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Foias-Saut result for Navier-Stokes equations

Functional form of NSE

du

g + Au + B(u, u) = f(t),

where A is the (unbounded) Stokes operator with, after scaling, o(A) C N.
Note: quadratic nonlinearity.

When f = 0, solution u(t) admits an expansion
o
u(t) ~ Z gn(t)e™", with polynomials g,(t),
n=1

meaning

N
lu(t) =" gn(t)e™"[| = O(e=N+9t)  ast — oo
n=1
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Extension to time-dependent forces

NSE with periodic boundary conditions.
e H.-Martinez (2017):

F(t) ~ > falt)e ™.
n=1
Same expansion for u(t):
o0
u(t) ~ ) gn(t)e ™.
n=1

Note: exponential rates are in the additive semigroup generated by o(A).
e Cao-H. (2017)

F(t)~ > ¢nt™".

n=1

Then -
u(t) ~ > &t

n=1
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Our problems

Focus on ordinary differential equations (ODE) in R"™:

d
di; = —Ay + G(y) + f(t), y(0) = yo,

where
e unknown y(t) € R", given initial condition yp € R”,
@ Ais an n X n matrix,

@ G(y) locally is Lipschitz, and has expansion

G(y)~ Y Lm(y)asy—0,

m=2

@ each L, : R” — R" is a homogeneous polynomial of degree m,

f(t) decays exponentially or algebraically at any rates.

Goal: Obtain asymptotic expansions for solutions y(t) as t — co.
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e Matrix A has positive eigenvalues
A <A< <Ay,

and the corresponding eigenvectors form a basis of R”.
e Rewrite the spectrum

U(A):{/\k:k:1,2,...,n}:{)\1<)\2<...}.
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e Rewrite the homogeneous polynomials as

Lm(y)=Lm(y,y,...,y) (m times),

where L, : R™™ — R" is an m-linear mapping.
e For each N > 2,

N
1GY) = > Lm(y)l = O(ly|N*€) as y — 0,

m=2

for some € > 0.
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Global existence

Theorem
There exists eg > 0 such that if

yol < €0, [[flloc = sup |f(2)] < o,
>0

then there exists a solution y(t) on [0, c0).
In addition, if

t|l>ngo AB=0,
then

lim y(t) =0.

t—00

Note: for small y: |G(y)| < Cly|°.
Throughout, we consider global solution y(t) on [0, c0) that converges to
zero as t — 0.

L. Hoang (Texas Tech) Asymptotic expansions for non-autonomous differential equations UNG 11.3.2017 9



2. Main results

m |. Exponentially decaying forces
m |I. Power-decaying forces
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|. Exponentially decaying forces

Notation. Exponential expansion (in time):

o
y(£) R pi(t)e
k=1

where ay > 0 are strictly increasing constants, and py are polynomials, if
for any N > 1, there exists € > 0, such that

N

ly(t) — Zpk(t)e*akﬂ = O(e(WFe)t) a5 t — 0.
k=1
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Force
o0

Let S be the additive semigroup generated by A and ay.
Re-order:

S={m<pr<pus<...}.

Re-write -
eXp Zpk e Hkt — ka(t).
k=1

For € S, denote R, = Ry the projection if A € o(A), otherwise, R, = 0.
Still have
ARy = pRuy, R" = & Ry,
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Theorem (Cao-H.)
For solution y(t), there exist vector-valued polynomials q,(t) such that

o

y(t) ~ Z qr(t)e ™ ast — oo.
k=1

In fact, the polynomials qx(t)’s solve the linear systems

N

q;( = _(A_/J/k)qk—i_z Z Lm(qjm,lﬂ qjm,2? R qjm,m)+pk(t )

m=2 lu‘jm,l +lu‘J‘m,2 +""u’J'm,m =Hk

Equivalently, y,(t) = qx(t)e "+t solve

YII< = —Ayk + Z Z Lm(me,1>yjm,27 poc ’-yjm,m) + fi(t).

m=2 “jm,l +'ujm,2 +“"u‘fm,m =Hk
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@ In the sums above, 1 < j,,, < k —1, and N is finite depending on k,
and sufficiently large, for e.g., Nep1 > pik.

@ Each ODE is a linear system, with the forcing term defined by
previous steps.

@ The gx's are unique polynomial solutions provided Ry, g«(0) is given.

@ In autonomous case (f = 0),
q;( = _(A_Mk)qk+z Z Lm(qjm,ﬂ q_jm,27 Tt qjm,m)’
M=2 iy 3 i o+ Fojm, m =Hk

Compare this with non-autonomous case.

@ The gx's depend on the initial data yyp.
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ll. Power-decaying forces

Notation. Power expansion (in time):
o
pow. o
y(6) "R g,
j=1

where a; > 0 are strictly increasing, and §; € R" are constant vectors, if
for any N > 1, there exists € > 0, such that

N
y(t) = gt = O(t(¥9)) as t — oo,
j=1
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The force has the expansion

(o)
F(£) "R At
k=1

where 7}, € R”, and
O<ar<ap<...

Let S = (additive semigroup generated «'s)+(N U {0}).
Denote

S:{O<u1:a1<,u2<u3<...}.

Rewrite

F(£) P27 Tt = fil(t).
k=1 k=1
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Theorem (Cao-H.)

For any solution y(t), ones have

o0

y(£) PR gt as t — oo,
k=1

where constant vectors &, € R" satisfy

Afk = Z Z Lm(gjm,ufjm,za cee afjm,m) + Nk + é-p,ufp

m=2 Mjm,1+ujm,2+"'}’[‘jm,mzuk

in case there exists 1 < p < k — 1 such that jip +1 = py; or

Ak = Z Z Lm(gjm,17§jm,27 s 7§jm,m) + Nk,

m=2 #fm,1+#jm,2+“‘“jm,m:uk

in case pip +1# py forall1 < p < k—1.
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@ The &k's and hence the expansion are independent on initial data yp,
contrasting with the exponential case.

@ It means that all (decaying) solutions have the same power expansion.
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Assume:
@ ay =k forall ke N

° G(y) = B(y,y)-
Then pux = k, and S = N. Expansion

(1) PR gt
k=1
where
& = A1,

and for k > 2,

k—1

& = A‘l{(k = 1)1+ Z B(&j, &k—j) + 77k}~
j=1
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3. Sketch of proofs

m |. Case of exponential decay
m Il. Case of power decay
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|. Case of exponential decay

Recall

F(£) BN pr(t)e it =Y £i(t).
k=1 k=1
Need to prove

oo
y(£) R au(t)e .
k=1

L. Hoang (Texas Tech) Asymptotic expansions for non-autonomous differential equations UNG 11.3.2017



Induction step.

Let yi(t) = qu(t)e ¢, for 1< k < N, Jy = S p_y yk and vy = y — yi.
Induction hypotheses: for k =1,2,... N

vie = O(e (+500)

and equations for yi's hold true for k =1,2,... N.
We will construct the polynomial gy41(t) such that

wi(t) = gna(2)] = O(e™mt),

where
WN(t) = e‘uN“tVN(t).

L. Hoang (Texas Tech) Asymptotic expansions for non-autonomous differential equations UNG 11.3.2017



Equation for wy(t):

wy = —(A— png1)wh

+ Z Z Lm(qjmyla Qjm2s- s qjm,m)

M22 3 T o+ i, m =HN+1

+ O(e7%).
For i € S, taking R, of the equation gives

(Ruwn)' = — (1 — pns1) Ruwn

+ Z Z RuLm(qjm,l, Qjmare -+

M22 Py 3 T Hjm oo Fojm,m =HN+1

+ O(e7%).
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Lemma

Let (X,]| - ||) be a Banach space. Suppose y(t) is in C([0,c0), X) and
C1((0,00), X) that solves the following ODE

dy
E—Fay p(t) +g(t) fort >0,

where constant a € R, p(t) is a X-valued polynomial in t, and
g(t) € C([0,00), X) satisfies

lg(t)]| < Me™® Wt >0, forsome M,d > 0.

Define g(t) for t € R by

e ot f T)dT if a >0,
q(t) = ) + fo d’T + fot p(T)dT if a =0,
—e‘at I ean(T)dT if a <O0.
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Then g(t) is an X-valued polynomial that satisfies

da(t)

g + aq(t) = p(t) VteR,

and the following estimates hold.

(i) If @ >0 then

ly(t)=a(t)]| < (Hy(O)—q(O)H+ P

M .
>e— min{d.alt ¢+ >0 for a # 6,

|
and
ly(t) = a(8)ll < (ly(0) — q(0)|| + Mt)e™*,t >0, for a = 6.
(i) If (@ = 0) or (a < 0 and limy_e0 €ty(t) = 0) then

Mefét

IY(6) = a(e)] < gy Ve =0
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Applying the above ODE lemma, then there exists polynomial
gn+1,j € Ry (R7) such that

|Ruj WN(t) - qN-‘rl,j(t)’ = O(eiaNJrlt)’

Define gnt1 = >_; qn+1, (finite sum). Then

wi(t) = qua(t)] = O(e™¥t),
which yields

N

]y(t) — Z qk(t)eﬁukt _ qN+l(t)e*HN+1t‘ — O(e*(uN+1+5/\/+1)t)'
k=1
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lI. Case of power decay

Recall
o0
F(£) PR et
k=1

Need to prove

o
y(t) PR Zﬁkt_“k-
k=1
Induction step. Let yx = &t Hk, yy = 221:1 yk and vy =y — yn.
Suppose
lvy| = Ot~ (v ton))y,
Let

wy = PN+ V.
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In

ction step.

Equation for wy(t):

wy = —Awy

4 PN { N+ Z Z Lm(&jm,p gjm,27 s ’gjm,m)>

M22 Wy 1 F P 2+ Him,m =HN+1

+ NN+1 tHN+L

N
+ kz—:l (t*“k Z Z Lm(gjm,17§jm,27 ce 7£jm,m)

m22 g g ot Bm, m =Hk

N
— A&t M 4 nkt—uk) + Z,U/pgpt_(”p—i_l)} + O(t_(s).
p=1
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Note puny + 1 > ppy1. Moreover
{p+1:1<p<N—1}N[p1, puny1) C{pk: 1 < k< N}
Then distribute the red sum into the others including possible O(t~?) gives

wy = —Awy
HN+1 —HN+1 . . .
+ tHn+ {t + E E Lm(gjmvl,fjm’z,...,§jm,m)>
M22 e, 3ty oo B, m = EN+1

+ nNJrlt_MN-H + /Lpgpt_(/ip+1)

pptl=pns

N
+ Z (7A£k A Z Z Lm(gjmylvgjmga cee 7£jm,m)
k=1

M22 iy 3 F o o+ Him, m =k

pp+l:p,k) }

+ nkt—uk + /Apgpf_("'P+1)

+0(t79).
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Thus,
wy = —Awy + Alny1 4+ O(t70).

If for some o« > 0,

y'=—-Ay+£+0(t79),
then
y(t) = A+ 0(t?).

Proof.

t t
y(t) = e_tA}/O + e_tA/ eTAde + / e_(t_T)AO(T—a)dT
0 0

_ e—tAyO T e_tAA_l(etAf . 5) + O(t—a)
=AN+0O(t). O
Then  wy(t) = A" H(Abng1) + O(t70) = Engr + O(70).
Thus,
vy (t) = Enpat Pt 4 Ot~ (s to)y,
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4. Application to solutions near special periodic

orbits
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Application (demonstration)

On the plane n =2, y = (y1,)2), r=|y| = \/m

In polar coordinates, i.e., y(t) = r(t)(cos(é(t),sin(6(t)), assume

r'=(r—1)(r—2),
0 =1.

Then r =1,2 and 8 = 6y + t are periodic solutions.

The first (r = 1) is asymptotically stable, and the second (r = 2) is
unstable.

Denote the first periodic orbit by y*(t) = (cos(fy + t),sin(6y + t)).
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Expansion

Let z=r —1, then

Z=z2(z-1)=-z+2% 2(0)=2z € (-1,1).

Then z(t) admits an expansion:

2(t) = qu(t)e ™,
k=1

where real-valued polynomials gx's solve

dqi
o =~ k= 1ak+ > g
=k

Hence the solution y(t) has expansion

y(t) & y*(t) <1 + Z qk(t)efkt).
k=1
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Calculations

o qu(t) =&e ™,
° q5(t) = qo(t )+§1 Hence, go2(t) = —etf —Té‘%dT _ f%.
o Claim: gx(t) = ck&F. Indeed, prove by induction,

k—1
G = (k= Dak+siét, se=) g
j=1
Then, qi(t) = —elk=Dt f_too e (k=Drg thdr = &K, where
=
a=1 c= k—l(.zlcj) =1
J:

Thus, y(£) 2 y*(6) (1 + 3252, ke —kt).

o Explicitly, 2(t) = 1=z n7mer = 1o = Lorer {Fe ¥, with
& =2/(z—1).
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Non-autonomous case |: Exponential perturbation

r=(r—-1)(r-2)+ Zpk(t)e_kt, 0 =1.

k=1
Then
o0
7 =—z4+7%+ Zpk(t)e_kt.
k=1
Similarly,
(o)
exp. 4 _
(1) %%y (t)(l—i—qu(t)e kf),
k=1
where J
qk )
b (k—1Dax + Z qj9e¢ + Pr-

=k
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Non-autonomous case Il: Power perturbation

Assume there are d, € R:

r'=(r—1)(r +det 0 = 1.

Then
o0
Z=—z4+2%+ Z dit k.
k=1
We obtain
oo
( )pOW *(t)<1+zakt_k>,
k=1
where

ay =di, ax = (k — l)ak,1 + Z ajap + d for k > 2.
=k
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THANK YOU FOR YOUR ATTENTION.
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