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Introduction

Navier-Stokes equations (NSE) in R with a potential body force
ou
a0 T (u-V)u—vAu+Vp=f(x,t),
div u =0,
u(x,0) = u%(x),

v > 0 is the kinematic viscosity,

u = (u1, up, uz) is the unknown velocity field,
p € R is the unknown pressure,

f(x, t) is the body force,

u® is the initial velocity.
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Let L > 0 and Q = (0, L)3. The L-periodic solutions:
u(x + Lej) = u(x) for all x e R3j =1,2,3,

where {e1, &, €3} is the canonical basis in R3.
Zero average condition

Throughout L =27 and v = 1.
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Functional setting

Let V be the set of R3-valued 27-periodic trigonometric polynomials which
are divergence-free and satisfy the zero average condition.

H = closure of V in L%(Q)3 = H°(Q)3,
V = closure of V in H}(Q)3, D(A) = closure of V in H*(Q)3.

Norm on H: |u| = [|u]|;2(q)- Norm on V: [lu| = [Vu].
The Stokes operator:

Au = —Au for all u € D(A).
The bilinear mapping:
B(u,v) =P (u-Vv) for all u,v € D(A).

PP, is the Leray projection from L?(S2) onto H.

Spectrum of A:
o(A) = {|k|*,0 # k € Z3}.

Denote by RyH the eigenspace of A corresponding to N.

L. Hoang (Texas Tech) Navier-Stokes equations with decaying forces 1U 9.27.2017



Functional form of NSE

WLOG, assume f(t) =P, f(t).
The functional form of the NSE:

d'ﬁff) + Au(t) + B(u(t), u(t)) = £(t), t >0,

u(0) = .
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Case of potential force: f =0

Foias-Saut (1987) proved that the solution u(t) has an asymptotic
expansion:

u(t) ~ Y qi(t)e
n=1

where g;(t) is a V-valued polynomial in t.
This means that for any N € N, m € N, the remainder

vn(t) = u(t) — Zszl qj(t)e™t satisfies
lvn(t)llm() = Oe~VF9))

as t — 00, for some € = ey, > 0.
H.-Martinez (2017) proved that the expansion holds in Gevrey spaces:

17 vy (£) | @y = O(e™(VF9)t),

for any 0 > 0, € € (0,1).
They used Gevrey norm techniques (Foias-Temam 1989) to simplify the
proof.
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Gevrey classes

For a > 0, o > 0, define

A% Ay =N k2 a(k)eMe™ for u =" a(k)e™* e H.
k=0 k=£0

The domain of Ao‘e"Al/2 is
Gy = DAY = {u € H : |u]aos 2L |A%e"*u| < o0}
e Compare the Sobolev and Gevrey norms:

] = (A A YA ] < (22) oAy
eo
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@ Denote for o € R the space

E7 = () Gaw = () Gmer

a>0 meN
o We will say that an asymptotic expansion holds in E°? if it holds in
Ga,o for all o > 0.

@ Denote by P*“ the space of G, ,-valued polynomials in case o € R,
and the space of E°%-valued polynomials in case a = co.
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Let X be a real vector space.

(a) An X-valued polynomial is a function t € R — Zgzl ant”, for some
d >0, and a,'s belonging to X.

(b) In case || - || is a norm on X, a function g(t) from (0, 00) to X is said
to have the asymptotic expansion

o
g(t)~ > ga(t)e ™ in X,
n=1

where g,(t)’s are X-valued polynomials, if for all N > 1, there exists
egn > 0 such that

= O(e=(N+2Mt) as t — oo.

N
le(t) =" gn(t)e
n=1
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|. Exponentially decaying forces [H.-Martinez 2017]

Assumptions.
(A1) The function f(t) is continuous from [0, c0) to H.

(A2) There are a number og > 0, E°?°-valued polynomials 7,(t) for all
n > 1, and a sequence of numbers 6, € (0,1) for all n > 1 such that
for each N > 1

= O(e"N+H)t) a5 t — 00, forall o > 0.

a,00

N
(5= fult)e ™™
n=1

That is, the force f(t) admits the following expansion in G, +, for all
a>0:

F(t) ~ > falt)e ™.
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The followings are direct consequences of the Assumptions.
(a) For each a > 0 that f(t) belongs to G, 4, for t large.
(b) When N =1,

[£(t) = fit)e  Jan = O(e” V).
Since fi(t) is a polynomial, it follows that
IF()]aw, = O(e™) VA €(0,1),Ya > 0.

(c) Combining with Assumption (A1), for each A € (0, 1), there is
M), > 0 such that

1£(t)] < Mye ™t Yt >0.
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Theorem (Asymptotic expansion, H.-Martinez 2017)

Let u(t) be a Leray-Hopf weak solution. Then there exist polynomials
Gn € P, for all n > 1, such that u(t) has the asymptotic expansion

o
u(t) ~ Z gn(t)e™ " in E°>00,
n=1

Moreover, the mappings

un(t) 2L g (t)e™™  and  Fo(t) 2L £, (t)e ",

satisfy the following ordinary differential equations in the space E°°:°0

%un(t)—{—Aun(t)—l— ; B(uk(t), um(t)) = Fa(t), tER,

k+m=n

for all n > 1.

(x)
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Finite asymptotic approximation

Theorem (Finite asymptotic approximation, H.-Martinez 2017)

Suppose there exist an integer N, > 1, real numbers og > 0,
ps > i > N, /2, and, for any 1 < n < N,, numbers 6, € (0,1) and
polynomials f, € P#n%  such that

= O(e=NHMt) a5t — o0,

aN,00

N
‘f(t) =3 f(t)e ™
n=1

for1 < N < N, where

n=px—(n—=1)/2, ap=a,—(n—1)/2.
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Theorem (continued)

Let u(t) be a Leray-Hopf weak .
(i) Then there exist polynomials g, € P*rt199, for 1 < n < N, such that
one has for1 < N < N, that

N
‘u(t) — 3 ga(t)e
n=1

where 05, = min{d1,d2,...,dn}.
Moreover, the ODEs

= 0(e=N*9)t)  ast — 00, Ve € (0,5%),

aN,00

%unuﬁun(t + 0 Bluk(t),um(t)) = Falt), teR, (x)

k,m>1

k+m:n
hold in the corresponding space G, 5, for 1 < n < Ni,.
(ii) In particular, if all f,(t)’s belong to V), resp., E°?°, then so do all
qn(t)’s, and the ODEs (x) hold in V), resp., E®7°.
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Il. Power-decaying forces [Cao-H. 2017]

Power asymptotic expansion in (X, || - ):

o
£) PR gt
n=1
means

g (t) Zgn " =0t~ N+9)), for some e >0, t— 0.
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Theorem (Power asymptotic expansion, Cao-H. 2017 )

Assume that f(t) has the asymptotic expansion

o0
P2 S 60t in Ga,

for some fixed numbers o9 > 0 and o« > 1/2, where {¢,}°° , is a sequence

in Go.oy- Then any Leray-Hopf weak solution u(t) has the asymptotic
expansion

pOW Zgn in Ga,ooy
where {£,}°° ; is explicitly defined as follows

& =A"¢n,

Ca=(n—DA M 1— > ATBEkm)+A G, forn>2.

k,m>1 k+m=n
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Next decay form is exponential

Theorem

If u = ZZ‘;l Ent™" converges absolutely and uniformly in Go41,6, On
[T,00), and f =302, ¢pat™" converges absolutely and uniformly in Gy o,
on [T,o0), then

|u(t) = ()] = O(e 7).

for any € > 0.
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Estimates for the bilinear form

If « > 1/2 then

|B(u7 V)|a,¢7 < Ka|u|a+1/2,o |V|a+1/2,07

for all u,v € Goy1/2,0-
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|. Case of exponential decay

Recall

Need to prove
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Small data

Proposition

Let 6 € (0,1),A € (1 —46,1] and o > 0, > 1/2. There are Gy, C; >0
such that if

A < Go, [F(t)la1/20 < Gre™, VE20,
then there exists a unique solution u € C([0,00), D(A%)) that satisfies and
u()|ao < V2Coe T Vi > ¢,

where t, = 60 /5. Moreover, one has for all t > t, that

/t+1|Aa+1/2u( )’2d < 2Cg e—2(1—6)t
: T)dT = .
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Long-time estimates for the solution

Theorem
For o € [0,00) and 6 € (0,1), there exists a positive number Ty such that
|4(To + t)laeo < €079 V>0,

and

B(u(To+ t),u(To + ))]ae, < € 21708 Ve >0,

Note: Can use different bootstrapping procedures for o > 0 (faster) and
oo = 0 (gradually).
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Proof of Asymptotic Expansion. First step N =1

Let wo(t) = e'u(t) and wp x(t) = Rekwo(t). We have

d
EWO + (A — 1)W0 =f+ Hl(t),

where
Hi(t) = e*(f — F1 — B(u, v)).
Taking the projection Ry gives

d
P s (k = 1)wox = Rkfi + RiHy(t).

Note that Rxfi(t) is a polynomial in RxH.
Fact: there are Tg > 0 and M > 1 such that for t > 0,
ef|f(To+t) — Fi(To + t)]a,m < Me 1t
e'[B(u(To + 1), u(To + t))|am < e 27t < gm01t,
Then, by setting M; = M + 1, we have

|H1(T0 + t)|a,ao < Mle_élt vt > 0.
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Lemma

Let (X,]| - ||) be a Banach space. Suppose y(t) is in C([0,c0), X) and
C1((0,00), X) that solves the following ODE

dy
E—Fay p(t) +g(t) fort >0,

where constant a € R, p(t) is a X-valued polynomial in t, and
g(t) € C([0,00), X) satisfies

lg(t)]| < Me™® Wt >0, forsome M,d > 0.

Define g(t) for t € R by

e ot f T)dT if a >0,
q(t) = ) + fo d’T + fot p(T)dT if a =0,
—e‘at I ean(T)dT if a <O0.
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Then g(t) is an X-valued polynomial that satisfies

da(t)

g + aq(t) = p(t) VteR,

and the following estimates hold.
(i) If @ >0 then

M —min{d,o
Iy(O)-a(e)l < (IO -aO)|+ =5 ) e ™, e 20, for a5,

and
ly(t) = a(®)ll < (ly(0) — q(0)|| + Mt)e™**, ¢ > 0, for a = 0.
(ii) If (&« =0) or (o < 0 and lim_,o €*fy(t) = 0) then

Mefét
(6= a(0)] < oy Ve0,
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For the Lemma, we just use the following elementary identities: for 5 > 0,
integer d > 0, and any t € R,

t d d—n 4|
d_pB __ Pt (_1) d! n
/ T dr=e anﬁdJrlfnt’
- n=0 '
= d g s d!
—pT _ bt . n
/ T € d7- =€ Z Wt .
t n=0

N=1 (continued). Then there exists a polynomial g1(t) such that
|wo(t) = q1(t)] e, = O(e%F).

Hence
lu(t) — qu(t)e o, = O(e~ 1+,
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Induction step

Denote ¢, € (0,0y,) and dn(t) = SN un(2).
Remainder vy (t) = u(t) — an(t) satisfies for any 5 > 0 that

V()] g.00 = O(e”NFTE)t) as ¢ — oo

Evolution of vy:

d
dtVN+AVN+ Z B(um, uj~) = FN+1(t)—|—hN(t),

m+j=N+1
where
hu(t) = —B(vw,u) = B(dn,vn) = Y Blum, 1) + Fupa(t),
1<m,j<N
m+j>N+2
N+1
Frnia(t ZF
Fact:

hn(t) = O o (e~ (NFLFEEY,

L. Hoang (Texas Tech) Navier-Stokes equations with decaying forces 1U 9.27.2017



Let wy(t) = e(N+1)tvN(t) and wy x = Rewp(t). The ODE for wy k:

d
—wy+ (k= (N+1)wni+ > ReB(Gm, q7) = Rifugr + Hiv,

dt ‘
m—+j=N+1

with HN,k = e(N+1)tRkhN(t).
Fact:
|HN kla,oo = O(e=).

Then there are T > Tg and M > 0 such that for t > 0

|HN7k(T + t)|a700 < Me™¢€+t,

31
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Case k=N +1

By Lemmal(ii), there is a polynomial gpy1,n+1(t) valued in Ry41H such
that

W, N1 (T + t) = Gui1,n+1(E) oo = Oe75),
thus,

|Rv+1wn(t) — gnsin+1(t — T)lae, = O(e™5F).
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Note

lim e(k*(N‘i’l))t

WN’k(t) = lim ektRkVN(t) =0.
t—00 t—00

Applying Lemma(ii) with &« = k — N — 1 < 0, there is a polynomial
qn+1,k(t) valued in RiH such that

Whk(T + £) = ans1k(t)laoy = O(e™™7),

|Rikwn(t) — ang1,k(t = T)laoo = O(e™F).
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Case k > N + 2

Similarly, applying Lemma(i), there is a polynomial qn.1 «(t) valued in
RxH such that

IWn k(T +t) = gnr1k(t)|a,o0 < (leVN(T)la,ao +1gn+1,4(0) |00
M

—&xt
+7k—(N+1)>e .
Thus

IRkwn(t) — gy 1k(t — T)]ayo < es*T(leVN(T)la,ao + 1an+1,k(0) |00

i M )e_a*t
k—(N+1) '
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Polynomial gp.1(t)

Define gn11(t) = > p—1 gn+1.4(t — T). Then squaring and summing in k,

we obtain
o0

Z |Rkwn(t) — gny1k(t — T)) gy,cro
k=N-+2
3T 3 (Mot S (T
k=N-+2 k=N+2
+ Z —2 e*2€*t
A N+2 —(N+ 1)) )
Thus,
lwn(t) — gna( = 0(e™),
therefore,

|VN(t) - e_(N+1)th+1(t)’a,oo — O(e_(N+1+E*)t)'
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Check ODE for upn+1(t)

The polynomial gn41(t) satisfies

d
g Rean1(t)+(k—=(N+1))Regn+1(t)+ > ReB(am, ) = Rifusa(t),
m+j=N+1

d
< Reunsa (6 +KRicun 41 (6)+ > RiB(um, uj) = RiFnsa(t) Vk > 1,
m+j=N+1

which we rewrite as

d
EUNJ’»l(t) + AUN+1(t) + Z B(Um, UJ') = FN+1(t).
m4j=N+1
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lI. Case of power decay

Recall -
F(£) PR gt
n=1
Need to prove

o
u(t) "R gt
n=1

& =A1g,

Ca=(n—DA 01— > ATBk&m)+A g, forn>2.
k,m>1,k4+m=n

Proposition (Higher regularity)

If ¢n € Gq5, for all n, some o > 1/2, then

ﬁn € GaJrl,a'o Vn.
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Power-decay for weak solutions

Proposition

Assume there are numbers My, A\, > 0 such that
1£(t)] < Mu(1+t)™, Vt>0,

and, additionally, that there are 0 > 0, a > 1/2 and Ao > 0 such that
1F(t)|a,oe = O(t™) ast — .

Let u(t) be a Leray-Hopf weak solution. Then for any A € (0, \g), there
exists T, > 0 such that u(t) is a regular solution on [T, o), and one has
for all t > 0 that

lu(Te + t)]ay1/2,0 < Ct™?,
1B(u(Tw + 1), u(Te + )00 < Ct™2N.
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Main ideas of the induction step

Define
N N+1
uy = ant*”, vy = u — iy, and FN+1 Z Ont™ m
n=1
Then

V() ]aoy = Ot~ (VF9)),
’ﬁN+1(t)|a,Uo = O(ti(NJFE))-
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n=1 n=1 k+j=n

= ) B(m &)+ dng1 + Néw

k++j=N+1

1<m,j<N
m+;j>N+2

+ tNJrl(—B(ﬁN, VN) — B(VN7 UN) — B(V/\/7 VN)

+ Fyg1) + (N + 1)tV vy
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Since

A§n+z > B(Em &)~ (n—1)6p1—¢p=0for 1< n< N,

n=1 k+j=n
and
= > B(&m &)+ dng1 + Néw = Abnya,
k4j=N+1
we obtain
wy = —Awy + Aéni1 + Hu(t),
where

Hy(t) = —t"tt >~ e (M)B(¢n, &)

1<m,j<N
m+j>N+2

+ tN*H(—B(dn, v) — B(vw, Tn) — B(viv, vi) + Fua1) + (N + 1)tV vy

41
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We carefully control norms of Hy(t). Term by term:

1B(Ems §i)lat1/2,005 [VN]a,005 | Frvt]asoos
|B(dn; viv)la—1/2,00, |B(YN, BN)|a—1/2,005 |B(VNS V) a—1/2,00-
Therefore,

IHN(t)a—1/2,00 = o(t™).

Lemma

If€ € Gopo, and |f(t)]aoc < M(1+ t)~* and
y' = —Ay + £+ f(1).
For e € (0,1), there exist C. > 0 and T > 0 such that

|y(t) - A_1§’a+1—e,a < Ca(l + t)_)\+€ t> T.
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Note that ASn+1 € Ga,op € Ga—1/2,00-
Hence applying ODE lemma with power-decay forcing gives

w(t) — A_I(A§N+1)|a—1/2+1—a/,ao = O(t70),

that is
_ /
lwy(t) — £N+1|o¢+1/2_5”0—0 =O(t e ),

for sufficiently small £’ > 0.
This shows
’vN+1(t)|Goc+l/27e’,a'0 = |VN(t) - €N+1t_N_1‘a+1/2—6’,0'0
=[N (wp(t) — En+1)lat1/2—< 00

_ O(thflféJrs’,ao).

Taking small &’ gives what we desire for the induction step.
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