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Overview of research

@ The Navier-Stokes equations of viscous, incompressible fluids
@ Generalized Forchheimer flows in porous media

© Regularity theory for partial differential equations.

@ Abstract dynamical systems.

» 29 articles published, 1 in press, 1 accepted, 1 submitted.
» All are mathematical analysis, new results (except for one survey).
» All are in peer-reviewed journals.
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@ The Navier-Stokes systems m Gas flows: mathematical
m Foias-Saut asymptotic model
expansion m Estimates of the Lebesgue
m Exponentially decaying forces norms
m Power-decaying forces m Maximum estimates
Expansions in a general system m Gradient estimates

of decaying functions

m Continuum systems

m Asymptotic expansions for
NSE

m Applications
© Generalized Forchheimer gas

flows in porous media
m Generalized Forchheimer flows @ Publications and Funding

@ Flows of mixed regimes
m Unified models
m Estimates for solutions
m Continuous dependence on the
boundary data
m Structural stability
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1. The Navier-Stokes systems

m Foias-Saut asymptotic expansion
m Exponentially decaying forces
m Power-decaying forces
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The Navier-Stokes equations

e The Navier-Stokes equations (NSE) in R3:

%+(U-V)u—yAu+Vp: f(x,t),
div u =0,

u(x,0) = u%(x),

with viscosity v > 0, velocity field u(x, t) € R3, pressure p(x, t) € R, body
force f(x, t) € R3, initial velocity u%(x).
e Let L >0and Q= (0,L)3. The L-periodic solutions:

u(x + Lej) = u(x) for all x € R3,j = 1,2, 3,

where {er, e, €3} is the canonical basis in R3.
Zero average condition

Throughout L =27 and v = 1.
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Functional setting

Let V be the set of R3-valued 27-periodic trigonometric polynomials which
are divergence-free and satisfy the zero average condition.

H = closure of V in L?(Q)* = H(Q)3,

V = closure of V in H(Q)3, D(A) = closure of V in H*(Q)3.
Norm on H: |u| = [|u]|;2(q)- Norm on V: [lu| = [Vu].
The Stokes operator:

Au = —Au for all u € D(A).
The bilinear mapping:
B(u,v) =P (u-Vv) for all u,v € D(A).
PP, is the Leray projection from L?(2) onto H.
WLOG, assume f(t) = P, f(t). The functional form of the NSE:
du(t)

gt + Au(t) + B(u(t), u(t)) = f(t), t >0,
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Case f = 0. Foias-Saut asymptotic expansion

Foias-Saut (1987) for a solution u(t):
u(t) ~ > gi(t)e ™,
n=1

where gj(t) is a V-valued polynomial in t. This means that for any N € N,

m € N, the remainder vy(t) = u(t) — Zszl qj(t)e ™t satisfies

v ()| m(a) = O(e~ (Vo))

as t — 0o, for some € = ey, > 0.

Theorem (H.-Martinez 2017)

The Foias-Saut expansion holds in all Gevrey spaces:
oAl/2 -0 —(N—+e)t
€7 vn(t)[|ym(@) = O(e ),

for any o >0, € € (0,1).
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Gevrey classes

e Spectrum of A'is {|k|?>: k € Z3, k # 0}.
e For « > 0, 0 > 0, define

A e Z k[2a(k)e Kl ek for u = Z o(k)e*™ € H.
k£0 k£0

The domain of Ao‘e"Al/2 is
Gy = D(A**) = {u € H : |ufao 2= |A%" 4| < o0}

e Compare the Sobolev and Gevrey norms:

20\ 2
|A%u| = |(A°‘e_”A1/2)e"A1/2u| < (ﬁ) a|eUAl/2u].
e

Notation.
o Denote for o € R the space E>? =[50 Ga,0 = e G

@ Denote by P the space of G, ,-valued polynomials in case o € R,
and the space of E°%-valued polynomials in case a = oo.
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Let X be a real vector space.

(a) An X-valued polynomial is a function t € R — ZZZI ant”, for some
d >0, and a,’s belonging to X.

(b) In case || - || is a norm on X, a function g(t) from (0, 00) to X is said
to have the asymptotic expansion

g(t) ~ Zg,,(t)e*"t in X,
n=1

where gn(t)'s are X-valued polynomials, if for all N > 1, there exists
en > 0 such that

= O(e"(N+em)t) a5 t — 0.

|ete) - > alt)e
n=1

e We will say that an asymptotic expansion holds in E°? if it holds in
Ga,o for all o > 0.
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Exponentially decaying forces

(A1) The function f(t) is continuous from [0, 00) to H.
(A2) There are a number og > 0, E°?°-valued polynomials f,(t) such that

F(t) ~ > falt)e ™ in E>,
n=1

Theorem (H.-Martinez 2018)

Let u(t) be a Leray-Hopf weak solution. Then u(t) has the asymptotic
expansion

o
u(t) ~ Z gn(t)e™ " in E°>00,
n=1

Moreover, up(t) gt gn(t)e™" and F,(t) L fo(t)e™" satisfy

d H 0,0
27 Un(t) + Aun(t) + ;;1 B(ui(t), um(t)) = Fa(t), teR, in E®%,
k-ilmm_zn
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Finite asymptotic approximation

Theorem (H.-Martinez 2018)

Suppose there exist N, > 1, 09 > 0, ps > as > Ni/2, and §, € (0,1) and
f, € PHno0 for1l < n < N,, such that

= O(e" N+t 35 ¢t — o0,

aN,00

N
‘f(t) =3 f(t)e ™
n=1

for1 < N < N,, where pin = px. — (n—1)/2, ap = ax — (n —1)/2.
Let u(t) be a Leray-Hopf weak . Then there exist polynomials
gn € PHtLo0 for 1 < n < N,, such that one has for 1 < N < N, that

= O(e"N*)t)  ast — 0o, Ve € (0,0%),

aN,00

N
|u(8) = > an(t)e™
n=1

where 05, = min{d1,d2,...,0n}.
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Power-decaying forces

Power asymptotic expansion in (X, || - ||): g(t PR S g, t™" means
ymp p g n=18
llg(t) Zgn =0t (N+€)), for somee >0, t— oo.

Theorem (Cao-H. 2017 )

Assume that f(t) "X 32 ¢t~ in Gy.oy, for some ag > 0 and

a > 1/2, sequence {¢p}°° 1 in Go . Then any Leray-Hopf weak solution
u(t) has the asymptotic expansion

u(t) PR ant_n in Ga,ao’
n=1

where & = A_1<;31,
§n=(n—1)A"¢ 1 — Zk,le,k+m:n AT B(ks Em) + A" b for n > 2.

v
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2. Expansions in a general system of decaying

functions

m Continuum systems
m Asymptotic expansions for NSE
m Applications
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Expansions in a general system of decaying functions

Definition (Very/Too general)

Let (¢5)52; be a sequence of non-negative functions defined on [T, c0)
for some T, € R that satisfies the following two conditions:

© For each n € N, lim;_,o0 ¥p(t) = 0.
© For n > m, Pn(t) = o(Ym(t)).

Let (X,] - ||) be a normed space, and g be a function from [T, o0) to X.

t) ~ Z§n¢n(t) in X,
n=1

where £, € X for all n € N, if, for any N € N,

Ig(t) anwn )| = o(¥n(t)).
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A continuum system

Let W = (1x)a>0 be a system of functions that satisfies the following two
conditions.

(a) There exists T, > 0 such that, for each A > 0, 1, is a positive
function defined on [T, o), and

lim 1#)\(1‘) =0.

t—00

(b) For any A > p, there exists > 0 such that

a(t) = O(u(t)iy(t))-
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Asymptotic expansions in a continuum system

Let (X, ] - ||) be a real normed space, and g : (0,00) — X.

g(t) LS &by (1) in X,
n=1

where £, € X for all n € N, and (\,)7; is a strictly increasing, divergent
sequence of positive numbers, if it holds, for any N > 1, that there exists
€ > 0 such that

EOE isnwn(t)H = O(an()¥=(1)).
n=1
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The system W = (1) )0 satisfies (a) and (b) and the following.

@ For any A\, u > 0, there exist v > max{\, u} and a nonzero constant
d), . such that

%% - d)\,,uww-
Notation. v = A A p.

@ For each A > 0, the function 1y is continuous and differentiable on
[T.,00), and its derivative ¥\ has an expansion

Ny
Pi(t) X > aakthiv(t) in R,

k=1

where Ny € NU {0, 00}, all ¢y x are constants, all \¥ (k) > X, and,
for each A\ > 0, \V(k)'s are strictly increasing in k.
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Condition

The system W = (1) )0 satisfies (a), (b) and the following.
@ For each A > 0, the function 1y is decreasing (in t).
Q@ If X\, a >0 then
e " = o(yha(t)).

© For any number a € (0,1),

¥a(at) = O(¥a(t)).

Consequently, for any T € R,

Ua(t) = O(Pa(t + T)).

The function f belongs to L7° ([0, 00), H).

loc
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Assumption

Asymptotic expansions for NSE

Suppose there exist real numbers o > 0, a > 1/2, a strictly increasing,

divergent sequence of positive numbers (v,)72; and a sequence (qb,,)

°,in
Ga,o such that

F(£) % ntbr,(t) in Gog.

n=1

Assumption

| A

There exists a set S, that contains {7, : n € N}, preserves the operations
V and A, and can be ordered so that

S. ={\n: n €N}, where \,’s are strictly increasing to infinity.

Rewrite

F(£) XN gatn, (8) in Guos ast— oo,

L. Hoang (Texas Tech)
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Theorem (Cao-H. 2018)

Any Leray-Hopf weak solution u(t) has the asymptotic expansion

u(t) X " €ntn, (£) in Gas1—po for all p € (0,1),
n=1

where £, 's are defined recursively by

& =A"e,

=A(0n—xn— D dunr.Bltm)) forn>2,
1<k,m<n—1,
A AAm=An

where
> onkée fIpe(ln—1,k eN: XY (k) = A,
_ (p,k)E[1,n—1]xN:
Xn = XY (K)=An

0, otherwise.
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Parts of proof (1). Linearized NSE

Theorem (Cao-H. 2018)

Given oc,0 > 0, let £ € G, », and f be a function from (0, 00) to G, that
satisfies

If(t)|a,c < MF(t) a.e. in(0,00),

where F is a continuous, decreasing function from [0, cc0) to [0, 00).
Let wo € Gu». Suppose w € C([0,00), Hy) N LL ([0, 00), V), with
w' € LL ([0,00), V'), is a weak solution of

W =—Aw+E&+f in V' on (0,00), w(0) = wy,

Then the following statements hold true.
Q w(t) € Got1-eo foralle € (0,1) and t > 0.
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Theorem (continued)

@ For any numbers a, ag € (0,1) with a+ agp < 1 and any € € (0,1),
there exists a positive constant C depending on ag, a, €, M, F(0),
|{]a,c and |wo|a,s such that

Iw(t) — A" |at1-c0 < C(e7™F + F(at)) Vt> 1.

© Assume, in addition, that
o There exist ko > 0 and D; > 0 such that

e ft < D/F(t) Vt>0, and (F1)
e For any a € (0,1), there exists D, = D, , > 0 such that
F(at) < D,F(t) Vt>D0. (F2)
Then there exists C > 0 such that

(w(t) — A7 |g41-c0 < CF(t) V> 1.
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Parts of proof (2). Small data Gevrey results

Theorem (Cao-H. 2018)

Let F be a continuous, decreasing, non-negative function on [0, c0). Given
a > 1/2 and numbers 6y, 6 € (0,1) such that 6+ 6 < 1. Then there exist
positive numbers ¢, = cx(«, 6o, 0, F), for k =0,1,2,3, such that the
following holds true. If

A0 < o,
[f(t)la—1/20 < aF(t) a.e in(0,00) for some o > 0,

then there exists a unique regular solution u(t), which also belongs to
C([0,00), D(A%)) and satisfies, for all t > 8a(1 —6)/(1 — 6 — 6o),

|u(t)lao < cale” + F2(601))'/2,

t+1
/ (P21 0 dr < (e + F2(62)).
t
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Parts of proof (3). Estimates for Leray-Hopf weak solutions

Theorem (Cao-H. 2018)

Let F be a continuous, decreasing, non-negative function such that

lim F(t) =0,

t—o0
|f(t)|a,c = O(F(t)), for some o >0, a >1/2.

Let u(t) be a Leray-Hopf weak solution. Then there exists T > 0 such
that u(t) is a regular solution on [T, o), and for any ¢, \ € (0,1), and
ap, a, by, 0 € (0,1) withag+a<1,60y+6<1,

|u(T + t)|ar1-co < Cle™ @t 4 72003t L F2A(9at) + F(at)) Vt > 0.

If, in addition, F satisfies (F1) and (F2), then

lu(T + t)|ar1-co < CF(t) Vit >0.
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Application: iterated logarithmic decaying functions

For k, m e N, let
Li(t) = In(In(---In()))  and  Lm(t) = (L1(t), La(£), - , Lm(t)).
k-times

e Let @y : R™ — R be a polynomial in m variables with positive degree
and positive leading coefficient:

Qo(z) = Z Coz® for z € R™.

We use the lexicographic order for the multi-indices.

e Let Q1 be a polynomial in one variable of positive degree with positive
leading coefficient.

Given a number 3 > 0, we define

w(t) = (Qo o Lmo Q)(t7)) with t € R.
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Let ¢hx(t) = w(t)™ and W = (¢h5(t))rs0. Note ¥} ~ 0.

Theorem (Cao-H. 2018)

Assume

o
F(t) > Gaw(t) ™ in Gog,
n=1

for some o > 0, « > 1/2. Then any Leray-Hopf weak solution u(t) of the
NSE has the asymptotic expansion

u(t) A Zg,,w(t)_’\" in Gay1—p,o for all p € (0,1),
n=1

where
G = Al &= A—1<¢n -y B(gk,gm)> for n > 2.
1<k,m<n—1,
)\k“l‘/\m:)\n
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Corollary (Cao-H. 2018)

Given m € N, define W = (Ly(t)™)xs0. Suppose (\;)22, is a strictly
increasing, divergent sequence of positive numbers such that the set
{An : n € N} preserves the addition. If

F(£) X3 Galm(t)™ in Gag,
n=1

then any Leray-Hopf weak solution u(t) of the NSE admits the asymptotic
expansion

u(t) A Zgan(t)_)‘" in Gag1—p,s forall p € (0,1).
n=1
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Expansions with trigonometric functions

Example. If
F(£) 23 ¢ [sin(Ly ()] in Ga,
n=1

then

u(t) %37 & [sin(Ly ()] in Gasapo for all p € (0,1),
n=1

Example. If
v > —1 An .
F(t) ~ D én[tan(L,}(1))] in Gao,
n=1
then
u(t) 3" € [tan(Lp (6)]™ in Gas1po for all p e (0,1),
n=1
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Infinite expansions for the derivatives

Consider W = (1))as0 with ¥y = (v/t +1)*. Then

' _ a1l 1o é a1 1 ' 1
A= A T ey

—A—k—1

N\>~

o)
k=1

Proposition (Cao-H. 2018)

Assume f(t) ~ S dn(VE+ 1) in Gy . Then

t) 2 Zﬁn(\/?-l- )™ in Gat1-pe for all p € (0,1),

where &1 = A_1¢1’ §n = A_l(an + % ZpEZn >\p§p Zl<k m<n—1, B(fk fm))

+m—>\n
forn>2, with Z,={peNnN[l,n—1]: 3k e N, ), +1+k—)\}
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3. Generalized Forchheimer gas flows in porous

media

m Generalized Forchheimer flows

m Gas flows: mathematical model
m Estimates of the Lebesgue norms
m Maximum estimates

m Gradient estimates
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Darcy’s and Forchheimer's flows

Fluid flows in porous media with velocity v and pressure p:

@ Darcy’s Law:
av=-Vp,

@ Forchheimer's “two term” law
av + Blv|v==Vp,
@ Forchheimer's “three term” law
Av +Blv|v+C|v|?v = —Vp.
@ Forchheimer's “power” law
av+ c"|v|"tv = —Vp,

Here «, 3, a,¢,n, A, B, and C are empirical positive constants.
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Generalized Forchheimer equations

[Aulisa-Bloshanskaya-H.-Ibragimov 2009]: g(|v|)v = —Vp.
Let G(s) = sg(s). Then G(|v|) = |Vp| = |v| = G~(|Vp]|). Hence
_ . Vp -
(ol (17 RN
1 1
(5) g(é.) g(S) g(Gfl(g))7 Sg(S) 5

Class FP(N,a). Let N>0,0=ay< a1 <ap <...<ap,

FP(N,d) = {g(s) = a29s™ + a1s™ + axs? + ... + aNsaN}.

Lemma (Degeneracy)
Gi(3)

- G (3)
ey =& <mrge

G3(3)(777 — 1) < K(&,3)6% < (3)¢* 2.
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Works on Forchheimer flows

Darcy-Dupuit: 1865
Forchheimer: 1901
Other nonlinear models: 1940s—1960s

Incompressible fluids: Payne, Straughan and collaborators since
1990's, Celebi-Kalantarov-Ugurlu since 2005 (Brinkman-Forchheimer)

@ Derivation of non-Darcy, non-Forchheimer flows: Marusic-Paloka and
Mikelic 2009 (homogenization for Navier—Stokes equations), Balhoff
et. al. 2009 (computational)
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Works on generalized Forchheimer flows

@ 1990's Numerical study

o [2-theory: Aulisa-Bloshanskaya-H.-lbragimov (2009), H.-Ibragimov:
Dirichlet B.C. (2011), H.-Ibragimov Flux B.C. (2012),
Aulisa-Bloshanskaya-Ibragimov total flux, productivity index (2011,
2012).

L“-theory: H.-Ibragimov-Kieu-Sobol (2015)

L[>, WLP-theory: H.-Kieu-Phan (2014).

Wt>°_theory: interior H.-Kieu (2017), global H.-Kieu (2018-in press).
Heterogeneous porous media: Celik-H.(2016, 2017).

Isentropic gases: Celik-H.-Kieu (2018a, 2018b).

Mixed pre-Darcy, Darcy, Forchheimer flows: Celik-H.-Ibragimov-Kieu
(2017)

Two-phase flows: H.-Ibragimov-Kieu (2013, 2014)
e Numericals: Kieu (2016, 2017, 2018) Ibragimov-Kieu (2016)
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Gas flows: mathematical model [Celik-H.-Kieu 2018]

Based on dimensional analysis by Muskat and Ward, we consider

N
Z aip®|v|®v = -Vp+ pg.
i=0

Multiplying both sides by p, we obtain
g(lpv))pv = —pVp + 8.
Solving for pv gives
pv = —K(|pVp — p’€|)(pVp — p°g),
where the function K : Rt — R is defined for ¢ > 0 by

1

K(f) = m7

with s(£) = s being the unique non-negative solution of sg(s) = ¢&.
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Doubly nonlinear parabolic equations

Conservation of mass:
¢pt +div(pv) = F,

where the porosity ¢ € (0,1), F is the source term. Then
opr = div(K(|pVp — p*€)(pVp — p°8)) + F.
Isentropic gas flows. In this case
p=cp’ for some constants ¢,y > 0.

Here, ~ is the specific heat ratio. Note that pVp = V(cyp"+1/(y + 1)).
a+l
Let (pseudo-pressure) u = S22 — 4 7 , we have
(P p ) T

pt (1) =V - (K(|Vu — ci’8))(Vu — cu'g)) + F,

1
WhereAzﬁe(O,l), ¢=2\ and c:(L”Ll).

<y
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Ideal gases. The equation of state is

p =cp for some constant ¢ > 0.

Same equation with 7 =1, A = 1/2, the pseudo-pressure u ~ p?.

Slightly compressible fluids. The equation of state is
2;35 = % = const. > 0.
Then pVp = kVp. Same equation with
A=1, u==kp, £=2 and c=1/kK°
Boundary condition. Volumetric flux condition
v-U =1 on JU.
This gives pv - 7 = 1p, hence,

— K(|Vu — cu’g|)(Vu — cu'g) - 7 = My,
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General formulation and the initial boundary value problem

8(;:) =V (K(|Vu+ Z(u)[)(Vu+ Z(u))) + f(x,t,u) on U x (0,00)
u(x, 0) = uo(x) on U,
K(IVu + Z(a) )(Vu+ Z(u) - 7 = Blx, t,u) on I x (0, 00),

where u(x,t) >0

Assumption (Al). Assume Z(u) : [0,00) — R",
B(x,t,u) : T x[0,00) x [0,00) — R, and
f(x,t,u): Ux[0,00) x [0,00) — R satisfy

|Z(u)| < dou'?,

B(Xv £, u) < 301(X7 t) + 902(Xa t)u637
f(x,t,u) < fi(x,t) + fa(x, t)uﬁf
with constants dy, ¢z > 0, £¢,fg > 0, and functions @1, @5, f1,f» > 0.
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Trace and Sobolev inequalities

Lemma

Assumel>a>0>0, a>2—6, and |u|® € WHL(U). Let r > 0.
(i) For any € > 0 one has

/yuya+'da Se/ ]u]o‘_2+6|Vu\2_adx+c1/ ] dx
i

(2—a)r+a—s a)r a—=o
+ (c2(a+7r)) 1 se T a/ lu|*T 1= S dx.
(ii) If o > M then for any ¢ > 0 one has

/| |o¢+rdx<€/| |a 2+6|VU|2 adX+D1||u||a+r

A= %)
a( n '1—9)

+D25—m llull o
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Estimates of the Lebesgue norms

If « is large and t > 0 then

u(x, £)dx + / Vu(x, £)27u(x, £)°>1dx
U U

< G- (lu(®)7 gy + N2y + T(®)),

where T(t) = [lo1(t)l| {5 (ry + le2( fo ) + 1A (O 5 1) + 1 (O] 5 1)

dt

Theorem (Celik-H.-Kieu 2018)

If [T (1+T(t))dt < G - (1—27) <1+fU UG (x dx) * then

/ ut(x, t)dx <14 2/ uy(x)dx forall te][0,T],
U U

-
/ /|Vu\2_"’uo‘_’\_1dxdt§2”4+1(1+1/1/4)(1+/ ug(x)dx>.
0 U U
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Aiming at maximum estimates

If  is large and T > T > Ty > 0 then

-
sup /uo‘(x, t)dx+/ /|Vu(x, > 2u(x, t)* A Ldxdt
U T, JU

tE[Tz,T]

1 2 7 12
<a(l+T)(1+ ﬁ)o‘ Mo (1l my + 10, 7)

2—a 2—a

where Mo =1+ 1]l o’y + 02l anrry + IAlleson) + 1llscan)

v

L. Hoang (Texas Tech) The Navier-Stokes systems and generalized Forchheimer flows TTU 9.27.2018 41



Parabolic Sobolev embedding

Lemma

Assumel >a>d >0, a >0 is large, and T > 0, then

T 1
(/ /|u|’mdxdt e
< (csa®” / /yuya+5 "dxdt—l—/ /|u|a+5 2|V ul>2dx dt) s

sup / lu(x, t)]adx ,
U

te[0,T]

where cs > 1 is independent of o and T, and

I 1 - 2 — — 1
=20 —d—i, K= K,(Oé)_ﬂl+ 9_8=0 = 1+(a—5)(——}-
o @2 e n « ax @
n(a+d—a)

L. Hoang (Texas Tech) The Navier-Stokes systems and generalized Forchheimer flows



Basic inequality

Lemma

If T > T, > T1 > 0 then

2 2
ellirous(ra,m) < A& (1l myy + 10 ey

2
where A, = c7(1+ T)? (1 + ﬁ) a3 M3.

Fix &.
Set up k = K(a) > &.
Then we modify Moser's iterations.
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Maximum estimates

Theorem (Celik-H.-Kieu 2018)

Let ag be sufficiently large. If T > 0 and o € (0,1) then

1 \»1 "
|’u”L°°(U><(aT7T)) < C(]. =+ ﬁ) (]_ 4 T)W2M03

. maX{HquZan(Ux(O,T))’ ”“”’zkao(Ux(o,T))}-

Theorem (Celik-H.-Kieu 2018)

Let oy be sufficiently large. If T > 0 is small, then for 0 < ¢ < min{1, T},
one has

lull e uxe,my) < Ce™M (1 + T)2 T8 (1 + [|uo(x) | v (1)) M2
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Gradient estimates

Assumption (A2).
(i) The function Z(u) satisfies

|Z'(u)| < dau*?7Y Yu € (0, 0),

for some constant ds > 0.

(i) There are non-negative functions ¢3(x, t) and @a(x, t) defined on
I x (0, 00) such that

‘W‘ < p3(x, t)+pa(x, t)u®  V(x, t,u) € Tx[0,00)x[0, 50).

(iii) We also assume
|B(X’ t, U)| < @1(Xa t)+902(x7 t)ufB \V/(Xa t, U) el x [0700) X [07 OO),

1f(x, t,u)| < fi(x,t) + h(x, )’ Y(x,t,u) € Ux[0,00) x [0, 00).
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Assumption (A3).
207 > A+ 1.

Remark. For our original problem, ¢z = 2, then Assumption (A3)
becomes A > 1/3.

e For slightly compressible fluids, A = 1.

e For ideal gases, A =1/2.

e For isentropic gas flows, all values of the specific heat ratio v found
belong to the interval (1,2), therefore A = 1/(1 + ), satisfies

1/3<A<1)2

Thus Assumption (A3) is naturally met in all cases.
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Let
7(t) = /U H(1Vulx. £) + Z(u(x, 1)) dx.
Zo = /U upTH(x)dx + Z(0) + /r (cpl (x,0)uo(x) + w2(x, O)UgBH(x)) do,

(o) = [ (00t + 30 0) dor,

No(t) = Na(t) + /r (gogs(x, t) + 2 (x, t))d0+ /U (fl’?ﬁ(x, t) + £ (x, t))dx.

Theorem

If T > 0 is small, then for all t € (0, T]
/|vu(x, P-2dx < c{zo+(t+1)(1+/ o (x) o)
U U
t
4 Nl(t)—i-/ NQ(T)O’T}.
0
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4. Flows of mixed regimes

m Unified models

m Estimates for solutions

m Continuous dependence on the boundary data
m Structural stability
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Different regimes

@ Darcy:
v=—kVp.

@ Pre-Darcy: When |v| is small,
lv|™%v = —kVp,a € (0,1).
@ Post-Darcy:

(ap + a1|v|** + ...+ an|v|*™)v = =Vp.
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Unified form [Celik-H.-Ibragimov-Kieu 2017]

R U A

where g(s) > 0 on (0,00) and lims\ g sg(s) = 0.

Solve for v. Taking the modulus both sides, we have G(|v|) = |Vp|, where

o i

We assume

@ G(s) is strictly increasing on [0, 00),

e G(s) » 0o as s — oo, and

@ the function 1/g(s) on (0,00) can be extended to a continuous

function kg(s) on [0, 00).
Then
v =—K([Vp)Vp,

where K (&) = kg(G71(£)) for ¢ > 0.
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Two models of g

Model 1. Function g(s) is piece-wise defined:

- def —a
g(s) = 8(s) = as “L(g.¢)(s) + 21, 5,1(5) + &8F(5)1(s,00)(5) for s >0,
Continuity condition:
as; ¥ = o = gr(s).
def

K(&) = K(&) == M7 15 2))(€) + Maliz, 2,)(€) + Kr(€)1(z,,00)(€)-
Model 2. Function g(s) is smooth on (0, c0):

g(s)=gls )—fa 1S “+ag+ars™ +---+ays®N fors>0, (4.1)
where N > 1, a € (0,1), apy > 0,

a_i,ay>0anda; >0 Vi=0,1,...,N—1.

def 5(§)a
KO = K @+ ms @ + -+ ans(@r
with G(s(€)) = ¢
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Two direct models of K

v =—K(|Vp|)Vp.
Note: K (&) behaves like 51 for small £, and like (1 + ¢)~%2 for large &,

o (0% o a N
h=1"g =51
Model 3. 5
K(E) = K(¢) < 2

(14 bEP)(1 + c&P2)’
Model 4. More precisely, K(¢) is close to M1&5 when ¢ — 0, and to
Ke (&) when & — co. Then we choose

. k&b
KO = Kul©) L Ke(O) T

where k = M; /Kg(0) > 0.
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Initial Boundary Value Problem

Let K(£) be one of the functions K(€), Ki(€), K(&), Ku(€).
Slightly compressible fluids (with simplification.)
After scaling the time variable (to simplify ¢), we obtain the IBVP:

pe = V- (K(Vp)Vp) in Ux (0,00),
p(x,0) = po(x), in U
p = ¥(x,t), on 9U x (0, 00).

Lemma (Degeneracy)

Then there exist dy, d3 > 0 such that

da&P d3¢™

arepn < KOS grgmm 20
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Energy estimates

Let p = p — VW, where W(x, t) is an extension of 1 from x € AU to x € U.

Theorem (Celik-H.-lbragimov-Kieu 2017)

(i) There exists a positive constant C such that for all t > 0,

2

B < 11RO + C[L + Env(f(1))] 77,

where () = FV](2) <L [PU (D2 + [Wo(8)] 75

(ii) Furthermore,
2
limsup [|p(t)]|> < C(1 + limsup f(t))> 7.
t—00 t—00
(iii) I iMoo V()] = lime_so [[We(t)]| = O, then

Jim [[p()] = 0.
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Gradient Estimates

Theorem (Celik-H.-lbragimov-Kieu 2017)

(i) For all t > 0,
[ 1Vp(x )2 < € (14 1RO + €7 [ [Vp0x,0)2 o
U U
2 b
T [Env(F(£))] 7% + / e HED VW7 Par ).
0
(i) limsup;_,o, [, IVp(x, t)[>~P2dx < C(1 4 limsup, ., Gi(t)),
2
where Gi(t) = Gi[V](t) 2L £(£)7 % + || VW(t)|.

(iii) I limoo V(1) = limesoo [[We(t)|| = limesoo [[VWe(t)|| = O then

im / Vp(x, £) 2 %dx = 0.
U

t—o0
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Improvements for large t

Theorem (Celik-H.-lbragimov-Kieu 2017)
(i) If t > 1 then

[ 1Vp(x 2 2 < C(L+IBOIPHEMNT=+ [ [V0:(r)|Pdt
U t—1

(ii) One has

lim sup/ |Vp(x, t)|>P2dx
U

t—o00

t—00

2 t
< c(1 +limsup F(£)F% + Iimsup/ ||th(7)”2d7).
t—o0 t—1

(iii) Moreover, lim¢_,oo [, |Vp(x, t)]*P2dx = 0 provided
limesoo [|[ VU (2)]| = limessoo [We(t)]| = limesoo [5 4 [VWe(7)]|2dT = 0.

y
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Continuous dependence on the boundary data

— A

e We consider K(§) = K(&), Ki(€), K(&), Km(€).

e For i =1,2, let pi(x,t) be a solution with boundary data ;(x, t), with
extensions W;(x, t). Let p; = p; — V; .

e Denote ® =V; — Vo and P=p; — o = p1 — po — .

@ Set Yo = 1+ Xy (1RO + IVpi(O)1%2, ).

I(e) = Vo + 3 [Env(FIWi](1))] =7

i=1,2
eI V) P o< e <,
S s VW ()| PdT ift>1.

o et
D(t) = [|®e(t)]| + V() 25, + V()53

and D = limsup,_, ., D(t).
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e For asymptotic estimates, we use

(Z lim sup £[W;](t ))2 &

i=1,2 t—00

t
K= A2—|- E I|msup/ HVWi,t(T)szT-
t—1

i=1.2 t—00

Theorem (Celik-H.-lbragimov-Kieu 2017)

Fort >0,

2

PO < IPOI? + c{Env [Fy 5+ p (o) 5.

If K < oo then

- B1t8:
limsup || P(t)|2 < c{(1 +K)® B;+2D}2+31
t—o00
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Structural stability

e Consider K(§) = K;(&, @) and study the dependence of the solutions
on the coefficient vector a.

e Let N > 1 and the exponent vector & = (—«, 0, a1, ..., ay) be fixed.

@ Denote the set of admissible 3

S={3=(a-1,40,...,an) : a-1,an > 0, a9, a1,...,any_1 > 0}.

Lemma (Perturbed Monotonicity)

For any coefficient vectors 31, 3?) € S, and any y,y’ € R”, one has

dely — y'[**P
K (1v'1. 30 — K =(2) (v = v) > 6
( 1(ly’l, 3y 1(lyl, @ )Y) V' -y)= (L+ [y + [y')PtPe

— 7K (|ly| Vv |y, 38 A ZD) (ly| v Iy]) 130 = 3@ |y — |-

v
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[ IVV(r)|2dr  if0<t<l,

V(e = Yo i [Env(F(DI=7 + { JEL V() Pdr e 1,

t—o0 t—o0

1 t
A= limsup F()7% and K:A2+Iimsup/ VW (7)|Pdr.
t—1

Theorem (Celik-H.-lbragimov-Kieu 2017)

(i) For t > 0, one has
/ |P(x, t)]?dx < / IP(x, 0)2dx + C[Env(V(£))] =7 |31 — 5|75 .
u u
(il) If K < oo then

imsup [ [P, )20k < €1+ k)7 30 — 307
U

t—o0
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