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Introduction

Navier-Stokes equations (NSE) in R3 with a potential body force
∂u

∂t
+ (u · ∇)u − ν∆u +∇p = f (x , t),

div u = 0,

u(x , 0) = u0(x),

ν > 0 is the kinematic viscosity,
u = (u1, u2, u3) is the unknown velocity field,
p ∈ R is the unknown pressure,
f (x , t) is the body force,
u0 is the initial velocity.
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Let L > 0 and Ω = (0, L)3. The L-periodic solutions:

u(x + Lej) = u(x) for all x ∈ R3, j = 1, 2, 3,

where {e1, e2, e3} is the canonical basis in R3.
Zero average condition ∫

Ω
u(x)dx = 0,

Throughout L = 2π and ν = 1.
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Functional setting

Let V be the set of R3-valued 2π-periodic trigonometric polynomials which
are divergence-free and satisfy the zero average condition.

H = closure of V in L2(Ω)3 = H0(Ω)3,

V = closure of V in H1(Ω)3, D(A) = closure of V in H2(Ω)3.

Norm on H: |u| = ‖u‖L2(Ω). Norm on V : ‖u‖ = |∇u|.
The Stokes operator:

Au = −∆u for all u ∈ D(A).

The bilinear mapping:

B(u, v) = PL(u · ∇v) for all u, v ∈ D(A).

PL is the Leray projection from L2(Ω) onto H.
Spectrum of A:

σ(A) = {|k |2, 0 6= k ∈ Z3}.
Denote by RNH the eigenspace of A corresponding to N.
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Functional form of NSE

WLOG, assume f (t) = PLf (t).
The functional form of the NSE:

du(t)

dt
+ Au(t) + B(u(t), u(t)) = f (t), t > 0,

u(0) = u0.
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Case of potential force: f = 0

Foias-Saut (1987) proved that the solution u(t) has an asymptotic
expansion:

u(t) ∼
∞∑
n=1

qj(t)e−jt ,

where qj(t) is a V-valued polynomial in t.
This means that for any N ∈ N, m ∈ N, the remainder
vN(t) = u(t)−

∑N
j=1 qj(t)e−jt satisfies

‖vN(t)‖Hm(Ω) = O(e−(N+ε)t)

as t →∞, for some ε = εN,m > 0.
H.-Martinez (2017) proved that the expansion holds in Gevrey spaces:

‖eσA1/2
vN(t)‖Hm(Ω) = O(e−(N+ε)t),

for any σ > 0, ε ∈ (0, 1).
They used Gevrey norm techniques (Foias-Temam 1989) to simplify the
proof.
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Gevrey classes

For α ≥ 0, σ ≥ 0, define

AαeσA
1/2

u =
∑
k 6=0

|k|2αû(k)eσ|k|e ik·x, for u =
∑
k6=0

û(k)e ik·x ∈ H.

The domain of AαeσA
1/2

is

Gα,σ = D(AαeσA
1/2

) = {u ∈ H : |u|α,σ
def
== |AαeσA1/2

u| <∞}.

• Compare the Sobolev and Gevrey norms:

|Aαu| = |(Aαe−σA1/2
)eσA

1/2
u| ≤

(2α

eσ

)2α
|eσA1/2

u|.
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Notation

Denote for σ ∈ R the space

E∞,σ =
⋂
α≥0

Gα,σ =
⋂
m∈N

Gm,σ.

We will say that an asymptotic expansion holds in E∞,σ if it holds in
Gα,σ for all α ≥ 0.

Denote by Pα,σ the space of Gα,σ-valued polynomials in case α ∈ R,
and the space of E∞,σ-valued polynomials in case α =∞.
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Definition

Let X be a real vector space.
(a) An X -valued polynomial is a function t ∈ R 7→

∑d
n=1 ant

n, for some
d ≥ 0, and an’s belonging to X .
(b) In case ‖ · ‖ is a norm on X , a function g(t) from (0,∞) to X is said
to have the asymptotic expansion

g(t) ∼
∞∑
n=1

gn(t)e−nt in X ,

where gn(t)’s are X -valued polynomials, if for all N ≥ 1, there exists
εN > 0 such that

∥∥∥g(t)−
N∑

n=1

gn(t)e−nt
∥∥∥ = O(e−(N+εN)t) as t →∞.
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I. Exponentially decaying forces [H.-Martinez 2017]

Assumptions.

(A1) The function f (t) is continuous from [0,∞) to H.

(A2) There are a number σ0 ≥ 0, E∞,σ0-valued polynomials fn(t) for all
n ≥ 1, and a sequence of numbers δn ∈ (0, 1) for all n ≥ 1 such that
for each N ≥ 1

∣∣∣f (t)−
N∑

n=1

fn(t)e−nt
∣∣∣
α,σ0

= O(e−(N+δN)t) as t →∞, for all α ≥ 0.

That is, the force f (t) admits the following expansion in Gα,σ0 for all
α ≥ 0:

f (t) ∼
∞∑
n=1

fn(t)e−nt .
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Remarks

The followings are direct consequences of the Assumptions.

(a) For each α > 0 that f (t) belongs to Gα,σ0 for t large.

(b) When N = 1,

|f (t)− f1(t)e−t |α,σ0 = O(e−(1+δ1)t).

Since f1(t) is a polynomial, it follows that

|f (t)|α,σ0 = O(e−λt) ∀λ ∈ (0, 1),∀α > 0.

(c) Combining with Assumption (A1), for each λ ∈ (0, 1), there is
Mλ > 0 such that

|f (t)| ≤ Mλe
−λt ∀t ≥ 0.
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Theorem (Asymptotic expansion, H.-Martinez 2017)

Let u(t) be a Leray-Hopf weak solution. Then there exist polynomials
qn ∈ P∞,σ0 , for all n ≥ 1, such that u(t) has the asymptotic expansion

u(t) ∼
∞∑
n=1

qn(t)e−nt in E∞,σ0 .

Moreover, the mappings

un(t)
def
== qn(t)e−nt and Fn(t)

def
== fn(t)e−nt ,

satisfy the following ordinary differential equations in the space E∞,σ0

d

dt
un(t) + Aun(t) +

∑
k,m≥1

k+m=n

B(uk(t), um(t)) = Fn(t), t ∈ R, (?)

for all n ≥ 1.
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Finite asymptotic approximation

Theorem (Finite asymptotic approximation, H.-Martinez 2017)

Suppose there exist an integer N∗ ≥ 1, real numbers σ0 ≥ 0,
µ∗ ≥ α∗ ≥ N∗/2, and, for any 1 ≤ n ≤ N∗, numbers δn ∈ (0, 1) and
polynomials fn ∈ Pµn,σ0 , such that

∣∣∣f (t)−
N∑

n=1

fn(t)e−nt
∣∣∣
αN ,σ0

= O(e−(N+δN)t) as t →∞,

for 1 ≤ N ≤ N∗, where

µn = µ∗ − (n − 1)/2, αn = α∗ − (n − 1)/2.
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Theorem (continued)

Let u(t) be a Leray-Hopf weak .
(i) Then there exist polynomials qn ∈ Pµn+1,σ0 , for 1 ≤ n ≤ N∗, such that
one has for 1 ≤ N ≤ N∗ that

∣∣∣u(t)−
N∑

n=1

qn(t)e−nt
∣∣∣
αN ,σ0

= O(e−(N+ε)t) as t →∞, ∀ε ∈ (0, δ∗N),

where δ∗N = min{δ1, δ2, . . . , δN}.
Moreover, the ODEs

d

dt
un(t) + Aun(t) +

∑
k,m≥1

k+m=n

B(uk(t), um(t)) = Fn(t), t ∈ R, (?)

hold in the corresponding space Gµn,σ0 for 1 ≤ n ≤ N∗.
(ii) In particular, if all fn(t)’s belong to V, resp., E∞,σ0 , then so do all
qn(t)’s, and the ODEs (?) hold in V, resp., E∞,σ0 .
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II. Power-decaying forces [Cao-H. 2017]

Power asymptotic expansion in (X , ‖ · ‖):

g(t)
pow.∼

∞∑
n=1

gnt
−n

means

‖g(t)−
N∑

n=1

gnt
−n‖ = O(t−(N+ε)), for some ε > 0, t →∞.
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Theorem (Power asymptotic expansion, Cao-H. 2017 )

Assume that f (t) has the asymptotic expansion

f (t)
pow.∼

∞∑
n=1

φnt
−n in Gα,σ0 ,

for some fixed numbers σ0 ≥ 0 and α ≥ 1/2, where {φn}∞n=1 is a sequence
in Gα,σ0 . Then any Leray-Hopf weak solution u(t) has the asymptotic
expansion

u(t)
pow.∼

∞∑
n=1

ξnt
−n in Gα,σ0 ,

where {ξn}∞n=1 is explicitly defined as follows

ξ1 = A−1φ1,

ξn = (n − 1)A−1ξn−1 −
∑

k,m≥1,k+m=n

A−1B(ξk , ξm) + A−1φn for n ≥ 2.
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Next decay form is exponential

Theorem

If ū =
∑∞

n=1 ξnt
−n converges absolutely and uniformly in Gα+1,σ0 on

[T ,∞), and f =
∑∞

n=1 φnt
−n converges absolutely and uniformly in Gα,σ0

on [T ,∞), then
|u(t)− ū(t)|α,σ0 = O(e−(1−ε)t).

for any ε > 0.
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Estimates for the bilinear form

Lemma

If α ≥ 1/2 then

|B(u, v)|α,σ ≤ Kα|u|α+1/2,σ |v |α+1/2,σ,

for all u, v ∈ Gα+1/2,σ.
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I. Case of exponential decay

Recall

f (t) ∼
∞∑
n=1

fn(t)e−nt =
∞∑
n=1

Fn(t).

Need to prove

u(t) ∼
∞∑
n=1

qn(t)e−nt .

L. Hoang (Texas Tech) Navier-Stokes equations with decaying forces IU 9.27.2017 23



Small data

Proposition

Let δ ∈ (0, 1), λ ∈ (1− δ, 1] and σ ≥ 0, α ≥ 1/2. There are C0,C1 > 0
such that if

|Aαu0| ≤ C0, |f (t)|α−1/2,σ ≤ C1e
−λt , ∀t ≥ 0,

then there exists a unique solution u ∈ C ([0,∞),D(Aα)) that satisfies and

|u(t)|α,σ ≤
√

2C0e
−(1−δ)t , ∀t ≥ t∗,

where t∗ = 6σ/δ. Moreover, one has for all t ≥ t∗ that∫ t+1

t
|Aα+1/2u(τ)|2dτ ≤ 2C 2

0

1− δ
e−2(1−δ)t .

L. Hoang (Texas Tech) Navier-Stokes equations with decaying forces IU 9.27.2017 24



Long-time estimates for the solution

Theorem

For α ∈ [0,∞) and δ ∈ (0, 1), there exists a positive number T0 such that

|u(T0 + t)|α,σ0 ≤ e−(1−δ)t ∀t ≥ 0,

and
|B(u(T0 + t), u(T0 + t))|α,σ0 ≤ e−2(1−δ)t ∀t ≥ 0.

Note: Can use different bootstrapping procedures for σ0 > 0 (faster) and
σ0 = 0 (gradually).

L. Hoang (Texas Tech) Navier-Stokes equations with decaying forces IU 9.27.2017 25



Proof of Asymptotic Expansion. First step N = 1

Let w0(t) = etu(t) and w0,k(t) = Rkw0(t). We have

d

dt
w0 + (A− 1)w0 = f1 + H1(t),

where
H1(t) = et(f − F1 − B(u, u)).

Taking the projection Rk gives

d

dt
w0,k + (k − 1)w0,k = Rk f1 + RkH1(t).

Note that Rk f1(t) is a polynomial in RkH.
Fact: there are T0 > 0 and M ≥ 1 such that for t ≥ 0,

et |f (T0 + t)− F1(T0 + t)|α,σ0 ≤ Me−δ1t

et |B(u(T0 + t), u(T0 + t))|α,σ0 ≤ e−2(1−δ)t+t ≤ e−δ1t .

Then, by setting M1 = M + 1, we have

|H1(T0 + t)|α,σ0 ≤ M1e
−δ1t ∀t ≥ 0.
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Lemma

Let (X , ‖ · ‖) be a Banach space. Suppose y(t) is in C ([0,∞),X ) and
C 1((0,∞),X ) that solves the following ODE

dy

dt
+ αy = p(t) + g(t) for t > 0,

where constant α ∈ R, p(t) is a X -valued polynomial in t, and
g(t) ∈ C ([0,∞),X ) satisfies

‖g(t)‖ ≤ Me−δt ∀t ≥ 0, for some M, δ > 0.

Define q(t) for t ∈ R by

q(t) =


e−αt

∫ t
−∞ eατp(τ)dτ if α > 0,

y(0) +
∫∞

0 g(τ)dτ +
∫ t

0 p(τ)dτ if α = 0,

−e−αt
∫∞
t eατp(τ)dτ if α < 0.
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Then q(t) is an X -valued polynomial that satisfies

dq(t)

dt
+ αq(t) = p(t) ∀t ∈ R,

and the following estimates hold.

(i) If α > 0 then

‖y(t)−q(t)‖ ≤
(
‖y(0)−q(0)‖+ M

|α− δ|

)
e−min{δ,α}t , t ≥ 0, for α 6= δ,

and

‖y(t)− q(t)‖ ≤ (‖y(0)− q(0)‖+ Mt)e−δt , t ≥ 0, for α = δ.

(ii) If (α = 0) or (α < 0 and limt→∞ eαty(t) = 0) then

‖y(t)− q(t)‖ ≤ Me−δt

|α− δ|
∀t ≥ 0.

L. Hoang (Texas Tech) Navier-Stokes equations with decaying forces IU 9.27.2017 28



For the Lemma, we just use the following elementary identities: for β > 0,
integer d ≥ 0, and any t ∈ R,∫ t

−∞
τdeβτ dτ = eβt

d∑
n=0

(−1)d−nd!

n!βd+1−n tn,

∫ ∞
t

τde−βτ dτ = e−βt
d∑

n=0

d!

n!βd+1−n t
n.

N=1 (continued). Then there exists a polynomial q1(t) such that

|w0(t)− q1(t)|α,σ0 = O(e−δt).

Hence
|u(t)− q1(t)e−t |α,σ0 = O(e−(1+δ)t).
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Induction step

Denote ε∗ ∈ (0, δ∗N+1) and ūN(t) =
∑N

n=1 un(t).
Remainder vN(t) = u(t)− ūN(t) satisfies for any β > 0 that

|vN(t)|β,σ0 = O(e−(N+ε∗)t) as t →∞.
Evolution of vN :

d

dt
vN + AvN +

∑
m+j=N+1

B(um, uj) = FN+1(t) + hN(t),

where

hN(t) = −B(vN , u)− B(ūN , vN)−
∑

1≤m,j≤N

m+j≥N+2

B(um, uj) + F̃N+1(t),

F̃N+1(t) = f (t)−
N+1∑
n=1

Fn(t).

Fact:
hN(t) = Oα,σ0(e−(N+1+ε∗)t).
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Let wN(t) = e(N+1)tvN(t) and wN,k = RkwN(t). The ODE for wN,k :

d

dt
wN,k + (k − (N + 1))wN,k +

∑
m+j=N+1

RkB(qm, qj) = Rk fN+1 + HN,k ,

with HN,k = e(N+1)tRkhN(t).
Fact:

|HN,k |α,σ0 = O(e−ε∗t).

Then there are T > T0 and M > 0 such that for t ≥ 0

|HN,k(T + t)|α,σ0 ≤ Me−ε∗t .
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Case k = N + 1

By Lemma(ii), there is a polynomial qN+1,N+1(t) valued in RN+1H such
that

|wN,N+1(T + t)− qN+1,N+1(t)|α,σ0 = O(e−ε∗t),

thus,
|RN+1wN(t)− qN+1,N+1(t − T )|α,σ0 = O(e−ε∗t).
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Case k ≤ N

Note
lim
t→∞

e(k−(N+1))twN,k(t) = lim
t→∞

ektRkvN(t) = 0.

Applying Lemma(ii) with α = k − N − 1 < 0, there is a polynomial
qN+1,k(t) valued in RkH such that

|wN,k(T + t)− qN+1,k(t)|α,σ0 = O(e−ε∗t),

|RkwN(t)− qN+1,k(t − T )|α,σ0 = O(e−ε∗t).
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Case k ≥ N + 2

Similarly, applying Lemma(i), there is a polynomial qN+1,k(t) valued in
RkH such that

|wN,k(T + t)− qN+1,k(t)|α,σ0 ≤
(
|RkvN(T )|α,σ0 + |qN+1,k(0)|α,σ0

+
M

k − (N + 1)

)
e−ε∗t .

Thus

|RkwN(t)− qN+1,k(t − T )|α,σ0 ≤ eε∗T
(
|RkvN(T )|α,σ0 + |qN+1,k(0)|α,σ0

+
M

k − (N + 1)

)
e−ε∗t .
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Polynomial qN+1(t)

Define qN+1(t) =
∑∞

k=1 qN+1,k(t − T ). Then squaring and summing in k,
we obtain

∞∑
k=N+2

|RkwN(t)− qN+1,k(t − T ))|2α,σ0

≤ 3e2ε∗T
( ∞∑

k=N+2

|RkvN(T )|2α,σ0
+

∞∑
k=N+2

|RkqN+1(T )|2α,σ0

+
∞∑

k=N+2

M2

(k − (N + 1))2

)
e−2ε∗t

= O(e−2ε∗t).

Thus,
|wN(t)− qN+1(t)|α,σ0 = O(e−ε∗t),

therefore,

|vN(t)− e−(N+1)tqN+1(t)|α,σ0 = O(e−(N+1+ε∗)t).
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Check ODE for uN+1(t)

The polynomial qN+1(t) satisfies

d

dt
RkqN+1(t)+(k−(N+1))RkqN+1(t)+

∑
m+j=N+1

RkB(qm, qj) = Rk fN+1(t),

d

dt
RkuN+1(t)+kRkuN+1(t)+

∑
m+j=N+1

RkB(um, uj) = RkFN+1(t) ∀k ≥ 1,

which we rewrite as

d

dt
uN+1(t) + AuN+1(t) +

∑
m+j=N+1

B(um, uj) = FN+1(t).
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II. Case of power decay

Recall

f (t)
pow.∼

∞∑
n=1

φnt
−n.

Need to prove

u(t)
pow.∼

∞∑
n=1

ξnt
−n,

ξ1 = A−1φ1,

ξn = (n − 1)A−1ξn−1 −
∑

k,m≥1,k+m=n

A−1B(ξk , ξm) + A−1φn for n ≥ 2.

Proposition (Higher regularity)

If φn ∈ Gα,σ0 for all n, some α ≥ 1/2, then

ξn ∈ Gα+1,σ0 ∀n.
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Power-decay for weak solutions

Proposition

Assume there are numbers M∗, λ∗ > 0 such that

|f (t)| ≤ M∗(1 + t)−λ∗ , ∀t ≥ 0,

and, additionally, that there are σ ≥ 0, α ≥ 1/2 and λ0 > 0 such that

|f (t)|α,σ = O(t−λ0) as t →∞.

Let u(t) be a Leray-Hopf weak solution. Then for any λ ∈ (0, λ0), there
exists T∗ > 0 such that u(t) is a regular solution on [T∗,∞), and one has
for all t ≥ 0 that

|u(T∗ + t)|α+1/2,σ ≤ Ct−λ,

|B(u(T∗ + t), u(T∗ + t))|α,σ ≤ Ct−2λ.
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Main ideas of the induction step

Define

ūN =
N∑

n=1

ξnt
−n, vN = u − ūN , and F̃N+1(t) = f (t)−

N+1∑
n=1

φnt
−n.

Then
|vN(t)|α,σ0 = O(t−(N+ε)).

|F̃N+1(t)|α,σ0 = O(t−(N+ε)).
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Let wN(t) = tN+1vN(t) then

w ′N = −AwN

+ tN+1
{
−

N∑
n=1

1

tn

(
Aξn +

N∑
n=1

∑
k+j=n

B(ξm, ξj)− (n − 1)ξn−1 − φn
)}

−
∑

k+j=N+1

B(ξm, ξj) + φN+1 + NξN

− tN+1
∑

1≤m,j≤N

m+j≥N+2

t−m−jB(ξm, ξj)

+ tN+1(−B(ūN , vN)− B(vN , ūN)− B(vN , vN)

+ F̃N+1) + (N + 1)tNvN .
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Since

Aξn +
N∑

n=1

∑
k+j=n

B(ξm, ξj)− (n − 1)ξn−1 − φn = 0 for 1 ≤ n ≤ N,

and
−

∑
k+j=N+1

B(ξm, ξj) + φN+1 + NξN = AξN+1,

we obtain
w ′N = −AwN + AξN+1 + HN(t),

where

HN(t) = −tN+1
∑

1≤m,j≤N

m+j≥N+2

t−(m+j)B(ξm, ξj)

+ tN+1(−B(ūN , vN)− B(vN , ūN)− B(vN , vN) + F̃N+1) + (N + 1)tNvN
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We carefully control norms of HN(t). Term by term:

|B(ξm, ξj)|α+1/2,σ0
, |vN |α,σ0 , |F̃N+1|α,σ0 ,

|B(ūN , vN)|α−1/2,σ0
, |B(vN , ūN)|α−1/2,σ0

, |B(vN , vN)|α−1/2,σ0
.

Therefore,
|HN(t)|α−1/2,σ0

= O(t−δ).

Lemma

If ξ ∈ Gα,σ, and |f (t)|α,σ ≤ M(1 + t)−λ and

y ′ = −Ay + ξ + f (t).

For ε ∈ (0, 1), there exist Cε > 0 and T > 0 such that

|y(t)− A−1ξ|α+1−ε,σ ≤ Cε(1 + t)−λ+ε t ≥ T .
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Note that AξN+1 ∈ Gα,σ0 ⊂ Gα−1/2,σ0
.

Hence applying ODE lemma with power-decay forcing gives

|wN(t)− A−1(AξN+1)|α−1/2+1−ε′,σ0
= O(t−δ+ε′),

that is
|wN(t)− ξN+1|α+1/2−ε′,σ0

= O(t−δ+ε′),

for sufficiently small ε′ > 0.
This shows

|vN+1(t)|Gα+1/2−ε′,σ0
= |vN(t)− ξN+1t

−N−1|α+1/2−ε′,σ0

= |t−N−1(wN(t)− ξN+1)|α+1/2−ε′,σ0

= O(t−N−1−δ+ε′,σ0).

Taking small ε′ gives what we desire for the induction step.
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THANK YOU FOR YOUR ATTENTION.
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