Incompressible Viscous Fluids



Proof for the zero average case

Theorem (same as H.-Martinez 2017)

Let vO € H and v(t) be a Leray-Hopf weak solution of Wav-NSE. For any
o > 0, there exist T, D, > 0 such that

v(t)|1/2,041 < Dpe™® VE>T.
Moreover, for any o > 0 there exists D, , > 0 such that

|V(t)|a+1/2,a < Da,ae_t Vt>T.
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Induction statement

Let o > 0 be fixed. We prove the following statement

(7n)
For any N > 1, there exist V-valued S-polynomials q,’s for
n=1,2,..., N, such that

N
v(t) — Z gn(t)e 00 = O(e= v F9)t) as ¢ — oo,
n=1

for all o > 0, and some € = ey o > 0. Moreover, each

va(t) gt gn(t)e #nt, forn=1,2,..., N, solves

v, + Av, + Z Ba(t, vm,vk) =0 VteR.

1<m,k<n—1
Hm=pk=Hn
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Induction step

Let va(t) = gn(t)e ", Tn(t) = SN vo(t) and Un(t) = v(t) — Tn(t).
Let wy(t) = etN+1tp(t), and wy k(t) = Ra, wn(t) for k € N.
We have

d
J ke (A= s ) wiv e = — > RaBalt,am, q;) + Ra, Hu(t).
Hm = N1

There exist Ty > 0 and My > 0 such that

|Hy(Tn + t)]ae < Mye Mt Yt > 0.
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Approximation lemma

Let (X,]| - ||) be a Banach space. Suppose y(t) solves
y'(8) + By () = p(t) + &(2),
where 3 = const. € R, p(t) is an X-valued S-polynomial, and
lg(t)|| < Me™® Yt >0, forsome M,d > 0.
There exists g(t) is an X-valued S-polynomial that satisfies
q'(t) + Bq(t) = p(t), teR,
and the following estimates hold:
Q If 3> 0 then
t
ly () = q()I* < 2e~2°ly(0) — q(0)]* + 2f/0 e 2T g (r)|Pd.
@ If either (a) B =0, or (b) B < 0 and lim;_(e’t|ly(t)||) = 0, then

ly(t) — q(t)|* < ((S_/\/’ﬂfe—zat.
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We will apply the Lemma to space X = Ry H with X-norm || - || = |- |a,0,
solution y(t) = wy «(Tn + t), constant 8 = A — pny1, S-polynomial

p()=— > RaBa(Tn+t,am(Tn+1),q(Tn + 1)),
Pom =N 1

function g(t) = Ry, Hn(Tn + t), numbers M = My and 6 = dy.
We obtain S-polynomials py1 «(t) to approximate wy x( Ty + t).
Define

an1(t) = prsik(t—T).
k=1

Then RAkpN+1(t) = pN+17k(t — T)
We have remainder estimate

wn(t+ T) — gnsa(t + T)[3, = O(e™M).
which implies
wn(t) = qugi(t)aoe = O(e™WH/2).

Need to check the ODE for gn1(t), but it is OK.



THANK YOU!
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