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m Foias-Saut asymptotic expansion
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m Power-decaying forces

L. Hoang (Texas Tech) Asymptotic Expansions for Solutions of Navier-Stokes Equations OU 10.6.2018



The Navier-Stokes equations

e The Navier-Stokes equations (NSE) in R3:

%+(U-V)u—yAu+Vp: f(x,t),
div u =0,

u(x,0) = u%(x),

with viscosity v > 0, velocity field u(x, t) € R3, pressure p(x, t) € R, body
force f(x, t) € R3, initial velocity u%(x).
e Let L >0and Q= (0,L)3. The L-periodic solutions:

u(x + Lej) = u(x) for all x € R3,j = 1,2, 3,

where {er, e, €3} is the canonical basis in R3.
Zero average condition

Throughout L =27 and v = 1.
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Functional setting

Let V be the set of R3-valued 27-periodic trigonometric polynomials which
are divergence-free and satisfy the zero average condition.

H = closure of V in L?(Q)* = H(Q)3,

V = closure of V in H(Q)3, D(A) = closure of V in H*(Q)3.
Norm on H: |u| = [|u]|;2(q)- Norm on V: [lu| = [Vu].
The Stokes operator:

Au = —Au for all u € D(A).
The bilinear mapping:
B(u,v) =P (u-Vv) for all u,v € D(A).
PP, is the Leray projection from L?(2) onto H.
WLOG, assume f(t) = P, f(t). The functional form of the NSE:
du(t)

gt + Au(t) + B(u(t), u(t)) = f(t), t >0,
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Case f = 0. Foias-Saut asymptotic expansion

Foias-Saut (1987) for a solution u(t):
u(t) ~ > gi(t)e ™,
n=1

where gj(t) is a V-valued polynomial in t. This means that for any N € N,

m € N, the remainder vy(t) = u(t) — Zszl qj(t)e ™t satisfies

v ()| m(a) = O(e~ (Vo))

as t — 0o, for some € = ey, > 0.

Theorem (H.-Martinez 2017)

The Foias-Saut expansion holds in all Gevrey spaces:
oAl/2 -0 —(N—+e)t
€7 vn(t)[|ym(@) = O(e ),

for any o >0, € € (0,1).
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Gevrey classes

e Spectrum of A'is {|k|?>: k € Z3, k # 0}.
e For « > 0, 0 > 0, define

A e Z k[2a(k)e Kl ek for u = Z o(k)e*™ € H.
k£0 k£0

The domain of Ao‘e"Al/2 is
Gy = D(A**) = {u € H : |ufao 2= |A%" 4| < o0}

e Compare the Sobolev and Gevrey norms:

20\ 2
|A%u| = |(A°‘e_”A1/2)e"A1/2u| < (ﬁ) a|eUAl/2u].
e

Notation.
o Denote for o € R the space E>? =[50 Ga,0 = e G

@ Denote by P the space of G, ,-valued polynomials in case o € R,
and the space of E°%-valued polynomials in case a = oo.
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Let X be a real vector space.

(a) An X-valued polynomial is a function t € R — ZZZI ant”, for some
d >0, and a,’s belonging to X.

(b) In case || - || is a norm on X, a function g(t) from (0, 00) to X is said
to have the asymptotic expansion

g(t) ~ Zg,,(t)e*"t in X,
n=1

where gn(t)'s are X-valued polynomials, if for all N > 1, there exists
en > 0 such that

= O(e"(N+em)t) a5 t — 0.

|ete) - > alt)e
n=1

e We will say that an asymptotic expansion holds in E°? if it holds in
Ga,o for all o > 0.
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Exponentially decaying forces

Assumptions.
(A1) The function f(t) is continuous from [0, c0) to H.

(A2) There are a number og > 0, E°?°-valued polynomials 7,(t) for all
n > 1 such that

f(t) ~ Z fo(t)e " in Eo00,

n=1

Consequently,

f(t) = 0ast— oo, in Gy forall @ > 0.
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Theorem (H.-Martinez 2018)

Let u(t) be a Leray-Hopf weak solution. Then u(t) has the asymptotic
expansion

oo
u(t) ~ Z gn(t)e™ " in E°>00,
n=1

Moreover, the mappings

un(t) 2L go(t)e™™  and  Fo(t) 2L £,(t)e ",

satisfy the following ordinary differential equations in the space E°°°°

 un() + Aun(t) + 3 Bl unlt) = Flt), tER,
k-il’;"nzzln

for all n > 1.

(%)
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Finite asymptotic approximation

Theorem (H.-Martinez 2018)

Suppose there exist an integer N, > 1, real numbers og > 0,
ps > i > N, /2, and, for any 1 < n < N,, numbers 6, € (0,1) and
polynomials f, € P#n%  such that

= O(e=(NHMt) a5t — o0,

aN,00

N
‘f(t) =3 f(t)e ™
n=1

for1 < N < N, where

n =t —(n—1)/2, ap=a.—(n—1)/2.
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Theorem (continued)

Let u(t) be a Leray-Hopf weak .
(1) Then there exist polynomials q, € PHr+t190, for 1 < n < N, such that
one has for1 < N < N, that

N
‘u(t) — 3 ga(t)e
n=1

where 05, = min{d1,d2,...,dn}.
Moreover, the ODEs

= 0(e=N*9)t)  ast — 00, Ve € (0,5%),

aN,00

%unuﬁun(t + 0 Bluk(t),um(t)) = Falt), teR, (x)

k,m>1

k+m:n
hold in the corresponding space G, 5, for 1 < n < Ni,.
(ii) In particular, if all f,(t)'s belong to V), resp., E°?°, then so do all
qn(t)’s, and the ODEs (x) hold in V), resp., E®7°.

L. Hoang (Texas Tech) Asymptotic Expansions for Solutions of Navier-Stokes Equations OU 10.6.2018



Power-decaying forces

Power asymptotic expansion in (X, || - ||): g(t PR S g, t™" means
ymp p g n=18
llg(t) Zgn =0t (N+€)), for somee >0, t— oo.

Theorem (Cao-H. 2017 )

Assume that f(t) "X 32 ¢t~ in Gy.oy, for some ag > 0 and

a > 1/2, sequence {¢p}°° 1 in Go . Then any Leray-Hopf weak solution
u(t) has the asymptotic expansion

u(t) PR ant_n in Ga,ao’
n=1

where & = A_1<;31,
§n=(n—1)A"¢ 1 — Zk,le,k+m:n AT B(ks Em) + A" b for n > 2.

v

L. Hoang (Texas Tech) Asymptotic Expansions for Solutions of Navier-Stokes Equations OU 10.6.2018 13



2. Expansions in a general system of decaying

functions

m Continuum systems

m Asymptotic expansions for NSE
m Finite asymptotic approximations
m Applications
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Expansions in a general system of decaying functions

Definition (Very/Too general)

Let (¢5)52; be a sequence of non-negative functions defined on [T, c0)
for some T, € R that satisfies the following two conditions:

© For each n € N, lim;_,o0 ¥p(t) = 0.
© For n > m, Pn(t) = o(Ym(t)).

Let (X,] - ||) be a normed space, and g be a function from [T, o0) to X.

t) ~ Z§n¢n(t) in X,
n=1

where £, € X for all n € N, if, for any N € N,

Ig(t) anwn )| = o(¥n(t)).
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A continuum system

Let W = (1x)a>0 be a system of functions that satisfies the following two
conditions.

(a) There exists T, > 0 such that, for each A > 0, 1, is a positive
function defined on [T, o), and

lim 1#)\(1‘) =0.

t—00

(b) For any A > p, there exists > 0 such that

a(t) = O(Pu(t)iy(1))-
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Asymptotic expansions in a continuum system

Let (X, ] - ||) be a real normed space, and g : (0,00) — X.

g(t) LS &by (1) in X,
n=1

where £, € X for all n € N, and (\,)7; is a strictly increasing, divergent
sequence of positive numbers, if it holds, for any N > 1, that there exists
€ > 0 such that

EOE isnwn(t)H = O(an()¥=(1)).
n=1
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The system W = (1) )0 satisfies (a) and (b) and the following.

@ For any A\, u > 0, there exist v > max{\, u} and a nonzero constant
d), . such that

%% - d)\,,uww-
Notation. v = A A p.

@ For each A > 0, the function 1y is continuous and differentiable on
[T.,00), and its derivative ¥\ has an expansion

Ny
Pi(t) X > aakthiv(t) in R,

k=1

where Ny € NU {0, 00}, all ¢y x are constants, all \¥ (k) > X, and,
for each A\ > 0, \V(k)'s are strictly increasing in k.
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Condition

The system W = (1) )0 satisfies (a), (b) and the following.
@ For each A > 0, the function 1y is decreasing (in t).
Q@ If X\, a >0 then
e " = o(yha(t)).

© For any number a € (0,1),

¥a(at) = O(¥a(t)).

Consequently, for any T € R,

YAt + T) = O(¥a(t)).

The function f belongs to L7° ([0, 00), H).

loc
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Asymptotic expansions for NSE

Assumption

(1) Suppose there exist real numbers o > 0, a > 1/2, a strictly increasing,
divergent sequence of positive numbers (7,)72; and a sequence (¢,)32; in
Ga,o such that

F(£) X 3" Gt (t) in G
n=1

(2) There exists a set S, that contains {~, : n € N}, preserves the
operations \/ and A, and can be ordered so that

S. ={\,: n €N}, where \,’s are strictly increasing to infinity.

We rewrite

f(t) ~ > Gntha,(t) in Gog ast— oo,
n=1
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Theorem (Cao-H. 2018)

Any Leray-Hopf weak solution u(t) has the asymptotic expansion

u(t) X " €ntn, (£) in Gas1—po for all p € (0,1),
n=1

where £, 's are defined recursively by

& =A"e,

=A(0n—xn— D dunr.Bltm)) forn>2,
1<k,m<n—1,
A AAm=An

where
> onkée fIpe(ln—1,k eN: XY (k) = A,
_ (p,k)E[1,n—1]xN:
Xn = XY (K)=An

0, otherwise.
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Parts of proof (1). Linearized NSE

Theorem (Cao-H. 2018)

Given oc,0 > 0, let £ € G, », and f be a function from (0, 00) to G, that
satisfies

If(t)|a,c < MF(t) a.e. in(0,00),

where F is a continuous, decreasing function from [0, cc0) to [0, 00).
Let wo € Gu». Suppose w € C([0,00), Hy) N LL ([0, 00), V), with
w' € LL ([0,00), V'), is a weak solution of

W =—Aw+E&+f in V' on (0,00), w(0) = wy,

Then the following statements hold true.
Q w(t) € Got1-eo foralle € (0,1) and t > 0.
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Theorem (continued)

@ For any numbers a, ag € (0,1) with a+ agp < 1 and any € € (0,1),
there exists a positive constant C depending on ag, a, €, M, F(0),
|{]a,c and |wo|a,s such that

Iw(t) — A" |at1-c0 < C(e7™F + F(at)) Vt> 1.

© Assume, in addition, that
o There exist ko > 0 and D; > 0 such that

e ft < D/F(t) Vt>0, and (F1)
e For any a € (0,1), there exists D, = D, , > 0 such that
F(at) < D,F(t) Vt>D0. (F2)
Then there exists C > 0 such that

(w(t) — A7 |g41-c0 < CF(t) V> 1.
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Parts of proof (2). Small data Gevrey results

Theorem (Cao-H. 2018)

Let F be a continuous, decreasing, non-negative function on [0, c0). Given
a > 1/2 and numbers 6y, 6 € (0,1) such that 6+ 6 < 1. Then there exist
positive numbers ¢, = cx(«, 6o, 0, F), for k =0,1,2,3, such that the
following holds true. If

A0 < o,
[f(t)la—1/20 < aF(t) a.e in(0,00) for some o > 0,

then there exists a unique regular solution u(t), which also belongs to
C([0,00), D(A%)) and satisfies, for all t > 8a(1 —6)/(1 — 6 — 6o),

|u(t)lao < cale” + F2(601))'/2,

t+1
/ (P21 0 dr < (e + F2(62)).
t
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Parts of proof (3). Estimates for Leray-Hopf weak solutions

Theorem (Cao-H. 2018)

Let F be a continuous, decreasing, non-negative function such that

lim F(t) =0,

t—o0
|f(t)|a,c = O(F(t)), for some o >0, a >1/2.

Let u(t) be a Leray-Hopf weak solution. Then there exists T > 0 such
that u(t) is a regular solution on [T, o), and for any ¢, \ € (0,1), and
ap, a, by, 0 € (0,1) withag+a<1,60y+6<1,

|u(T + t)|ar1-co < Cle™ @t 4 72003t L F2A(9at) + F(at)) Vt > 0.

If, in addition, F satisfies (F1) and (F2), then

lu(T + t)|ar1-co < CF(t) Vit >0.
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Finite asymptotic approximations

Assumption

Suppose there exist numbers o > 0, a > 1/2, an integer No > 1, strictly
increasing, positive numbers ~y, and functions ¢, € Go,s for 1 < n < Ny
such that

= O(9a(t)) for some X > ;.

)

() - fj&snw(t)\a
n=1

Assume further that there exists a set Soo that contains {v,:1 < n < Ny}

. £
and preserves the operations \/ and A\, so that the set S, det Soo N 71, Y]
is finite.

.
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We rewrite S, = {\, : 1 < n < N,} for some integer N, > Np, where \,'s
are strictly increasing. Note that Ay, = yp,. Then

For any Leray-Hopf weak solution u(t), it holds that

‘u(t) - anw)\n(t)’ao — O@x(t)) for some A > An..

)

n=1

L. Hoang (Texas Tech) Asymptotic Expansions for Solutions of Navier-Stokes Equations OU 10.6.2018



Application: iterated logarithmic decaying functions

For k, m e N, let
Li(t) = In(In(---In()))  and  Lm(t) = (L1(t), La(£), - , Lm(t)).
k-times

e Let @y : R™ — R be a polynomial in m variables with positive degree
and positive leading coefficient:

Qo(z) = Z Coz® for z € R™.

We use the lexicographic order for the multi-indices.

e Let Q1 be a polynomial in one variable of positive degree with positive
leading coefficient.

Given a number 3 > 0, we define

w(t) = (Qo o Lmo Q)(t7)) with t € R.
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Let ¢hx(t) = w(t)™ and W = (¢h5(t))rs0. Note ¥} ~ 0.

Theorem (Cao-H. 2018)

Assume

o
F(t) > Gaw(t) ™ in Gog,
n=1

for some o > 0, « > 1/2. Then any Leray-Hopf weak solution u(t) of the
NSE has the asymptotic expansion

u(t) A Zg,,w(t)_’\" in Gay1—p,o for all p € (0,1),
n=1

where
G = Al &= A—1<¢n -y B(gk,gm)> for n > 2.
1<k,m<n—1,
)\k“l‘/\m:)\n
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Corollary (Cao-H. 2018)

Given m € N, define W = (Ly(t)™)xs0. Suppose (\;)22, is a strictly
increasing, divergent sequence of positive numbers such that the set
{An : n € N} preserves the addition. If

F(£) X3 Galm(t)™ in Gag,
n=1

then any Leray-Hopf weak solution u(t) of the NSE admits the asymptotic
expansion

u(t) A Zgan(t)_)‘" in Gag1—p,s forall p € (0,1).
n=1

L. Hoang (Texas Tech) Asymptotic Expansions for Solutions of Navier-Stokes Equations OU 10.6.2018 30



Expansions with trigonometric functions

Example. If
F(£) 23 ¢ [sin(Ly ()] in Ga,
n=1

then

u(t) %37 & [sin(Ly ()] in Gasapo for all p € (0,1).
n=1

Example. If
v > —1 An .
F(t) ~ Y én[tan(L ()] in Goo,
n=1
then
u(t) 3" € [tan(Lp(6)]™ in Gas1po for all p € (0,1).
n=1
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Infinite expansions for the derivatives

Consider W = (1))as0 with ¥y = (v/t +1)*. Then

' _ a1l 1o é a1 1 ' 1
A= A T ey

—A—k—1

N\>~

o)
k=1

Proposition (Cao-H. 2018)

Assume f(t) ~ S dn(VE+ 1) in Gy . Then

t) 2 Zﬁn(\/?-l- )™ in Gat1-pe for all p € (0,1),

where &1 = A_1¢1’ §n = A_l(an + % ZpEZn >\p§p Zl<k m<n—1, B(fk fm))

+m—>\n
forn>2, with Z,={peNnN[l,n—1]: 3k e N, ), +1+k—)\}
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THANK YOU!
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