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1. The Navier-Stokes systems

Foias-Saut asymptotic expansion
Exponentially decaying forces
Power-decaying forces
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The Navier-Stokes equations

• The Navier-Stokes equations (NSE) in R3:
∂u

∂t
+ (u · ∇)u − ν∆u +∇p = f (x , t),

div u = 0,

u(x , 0) = u0(x),

with viscosity ν > 0, velocity field u(x , t) ∈ R3, pressure p(x , t) ∈ R, body
force f (x , t) ∈ R3, initial velocity u0(x).
• Let L > 0 and Ω = (0, L)3. The L-periodic solutions:

u(x + Lej) = u(x) for all x ∈ R3, j = 1, 2, 3,

where {e1, e2, e3} is the canonical basis in R3.
Zero average condition ∫

Ω
u(x)dx = 0,

Throughout L = 2π and ν = 1.
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Functional setting

Let V be the set of R3-valued 2π-periodic trigonometric polynomials which
are divergence-free and satisfy the zero average condition.

H = closure of V in L2(Ω)3 = H0(Ω)3,

V = closure of V in H1(Ω)3, D(A) = closure of V in H2(Ω)3.

Norm on H: |u| = ‖u‖L2(Ω). Norm on V : ‖u‖ = |∇u|.
The Stokes operator:

Au = −∆u for all u ∈ D(A).

The bilinear mapping:

B(u, v) = PL(u · ∇v) for all u, v ∈ D(A).

PL is the Leray projection from L2(Ω) onto H.
WLOG, assume f (t) = PLf (t). The functional form of the NSE:

du(t)

dt
+ Au(t) + B(u(t), u(t)) = f (t), t > 0,

u(0) = u0.
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Case f = 0. Foias-Saut asymptotic expansion

Foias-Saut (1987) for a solution u(t):

u(t) ∼
∞∑
n=1

qj(t)e−jt ,

where qj(t) is a V-valued polynomial in t. This means that for any N ∈ N,

m ∈ N, the remainder vN(t) = u(t)−
∑N

j=1 qj(t)e−jt satisfies

‖vN(t)‖Hm(Ω) = O(e−(N+ε)t)

as t →∞, for some ε = εN,m > 0.

Theorem (H.-Martinez 2017)

The Foias-Saut expansion holds in all Gevrey spaces:

‖eσA1/2
vN(t)‖Hm(Ω) = O(e−(N+ε)t),

for any σ > 0, ε ∈ (0, 1).
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Gevrey classes

• Spectrum of A is {|k|2 : k ∈ Z3, k 6= 0}.
• For α ≥ 0, σ ≥ 0, define

AαeσA
1/2

u =
∑
k 6=0

|k|2αû(k)eσ|k|e ik·x, for u =
∑
k6=0

û(k)e ik·x ∈ H.

The domain of AαeσA
1/2

is

Gα,σ = D(AαeσA
1/2

) = {u ∈ H : |u|α,σ
def
== |AαeσA

1/2
u| <∞}.

• Compare the Sobolev and Gevrey norms:

|Aαu| = |(Aαe−σA
1/2

)eσA
1/2

u| ≤
(2α

eσ

)2α
|eσA1/2

u|.

Notation.

Denote for σ ∈ R the space E∞,σ =
⋂
α≥0 Gα,σ =

⋂
m∈N Gm,σ.

Denote by Pα,σ the space of Gα,σ-valued polynomials in case α ∈ R,
and the space of E∞,σ-valued polynomials in case α =∞.
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Definition

Let X be a real vector space.
(a) An X -valued polynomial is a function t ∈ R 7→

∑d
n=1 antn, for some

d ≥ 0, and an’s belonging to X .
(b) In case ‖ · ‖ is a norm on X , a function g(t) from (0,∞) to X is said
to have the asymptotic expansion

g(t) ∼
∞∑
n=1

gn(t)e−nt in X ,

where gn(t)’s are X -valued polynomials, if for all N ≥ 1, there exists
εN > 0 such that

∥∥∥g(t)−
N∑

n=1

gn(t)e−nt
∥∥∥ = O(e−(N+εN)t) as t →∞.

• We will say that an asymptotic expansion holds in E∞,σ if it holds in
Gα,σ for all α ≥ 0.
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Exponentially decaying forces

Assumptions.

(A1) The function f (t) is continuous from [0,∞) to H.

(A2) There are a number σ0 ≥ 0, E∞,σ0-valued polynomials fn(t) for all
n ≥ 1 such that

f (t) ∼
∞∑
n=1

fn(t)e−nt in E∞,σ0 .

Consequently,

f (t)→ 0 as t →∞, in Gα,σ0 for all α > 0.

L. Hoang (Texas Tech) Asymptotic Expansions for Solutions of Navier-Stokes Equations OU 10.6.2018 9



Theorem (H.-Martinez 2018)

Let u(t) be a Leray-Hopf weak solution. Then u(t) has the asymptotic
expansion

u(t) ∼
∞∑
n=1

qn(t)e−nt in E∞,σ0 .

Moreover, the mappings

un(t)
def
== qn(t)e−nt and Fn(t)

def
== fn(t)e−nt ,

satisfy the following ordinary differential equations in the space E∞,σ0

d

dt
un(t) + Aun(t) +

∑
k,m≥1

k+m=n

B(uk(t), um(t)) = Fn(t), t ∈ R, (?)

for all n ≥ 1.
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Finite asymptotic approximation

Theorem (H.-Martinez 2018)

Suppose there exist an integer N∗ ≥ 1, real numbers σ0 ≥ 0,
µ∗ ≥ α∗ ≥ N∗/2, and, for any 1 ≤ n ≤ N∗, numbers δn ∈ (0, 1) and
polynomials fn ∈ Pµn,σ0 , such that

∣∣∣f (t)−
N∑

n=1

fn(t)e−nt
∣∣∣
αN ,σ0

= O(e−(N+δN)t) as t →∞,

for 1 ≤ N ≤ N∗, where

µn = µ∗ − (n − 1)/2, αn = α∗ − (n − 1)/2.
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Theorem (continued)

Let u(t) be a Leray-Hopf weak .
(i) Then there exist polynomials qn ∈ Pµn+1,σ0 , for 1 ≤ n ≤ N∗, such that
one has for 1 ≤ N ≤ N∗ that

∣∣∣u(t)−
N∑

n=1

qn(t)e−nt
∣∣∣
αN ,σ0

= O(e−(N+ε)t) as t →∞, ∀ε ∈ (0, δ∗N),

where δ∗N = min{δ1, δ2, . . . , δN}.
Moreover, the ODEs

d

dt
un(t) + Aun(t) +

∑
k,m≥1

k+m=n

B(uk(t), um(t)) = Fn(t), t ∈ R, (?)

hold in the corresponding space Gµn,σ0 for 1 ≤ n ≤ N∗.
(ii) In particular, if all fn(t)’s belong to V, resp., E∞,σ0 , then so do all
qn(t)’s, and the ODEs (?) hold in V, resp., E∞,σ0 .

L. Hoang (Texas Tech) Asymptotic Expansions for Solutions of Navier-Stokes Equations OU 10.6.2018 12



Power-decaying forces

Power asymptotic expansion in (X , ‖ · ‖): g(t)
pow.∼

∑∞
n=1 gnt−n means

‖g(t)−
N∑

n=1

gnt−n‖ = O(t−(N+ε)), for some ε > 0, t →∞.

Theorem (Cao-H. 2017 )

Assume that f (t)
pow.∼

∑∞
n=1 φnt−n in Gα,σ0 , for some σ0 ≥ 0 and

α ≥ 1/2, sequence {φn}∞n=1 in Gα,σ0 . Then any Leray-Hopf weak solution
u(t) has the asymptotic expansion

u(t)
pow.∼

∞∑
n=1

ξnt−n in Gα,σ0 ,

where ξ1 = A−1φ1,
ξn = (n − 1)A−1ξn−1 −

∑
k,m≥1,k+m=n A−1B(ξk , ξm) + A−1φn for n ≥ 2.
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2. Expansions in a general system of decaying
functions

Continuum systems
Asymptotic expansions for NSE
Finite asymptotic approximations
Applications
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Expansions in a general system of decaying functions

Definition (Very/Too general)

Let (ψn)∞n=1 be a sequence of non-negative functions defined on [T∗,∞)
for some T∗ ∈ R that satisfies the following two conditions:

1 For each n ∈ N, limt→∞ ψn(t) = 0.

2 For n > m, ψn(t) = o(ψm(t)).

Let (X , ‖ · ‖) be a normed space, and g be a function from [T∗,∞) to X .

g(t) ∼
∞∑
n=1

ξnψn(t) in X ,

where ξn ∈ X for all n ∈ N, if, for any N ∈ N,

‖g(t)−
N∑

n=1

ξnψn(t)‖ = o(ψN(t)).
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A continuum system

Definition

Let Ψ = (ψλ)λ>0 be a system of functions that satisfies the following two
conditions.

(a) There exists T∗ ≥ 0 such that, for each λ > 0, ψλ is a positive
function defined on [T∗,∞), and

lim
t→∞

ψλ(t) = 0.

(b) For any λ > µ, there exists η > 0 such that

ψλ(t) = O(ψµ(t)ψη(t)).
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Asymptotic expansions in a continuum system

Definition

Let (X , ‖ · ‖) be a real normed space, and g : (0,∞)→ X .

g(t)
Ψ∼
∞∑
n=1

ξnψλn(t) in X ,

where ξn ∈ X for all n ∈ N, and (λn)∞n=1 is a strictly increasing, divergent
sequence of positive numbers, if it holds, for any N ≥ 1, that there exists
ε > 0 such that ∥∥∥g(t)−

N∑
n=1

ξnψλn(t)
∥∥∥ = O(ψλN (t)ψε(t)).
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Condition

The system Ψ = (ψλ)λ>0 satisfies (a) and (b) and the following.

1 For any λ, µ > 0, there exist γ > max{λ, µ} and a nonzero constant
dλ,µ such that

ψλψµ = dλ,µψγ .

Notation. γ = λ ∧ µ.

2 For each λ > 0, the function ψλ is continuous and differentiable on
[T∗,∞), and its derivative ψ′λ has an expansion

ψ′λ(t)
Ψ∼

Nλ∑
k=1

cλ,kψλ∨(k)(t) in R,

where Nλ ∈ N ∪ {0,∞}, all cλ,k are constants, all λ∨(k) > λ, and,
for each λ > 0, λ∨(k)’s are strictly increasing in k.
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Condition

The system Ψ = (ψλ)λ>0 satisfies (a), (b) and the following.

1 For each λ > 0, the function ψλ is decreasing (in t).

2 If λ, α > 0 then
e−αt = o(ψλ(t)).

3 For any number a ∈ (0, 1),

ψλ(at) = O(ψλ(t)).

Consequently, for any T ∈ R,

ψλ(t + T ) = O(ψλ(t)).

Assumption

The function f belongs to L∞loc([0,∞),H).
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Asymptotic expansions for NSE

Assumption

(1) Suppose there exist real numbers σ ≥ 0, α ≥ 1/2, a strictly increasing,
divergent sequence of positive numbers (γn)∞n=1 and a sequence (φ̃n)∞n=1 in
Gα,σ such that

f (t)
Ψ∼
∞∑
n=1

φ̃nψγn(t) in Gα,σ.

(2) There exists a set S∗ that contains {γn : n ∈ N}, preserves the
operations ∨ and ∧, and can be ordered so that

S∗ = {λn : n ∈ N}, where λn’s are strictly increasing to infinity.

We rewrite

f (t)
Ψ∼
∞∑
n=1

φnψλn(t) in Gα,σ as t →∞,
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Theorem (Cao-H. 2018)

Any Leray-Hopf weak solution u(t) has the asymptotic expansion

u(t)
Ψ∼
∞∑
n=1

ξnψλn(t) in Gα+1−ρ,σ for all ρ ∈ (0, 1),

where ξn’s are defined recursively by

ξ1 = A−1φ1,

ξn = A−1
(
φn − χn −

∑
1≤k,m≤n−1,

λk∧λm=λn

dλk ,λmB(ξk , ξm)
)

for n ≥ 2,

where

χn =


∑

(p,k)∈[1,n−1]×N:

λ∨p (k)=λn

cλp ,kξp, if ∃p ∈ [1, n − 1], k ∈ N : λ∨p (k) = λn,

0, otherwise.
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Parts of proof (1). Linearized NSE

Theorem (Cao-H. 2018)

Given α, σ ≥ 0, let ξ ∈ Gα,σ, and f be a function from (0,∞) to Gα,σ that
satisfies

|f (t)|α,σ ≤ MF (t) a.e. in (0,∞),

where F is a continuous, decreasing function from [0,∞) to [0,∞).
Let w0 ∈ Gα,σ. Suppose w ∈ C ([0,∞),Hw) ∩ L1

loc([0,∞),V ), with
w ′ ∈ L1

loc([0,∞),V ′), is a weak solution of

w ′ = −Aw + ξ + f in V ′ on (0,∞), w(0) = w0,

Then the following statements hold true.

1 w(t) ∈ Gα+1−ε,σ for all ε ∈ (0, 1) and t > 0.
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Theorem (continued)

2 For any numbers a, a0 ∈ (0, 1) with a + a0 < 1 and any ε ∈ (0, 1),
there exists a positive constant C depending on a0, a, ε, M, F (0),
|ξ|α,σ and |w0|α,σ such that

|w(t)− A−1ξ|α+1−ε,σ ≤ C
(
e−a0t + F (at)

)
∀t ≥ 1.

3 Assume, in addition, that

There exist k0 > 0 and D1 > 0 such that

e−k0t ≤ D1F (t) ∀t ≥ 0, and (F1)

For any a ∈ (0, 1), there exists D2 = D2,a > 0 such that

F (at) ≤ D2F (t) ∀t ≥ 0. (F2)

Then there exists C > 0 such that

|w(t)− A−1ξ|α+1−ε,σ ≤ CF (t) ∀t ≥ 1.
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Parts of proof (2). Small data Gevrey results

Theorem (Cao-H. 2018)

Let F be a continuous, decreasing, non-negative function on [0,∞). Given
α ≥ 1/2 and numbers θ0, θ ∈ (0, 1) such that θ0 + θ < 1. Then there exist
positive numbers ck = ck(α, θ0, θ,F ), for k = 0, 1, 2, 3, such that the
following holds true. If

|Aαu0| ≤ c0,

|f (t)|α−1/2,σ ≤ c1F (t) a.e. in (0,∞) for some σ ≥ 0,

then there exists a unique regular solution u(t), which also belongs to
C ([0,∞),D(Aα)) and satisfies, for all t ≥ 8σ(1− θ)/(1− θ − θ0),

|u(t)|α,σ ≤ c2(e−2θ0t + F 2(θt))1/2,∫ t+1

t
|u(τ)|2α+1/2,σdτ ≤ c2

3 (e−2θ0t + F 2(θt)).
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Parts of proof (3). Estimates for Leray-Hopf weak solutions

Theorem (Cao-H. 2018)

Let F be a continuous, decreasing, non-negative function such that

lim
t→∞

F (t) = 0,

|f (t)|α,σ = O(F (t)), for some σ ≥ 0, α ≥ 1/2.

Let u(t) be a Leray-Hopf weak solution. Then there exists T̂ > 0 such
that u(t) is a regular solution on [T̂ ,∞), and for any ε, λ ∈ (0, 1), and
a0, a, θ0, θ ∈ (0, 1) with a0 + a < 1, θ0 + θ < 1,

|u(T̂ + t)|α+1−ε,σ ≤ C (e−a0t + e−2θ0at + F 2λ(θat) + F (at)) ∀t ≥ 0.

If, in addition, F satisfies (F1) and (F2), then

|u(T̂ + t)|α+1−ε,σ ≤ CF (t) ∀t ≥ 0.
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Finite asymptotic approximations

Assumption

Suppose there exist numbers σ ≥ 0, α ≥ 1/2, an integer N0 ≥ 1, strictly
increasing, positive numbers γn and functions φ̃n ∈ Gα,σ for 1 ≤ n ≤ N0

such that∣∣∣f (t)−
N0∑
n=1

φ̃nψγn(t)
∣∣∣
α,σ

= O(ψλ(t)) for some λ > γN0 .

Assume further that there exists a set S∞ that contains {γn : 1 ≤ n ≤ N0}
and preserves the operations ∨ and ∧, so that the set S∗

def
== S∞ ∩ [γ1, γN0 ]

is finite.
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We rewrite S∗ = {λn : 1 ≤ n ≤ N∗} for some integer N∗ ≥ N0, where λn’s
are strictly increasing. Note that λN∗ = γN0 . Then

∣∣∣f (t)−
N∗∑
n=1

φnψλn(t)
∣∣∣
α,σ

= O(ψλ(t)) for some λ > λN∗ .

where φn ∈ Gα,σ for all 1 ≤ n ≤ N∗.

Theorem (Cao-H. 2018)

For any Leray-Hopf weak solution u(t), it holds that

∣∣∣u(t)−
N∗∑
n=1

ξnψλn(t)
∣∣∣
α,σ

= O(ψλ(t)) for some λ > λN∗ .
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Application: iterated logarithmic decaying functions

For k ,m ∈ N, let

Lk(t) = ln(ln(· · · ln(t)))︸ ︷︷ ︸
k-times

and Lm(t) = (L1(t), L2(t), · · · , Lm(t)).

• Let Q0 : Rm → R be a polynomial in m variables with positive degree
and positive leading coefficient:

Q0(z) =
∑
α

cαzα for z ∈ Rm.

We use the lexicographic order for the multi-indices.
• Let Q1 be a polynomial in one variable of positive degree with positive
leading coefficient.
Given a number β > 0, we define

ω(t) = (Q0 ◦ Lm ◦ Q1)(tβ)) with t ∈ R.
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Let ψλ(t) = ω(t)−λ and Ψ = (ψλ(t))λ>0. Note ψ′λ
Ψ∼ 0.

Theorem (Cao-H. 2018)

Assume

f (t)
Ψ∼
∞∑
n=1

φnω(t)−λn in Gα,σ,

for some σ ≥ 0, α ≥ 1/2. Then any Leray-Hopf weak solution u(t) of the
NSE has the asymptotic expansion

u(t)
Ψ∼
∞∑
n=1

ξnω(t)−λn in Gα+1−ρ,σ for all ρ ∈ (0, 1),

where

ξ1 = A−1φ1, ξn = A−1
(
φn −

∑
1≤k,m≤n−1,

λk+λm=λn

B(ξk , ξm)
)

for n ≥ 2.
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Corollary (Cao-H. 2018)

Given m ∈ N, define Ψ = (Lm(t)−λ)λ>0. Suppose (λn)∞n=1 is a strictly
increasing, divergent sequence of positive numbers such that the set
{λn : n ∈ N} preserves the addition. If

f (t)
Ψ∼
∞∑
n=1

φnLm(t)−λn in Gα,σ,

then any Leray-Hopf weak solution u(t) of the NSE admits the asymptotic
expansion

u(t)
Ψ∼
∞∑
n=1

ξnLm(t)−λn in Gα+1−ρ,σ for all ρ ∈ (0, 1).
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Expansions with trigonometric functions

Example. If

f (t)
Ψ∼
∞∑
n=1

φn
[
sin(L−1

m (t))
]λn

in Gα,σ,

then

u(t)
Ψ∼
∞∑
n=1

ξn
[
sin(L−1

m (t))
]λn

in Gα+1−ρ,σ for all ρ ∈ (0, 1).

Example. If

f (t)
Ψ∼
∞∑
n=1

φn
[
tan(L−1

m (t))
]λn

in Gα,σ,

then

u(t)
Ψ∼
∞∑
n=1

ξn
[
tan(L−1

m (t))
]λn

in Gα+1−ρ,σ for all ρ ∈ (0, 1).
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Infinite expansions for the derivatives

Consider Ψ = (ψλ)λ>0 with ψλ = (
√

t + 1)−λ. Then

ψ′λ(t) = −λ(
√

t + 1)−λ−1 1

2

1√
t

= −λ
2

(
√

t + 1)−λ−1 1√
t + 1

· 1

1− 1√
t+1

=
∞∑
k=1

−λ
2

(
√

t + 1)−λ−k−1.

Proposition (Cao-H. 2018)

Assume f (t)
Ψ∼
∑∞

n=1 φn(
√

t + 1)−λn in Gα,σ. Then

u(t)
Ψ∼
∞∑
n=1

ξn(
√

t + 1)−λn in Gα+1−ρ,σ for all ρ ∈ (0, 1),

where ξ1 = A−1φ1, ξn = A−1(φn + 1
2

∑
p∈Zn

λpξp −
∑

1≤k,m≤n−1,

λk+λm=λn
B(ξk , ξm))

for n ≥ 2, with Zn = {p ∈ N ∩ [1, n − 1] : ∃k ∈ N, λp + 1 + k = λn}.
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THANK YOU!
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