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PART |. 3-D Navier-Stokes Equations

IA. Theory of normal forms.
IB. Global regularity in thin domains.
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Introduction

Navier-Stokes equations (NSE) in R with a potential body force
0
a—z—l—(u-V)u—l/Au: —Vp+f,
div u =0,
u(x,0) = u°(x),

v > 0 is the kinematic viscosity,

u = (u1, up, uz) is the unknown velocity field,
p € R is the unknown pressure,

f is the body force,

u® is the initial velocity.
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Existence and Uniqueness

Denote by N the outward normal vector to the boundary. Define
H={uel?(Q):V-u=0inQ, u-N=0on 0},
V={uecH(Q):u=0o0ndQ}.

[Leray 1933, 1934] Suppose f = f(x) € L?(Q).
e If up € H, then there exists a weak solution on [0, c0):
u € C([0,00); Hyear) N L°°(0, 00; H) N L2(0, o0; V).
Question 1: Is this weak solution unique?
o If ugp € V, then there exists a unique strong solution on [0, T') for some
T > 0: ue C([0,00); V)N L>®(0,00; V) N L2(0, 00; H?(Q)).
Question 2: Canitbe T = 0c0?

In the 2D case, Questions 1 and 2 have affirmative answers.

In the 3D case, still open!

Small data results: If |lug| 41(q) and [|f]|;2(q) are small then the strong
solution exists for all t > 0.
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Part IA. Theory of normal forms

o f = —V¢ is a potential body force.
e Let L>0and Q= (0,L)3 The L-periodic solutions:

u(x + Lej) = u(x) for all x e R3 j =1,2,3.

e Zero average condition

e Throughout L =27 and v = 1.
e Let V be the set of R3-valued L-periodic trigonometric polynomials
which are divergence-free and satisfy the zero average condition. We define

H = closure of V in L%(Q)3 = H(Q)3,
V = closure of V in H'(Q)3,
D = closure of V in H3(Q)3.

e Norm on H: |u] = [|u|;2(q), on V: [lu|| = [Vu|, on Da: |Aul.
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Functional form of NSE

e The Stokes operator:

Au = —Au for all u € Da.

e The bilinear mapping:
B(u,v) = P (u-Vv) for all u,v € Da,

where P; is the Leray projection from L?(Q) onto H.
e Denote by R the set of all initial data u® € V such that the solution
u(t) is regular for all t > 0. The functional form of the NSE:

du(t)
dt

+ Au(t) + B(u(t),u(t)) =0, t >0,

u(0) =u® e R,

where the equation holds in D4 for all t > 0 and u(t) is continuous from
[0,00) into V.
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Poincaré—Dulac theory for ODE

Consider an ODE in R” of in the formal series form:

% + Ax+ oP(x) + oBl(x) +... =0, x e R,

@ Ais a linear operator from R" to R”

o each ®l9 is a homogeneous polynomial of degree d from R” to R”
There exists a formal series y = x + > o, Wl9(x), where Wl is a
homogeneous polynomial of degree d from R” to R"”, which transforms the
above ODE into an equation

d

d—{ + Ay +0R(y) +0Bl(y) +...=0, y e R",
where all monomials of each ©!9] are resonant.
Resonance. Matrix A has eigenvalues A, ..., A\, and corresponding
eigenvectors &1,...,&,. For each x € R”, let x; be its coordinate with
respect to &. A monomial xx5? ... x5 is called resonant if

Ak = 1M1+ aodo + ...+ apA,.

Luan Hoang - Texas Tech Non-linear Problems in Fluid Dynamics TTU - Oct. 1, 2013



Poincaré—Dulac normal form for NSE

Functional form of NSE:

d
£+Au+8(u,u):o.

A differential equation in an infinite dimensional space E
d
5 >+ AL + Z old(g) =0 (%)

is a Poincaré—Dulac normal form for the NSE if

@ Each ¢l ¢ 1l9(E), the space of homogeneous polynomials of order
d, and ®l() = 3 old(¢), where all ol ¢ 2(I9(E) are resonant

monomials,

@ Equation (%) is obtained from NSE by a formal change of variable
u="3"% wl(¢) where widl ¢ HlI(E).
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Asymptotic expansion - Normalization map

For ugp € R, the solution u(t) has an asymptotic expansion: [Foias-Saut]
u(t) ~ qi(t)e " + go(t)e " + qa(t)e > + ..,

where g;j(t) = W;(t, u°) is a polynomial in t of degree at most (j — 1) and
with values are trigonometric polynomials. This means that for any
NeN, meN,

N
lu(t) = > gi()e | um(@) = O(e”N+9)%)

j=1

as t — oo, for some € = ey m > 0.
Let W(W0) =& @& D+, where § = R;q;(0), for j =1,2,3... Then W
is an one-to-one analytic mapping from R to the Fréchet space

SA=RRHORHS ---.
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Constructions of polynomials g;(t)

If u® € R and W(u®) = (&,&,...), then gj's are the unique polynomial
solutions to the following equations

j+(A=Jj)gi+ 8 =0,
with R;q;(0) = &, where §;'s are defined by
fr=0and for j > 1, 8 = Z B(qk, qi)-
k+1=j

Explicitly, these polynomials g;j(t)’s are recurrently given by

gi(t) = & - /0 R3(r)dr

F YDA - R0 - R)S;
n>0

where [(A—j)(/ — R-)]*”*l (%) = X ke qrpgrrre™™, for
u(x) = X k2 ake*x e V.
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Normal form

e The Spa-valued function £(t) = (&n(t))02; = (Wa(u(t)))oe, = W(u(t))
satisfies the following system of differential equations (normal form in Sa):

%) L aei( =0
d§é§ Va0 + 3 RB(PLED), PUE®) =0, 0> 1,

k+1=j
where P;(£) = q;j(0,&) for £ € Sa.
e Ford > 1, let PI(¢) = 32, PY(6) = 3572, 4(0.).
For d > 2, let Bl(e) = -2, BlY(¢)
= 5% Yhiins Sminea RIBPI(E), PI(9).

Rewrite in the power series form:

d oo
Bl [d(e) —
dt§+A£+ E B(¢) = 0.

d=2
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Main result

Let £°° be the Fréchet space C*°(R3,R3)N V.
Theorem (Foias-H.-Saut 2011)

The formal power series change of variable

u=¢&+ ) P,

d=2

where £ € E* = C®(R3,R3) N V, reduces the NSE to a Poincaré—Dulac
normal form

d o0
Sl E [d ey —
dt§+A§+d:2B (&) =0.

e Along the way, Pl(¢), Bl9l(¢) are proved to converge in appropriate
Sobolev spaces (depending on d).
e The change of variables, in fact, is the formal inverse of the

normalization map .
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Explicit change of variable

u~ D a(0.6) = ZZ 900,6) =3 ql(0,6) = ZP

j=1d=1 d=1 j=d

This has the formal inverse

¢=P(u +Z7>[d1 iﬁdl

d
= [d]
6 ACH d§_2j Q)

Explicitly, QI(¢) = A¢, and for d > 2,
Q¥() = > B(PHM(),P¢)- > DPY(E)(QI()+HPI(),

k+I=d 2<k,1<d—-1
k+l:d+1

where Hi\d)P[d] (&) = AP(¢) — DPL(£)A¢ (Poincaré homology oper.).
Proved QI9(¢) = Bld(¢) for all ¢ € E* and d > 2.
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Well-posedness in Banach spaces

Constructed normed spaces.  Let (%,)52, be a fixed sequence of real
numbers in the interval (0, 1] satisfying

: ~ \1/2" _
) =0

We define the sequence of positive weights (p,)52; by

pr=1, pp=Fnynph_1, n>1,
n

where 7y, € (0, 1] are known and decrease to zero faster than n™".
For o = (up)p2, € V™, let

1@l = > pall Vunll 20,
n=1
Define V* ={t e V*: ||, <o}, Si=5anV*~
Clearly V* and S} are Banach spaces.
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Well-posedness of the normal form

[Foias-H.-Olson-Ziane 2006,2009]
We summarize our results in the commutative diagram

S(t)

R R

J/ w() W(')J/
W(()’) 5;)4( snormal(t) 5;)4( W(O7)

Q(O") Q(O")

V* Sext () V*

Figure: Commutative diagram

where all mappings are continuous.

Luan Hoang - Texas Tech Non-linear Problems in Fluid Dynamics TTU - Oct. 1, 2013



Part IB. Global regularity in thin domains

Fast Rotation. Chemin, Babin-Mahalov-Nicolaenko, . ..
Thin domains.
@ Damped hyperbolic equations in thin domains: Hale-Raugel 1992
@ NSE on thin domains: Raugel-Sell 1993, 1994
@ Spherical domains: Temam-Ziane 1996
o Later: Avrin, Chueshov, Hu, Iftimie, Kukavica, Rekalo, Raugel, Sell,
Ziane, H., ...

Navier friction boundary conditions.
u-N=0, v[D(u)Nan+~yu=0,

@ v = oo: Dirichlet condition.

@ v = 0: Navier boundary conditions (without friction/free slip).
One-layer domain: flat bottom [Iftimie-Raugel-Sell 2005]

o If the boundary is flat, say, x3 = const, then
u3 =0, ~yuy+vdsur = yuy 4+ vdsux = 0. See [Hu 2007].
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Single-layer domains

Theorem (H.-Sell 2010, H. 2011)

Consider NSE in Q = T? x (ho(¢), h1()) with Navier boundary conditions
on the top and bottom boundaries.

If luollv, Ifll4 = o(e~/?) ase — 0, then the strong solution exists for
all time when ¢ is sufficiently small.

Note: We also prove the existence of the global attractor and estimate its
size.
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Two-layer domains

QF = {(x1,x2,x3) : (x1,x2) € T2, ho(x1,x0) < x3 < hy(x1, %)},
Q- = {(x1,%2,x3) : (x1,%) € T?, h_(x1,%2) < x3 < ho(x1, %)},

where hg = ecgo, hy =¢<(go+g+), and h— =<(go — g-).
o gi(x1,x2),84(x1,x2) > co > 0.

e Top 4, bottom I'_, and interface Ip.

olet Q. =[Q.1,Q.7], 0Q: = [0Q:.1,0Q.7], T =, T_].
e Consider the Navier—Stokes equations in €.

gl;—k(u-V)u—yAu:—Vp—i-f,

div u =0,
u(x,0) = u°(x),

where u = [uy,u_], p=[ps,p-], f = [, ], v=[v, v ]
uO(x) = [ul, u0].
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Boundary conditions

Let N, , N_ be the outward normal vector to the boundary of Q. 7, Q..
e The slip boundary condition on 0€). is

up - Ny =0o0nT4,lg; u_-N_=0onT_Tp.
e The Navier friction conditions on the top and bottom boundaries are
[v4+(Duy) Nilean +v4up =0 on Ty,
[v—(Du-) N_]tan +v-u— =0 onl_.
e The interface boundary condition on Iy is
[v4+(Dut )Ny Jean + yo(us — u-) =0,

[v—(Du-)N_]tan +v0(u— — uy) = 0.
e Assumptions on coefficients: with 2/3 < § <1,

C1ed < Yo, v+ < Ce‘;, Cle <o < Ce.
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Main results

Stokes operator A. Some appropriate averaging operator: M.

Theorem (H. 2013)

There are positive numbers ¢, and k such that ife < e, and ug € V,
f € L%°(0, 00; L?(Q.)3) satisfy that

- 1 -

IMuollZ2, el AZuollfz, € °IMPFlfZ 2, ellPfllfope <
then the strong solution u(t) of NSE exists for all t > 0. Moreover,
1

lu(OlZ < Cr, [IA2u(t)[72 < Ce7hr, £ 0,

where C > 0 is independent of ¢, ug, f, and

|AY2y|12, —2/ V!Du!zdx+2/’ﬂ“’2d0+2’70/ |uy — u_[?do.
Q r

)

Remark: The condition on wug is acceptable.
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Key estimates

Proposition

If € > 0 is sufficiently small, then for all u € Dy,
|Au + Aullyz < Cel|V2ull 2 + C||Vull 2 + C®Hull 2,
CllAull2 < [Jullpe < C'|Aul 2.

Given a > 0, there is C,, > 0 such that for any € € (0,1] and u € Dy, we
have

(- Vu, Au)| < allul? + CeV/2|AY2u] 2| Aull
1/3 —
+ CallulZ + [el1A 202 ula] ) (e THIAY2u)2).

where C > 0 is independent of € and «.

Luan Hoang - Texas Tech Non-linear Problems in Fluid Dynamics TTU - Oct. 1, 2013 22



PART Il. Forchheimer flows in porous media

IIA. Single-phase slihgtly compressible fluids.
IIB. Two-phase incompressible fluids.
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Darcy’s and Forchheimer's flows

Fluid flows in porous media with velocity u and pressure p:

@ Darcy’s Law:
au = —Vp,

@ the Forchheimer “two term” law
au+ Blulu=-Vp,
@ the Forchheimer “three term” law
Au+ Blu|u+Clul?u=—Vp.
o the Forchheimer “power” law
au+ c"|u|"tu=—Vp,

Here «, 3, a,¢c,n, A, B, and C are empirical positive constants.
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Generalized Forchheimer equations

[Aulisa-Bloshanskaya-H.-Ibragimov 2009]
Generalizing the above equations as follows

g(Ju)u=—-Vp.
Let G(s) = sg(s). Then G(|u|) = |Vp| = |u| = G~}(|Vp]|). Hence

=~ =+ = —K(Ve) Ve,
1 1
KO =54 = 505 ~ ey

Class FP(N,@). Let N>0,0=ay< a1 <a2 <...<ap,

sg(s) = &.

FP(N,d) = {g(s) = 305" 4 a1 + aps? + ... + aNsa’V},

where ag,ay > 0, a1, ... aN 1 > 0. Notation: aN deg(g),
d=(ap,a1,...,an), a= aN+1 €(0,1), b= o +2 € (0,1).
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Historical remarks

Darcy-Dupuit: 1865
Forchheimer: 1901
Other nonlinear models: 1940s—1960s

Incompressible fluids: Payne, Straughan and collaborators since
1990's, Celebi-Kalantarov-Ugurlu since 2005 (Brinkman-Forchheimer)

@ Derivation of non-Darcy, non-Forchheimer flows: Marusic-Paloka and
Mikelic 2009 (homogenization for Navier—Stokes equations), Balhoff
et. al. 2009 (computational)
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Works on generalized Forchheimer flows

A. Single-phase flows.

@ 1990's Numerical study

o [2-theory (for slightly compressible flows):
Aulisa-Bloshanskaya-H.-Ibragimov (2009), H.-Ibragimov: Dirichlet
B.C. (2011), H.-lbragimov Flux B.C. (2012),
Aulisa-Bloshanskaya-Ibragimov total flux, productivity index (2011,
2012), Inhomogeneous media Celik-H.(in preparation).

o [“-theory: H.-Ibragimov-Kieu-Sobol (2012-preprint)
o [°°-theory: H.-Kieu-Phan (2013-preprint), H.-Kieu-Phan (in
preparation), H.-Celik (in preparation).
B. Multi-phase flows.
@ One-dimensional case: H.-Ibragimov-Kieu (2013).
e Multi-dimensional case: H.-Ibragimov-Kieu (preprint).

Note: there are more works on Forchheimer flows (2-terms or 3 terms).
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Part lIA. Single-phase slightly compressible fluids

Let p be the density. Continuity equation

dp
E-I-V-(pu)—O.

For slightly compressible fluid:

d 1
d7p = =P
b K
where kK > 1. Then
dp
= = k- (K(VI)Vp) + K(IVp]) |Vl
Since k > 1, we neglect the last terms, after scaling the time variable:

P _ v (k(vI)ve).

Flux condition on the boundary:
—K(|IVp)Vp-v=u-v=1(x,t), xe€l, t>0,

where 77 is the outward normal vector on ' and the flux ¢ (x, t) is known.
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Degeneracy - The Degree Condition

Lemma

Let g(s, d) be in class FP(N,d). One has for any £ > 0 that

a(3) . GG)
ey = K& <mrge

G(3)(€777 — 1) < K(,3)8* < G(A)E* .
Degree Condition (DC)

deg(g)§$ = 2§(2a)*=nn_(2(2__a)a)'

Under the (DC), the Sobolev space W12=3(U) — L2(U).
Strict Degree Condition (SDC)
n(2 — a)

4 .
deg(g)<m = 2<(2-a) = h_(Goa)
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IBVP - Shifted solution

The initial data
p(x,0) = po(x) is given.
Let p(x,t) = p(x,t) — |—(1J| Ju p(x, t)dx. Then

/ p(x,t)dx =0 forall t >0,
U

and

B(x, t) = p(x, ) — “1” /U po(x)dx + “1]' /0 t /r ¥(x, 7)dodr.
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[2-estimates

2-2 - 2-a
Let £(t) = [[(t)lI7 + [U(2)ll = and F(t) = [[Pe(t) oo + Iloe()
Let M¢(t) be a continuous, increasing majorant of f(t) on [0, c0).
Let A= limsup,_,, f(t) and 8 = limsup,_ . [f'(t)]".

Theorem (H.-lbragimov 2012)
Assume (DC), then

2
1B(8)I22 < lIPoll32 + C(1 + M¢(£)75) for all t > 0.
Moreover, if A < oo then
lim sup [|B(£)[|2 < C(A+ A7 3),
t—00

and if § < oo then there is T > 0 such that

B(t)|% < C(1+ BT + F(£)73) forallt> T,
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We use the following notation:

t
2
m(e) = 1+ [Pl + M7 + [ o
t—1
2 t ~
my(t) =1+ A2 +/ f(r)dr,
t—1

t
my(t) =1+ 675 + sup 25 +/ f(r)dr,
[t—1,] t—1

t
A=A+ A%a + lim sup/ f(r)dr.
t—o0 t—1

Below,

52
H(&) —/0 K(\/s)ds for £ >0,

JH[U](t)Z/UH(|Vu(X, t)|)de/UK(,vpmvp‘deN/Uwp,z_adx
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Estimates for derivatives

Theorem (H.-lbragimov 2012)

Assume (DC).
(i) For all t > 1, one has

Julp)(t), HI_Jt(t)H%z < Cmy(t) forallt > 1.
(iii) If A < oo then there is T > 1 such that
Julpl(t), |Ipe(t)]22 < Cmo(t) forallt > T,
lim sup Ju[p](t), limsup [|p:(t)[[72 < CAs.
t—o0 t—00

(iv) If B < oo then there is T > 1 such that

Julpl(t), 1Pe(t)]1?2 < Cms(t) forallt > T.
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L*°-estimate - |. De Giorgi technique.

Proposition (H.-Kieu-Phan 2013)

Assume (SDC).
(i) Then

2 .
aup [Pl < C{IBolls + (1-+ T)5(sup [l + D75}
(ii) Forany To >0, T >0, 0 € (0,1] and 6 € (0,1),

n+2

1 —(n+2)a
sup ||plleee < C{f+(T+1) G (1+ . )4 Gii)
[To+67T, To+T] 02T

4
' (HI_)HB(UX(TO:TOJrT)) + |’b”L2(U><(T0,T0+T))4_("+2)a> },

def o _ _22=a) 2=2
E=Enr=086""+T57 sup |[¢lf=+0 1= sup |[¢}
[To,To+T] [To, To+T]

Luan Hoang - Texas Tech
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L*°-estimate - |l

Theorem (H.-Kieu-Phan 2013)

Assume (SDC). (i) Fort > 0,

1B(¢) e < € (2 + lIPolleos + 1Bollf2® ) + Me(ey)

1Bl < € (1478 ) {1+ Aol 2?7 + Me(r)}.

(ii) If A < oo then  limsup,_,. [|B(t)[|r < C(1 + AH4).
(iii) If B < oo then there is T > 0 such that

Hg(2—a)

Hg(2—2a)
POl < {1+ 8% + sup vl 27} forale>T.

[t—2,t]

(iv) I limesoo |[(£)]| Lo = O then limy_sog [|B(t)|| 12 = O.
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Gradient estimate

Theorem (H.-Kieu-Phan 2013)

Assume (SDC). Fors >2, U € U and T > 1,
-

(s-2)
sup | |Vp(x,t)[Sdx < CL4(5)(1 + M,«(T))““ {1 +/ f(t)dt},
[0,7]Ju 0

e s—2
where La(s) = (1 + [1Bollio= + [1o]l4¢ )> {1 + |vpo(x)|5dx}.

Lemma (Ladyzhenskaya-Uraltseva-type embedding theorem)
For each s > 1, smooth cut-off function {(x) € C°(U),

X

/ K(IVw)[Vw[+2¢2dx < C sup |w|2{ / K(IVw) Vw2 92w?¢%d
U U

supp¢

+ [ K(|Vw))|Vw|*|V¢|2dx
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Dependence on the boundary data

Let p1(x,t) and p2(x, t) be two solutions having fluxes ¢1 and .
Let W =1)1 —tpp, P =py — p2, and P = P —|U|* [, Pdx.
Notation. We define for i = 1,2,

2—a

F(t) = (O + (D= s (1) = ()3 + (DIl

For i = 1,2, we assume f;(t), fi(t) € C([0,00)) and when needed
f(t) € CY((0,00)); let

A; = limsup f;(t) and B; = limsup[f/(t)]".
t—00

t—00

Set A=A1+ Ay, B=P1+ 2.
Let F(t) = A(t) + (1), Mr(t) = Mg (t) + My(t), F(t) = A(t) + f(1).

W(t) =1+ Mg(t) + ftt_l F(r)dr in general case, or
W(t)=1+B+F(t)+ F(t—1)+ ftt_l F(r)d in case 3 < co.
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Theorem (H.-lbragimov 2012)

_ N —b
Assume (DC). (i) If A< oo and [;° <1 + [T, F(s)ds) dt = oo then

- - . 2b
limsup || P(t)[|7. < Clim sup{\\ll(t)]%oo (1 —i—A—i—/ F(T)dT) }
t—00 t—00 t—1
(ii) If A= oo and [° W~P(t)dt = oo then

limsup ||P()||7. < Cllmsup{||\U )7 W2E (1)}
t—o00

Theorem (H.-Kieu-Phan 2013)
Assume (SDC). For T > 0, we have

sup [|Pl| oo (ury < 2[/P(0)]] 1=

)

— = _T1
+ CLlle,T(HP(O)HLz + sup [W(t)[leee + [[IP(0)ll.2 + sup [[W(t)]loe] ¥
[0,T] [0,7]

V.
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Continuous dependence for pressure gradient

Theorem (H.-lbragimov 2012)
Assume (DC).

(i) If A < 0o and ftil F(r)dr is uniformly bounded on [1,00), then
lim sup |V P(£)[22-. < M/ 1im sup [ W(#)]| <
t—o0 t—o0
+ CM2btim sup [V (£) 3,
t—o0

where My =1 + A + limsup,_,o, [, , F(7)dT.

(i) If A= 00 and lim;—oo W/(t)WP~1(t) =0 and [{° W=P(7)dT = o0,
then

limsup | VP(t)]|%_. < Climsup (Wz"“/z(t)\lw(t)HLm)
t—00 t—00

+ Climsup (W2H(e) [W(0)] 3 )-
t—00
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Dependence on the Forchheimer polynomials

Recall
g(lul)u=—Vp,
g(s) = aps™ + a1s™ + axs™ + ... + aysN.

elet N>0and @=(0,aq,...,ay) be fixed. Denote
R(N) ={3d= (a0, a1,...,an) : ao,any > 0,a1,...,any_1 > 0}.

e Let D be a compact set in R(N).

o Let g1(s) = g(s,3M) and g(s) = g(s,3?) be two functions of class
FP(N, &), where 31 and 3 belong to D.

o Let pi = p(x, t; 3%)) be two solutions with the same flux ¥ (x, t).
elet P=p;1—p2, P=p1— P2
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Theorem (H.-lbragimov 2012)
Assume (DC). If f(t) and f(t) are bounded, then

limsup || P(t)]1%, < C.METLED — 52
t—o0

limsup | VP(t)||2,—. < C*I\/Igb/zﬂyé’(l) —FA2 4 C*/\/]é?“’g(l) — 59,
t—00

where Mg =1+ A+ limsup;_, ftt_l ?(T)dT-

A

Theorem (H.-Kieu-Phan 2013)

Assume (SDC). Let A = ||P(0)]| 2 + |3} — 3()|1/2,
sup [|Pl| (v < 2[1P(0)]l1 + CMo 7 (A + ARH), T >0,
[0, 7]

D 1
sup [|Pllie(ur) < CT(A+ ART),
[2700)

- 1\ 1/2
lim sup || P(£)]] 1 () < CTg(]é“) ~ 3@ 4|50 - 5<2>|7311) .
t—o0
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Part 1IB. Two-phase incompressible fluids

For each ith-phase (i = 1,2), saturation S; € [0, 1], density p; > 0,
velocity u; € R", and , and pressure p; € R. The saturations satisfy

5 +5=1.

Each phase’s velocity obeys the generalized Forchheimer equation.
Conservation of mass holds for each of the phases:

Ot(9piSi) + div(pju;) =0, i=1,2.
Due to incompressibility of the phases, i.e. p; = const. > 0, it is reduced to
$0:Si +divu; =0, i=12.
Let pc be the capillary pressure between two phases, more specifically,

P1— P2 = Pc-

Luan Hoang - Texas Tech Non-linear Problems in Fluid Dynamics TTU - Oct. 1, 2013 42



Denote S = S; and p. = pc(S). Then

gi(|luiu; = —£(S)Vp;, i=1,2,

Vp1— Vp2 = pc(S)VS.

Hence
F2(S)&2(Juz2|)uz — F1(S)g1(|ui|)ur = VS,
where 1
F, 5 - s | = 1,2
B)= 0 9)53)
In summary,

0<S=Sxt)<l,
St = —div uq,

St = div uy,

VS = F(5)G2(u2) — F1(S)G1(uy).
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One-dimensional problem

Assumption A.
fi, & € C([0,1]) N C}((0,1)),

f(0)=0, £(1)=0,
f(S) >0, £(S)<O0on(0,1).

Assumption B.

Pe € CH((0,1)), pL(S)>0o0n (0,1).

Theorem (H.-Kieu-Ibragimov 2013)

e There are 16 types of non-constant steady states (based on their
monotonicity and asymptotic behavior as x — +00).
e The steady states which are never 0 nor 1 are linearly stable.
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Multi-dimensional problem [H.-Kieu-lbragimov 2013]

Steady states with geometric constraints:
Wi(x) = alx "X, u3(x) = x| %, S.(x) = S(I),
where c1, ¢; are constants and S(r) is a solution of the following ODE:
S'=F(r,S5(r)) forr>r, S(n)=s, 0<S(r)<Ll.
where sp is always a number in (0,1) and

F(r, S( )) = G2(c2r )Fz(S) G]_(Clr )F1(5)
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Theorem

There exists a maximal interval of existence [ry, Rmax), where
Ruax € (r0,00], and a unique solution S € C([ro, Rmax); (0,1)).
Moreover, if Ryax IS finite then either

lim S(r)=0 or lim S(r)=1.

r—Rmax r—Rmax

| \

Theorem
If solution S(r) exists in [ry, 00), then it eventually becomes monotone
and, consequently, ss = lim,_,o S(r) exists.
0

In case n =2 and ¢ + c3 > 0, let s* = (fl/fg)_lczé)

(i) If a1 <0 and ¢ > 0 then soo = 1.

(i) Ifc1 >0 and ¢ <0 then s, = 0.
(iii) If c1,c2 < 0 then sy = s*.
(iv) Ifc1,co > 0 then sy € {0,1,5*}.

§
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Linearized problem
5(x), S(x)) is

The formal linearized system at the steady state (uj(x), u}
oy = —div vy, oy =div vy,
Vo = Fy(8:)G(u3)va + F5(S+)0Ga(us)

~ (A(S)Gi (v + F(S)oGa(u]) ).

(
Let v =vi + vp. Then div v =0. Assume v = V(x,t) is given . Let
(

t
B(x) = F2(S:)G5(u3) + F1(S:)Gy

uz),

b = b(x) = F;(S5,)G2(u3) — F{(5+)G1(u7),
c = c(x, t) = F1(S5,)G)(u)V(x, t).

Decoupling the linearized system:
oe=V- [A(vg - ob)} +V - (Ac),
:A(VU—Ub)+AC, V1:V—V2.

TTU - Oct. 1, 2013
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In Bounded domains

Condition (E1). Fi, F, € C7((0,1)) and V € C8(D); V, € C3(D).

Theorem

Assume (E1) and A4 gsupD(\V(x, t)| +|VV(x, t)]) +supry[o,00) 18(x; t)]
is finite. Then the solution o(x, t) of the linearized equation satisfies

sup |o(x, t)| < C[e‘mtsup loo(x)| + A4] for all t > 0.
xelU U

Moreover,

lim sup [sup lo(x, t)|] < CAs,

t—o00 xeU

where
A5 = limsup, o | supeeu(IV(x, £)] + [VV(x, 1)) + supyer lg(x, 2)].
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Theorem

Assume (E1), and Dg 2L supp(IV(x, t)| + [VV(x, t)| + [V2V(x, t)|) and

Ay L SUPrx[0,00) 18(X; t)| are finite. Then for any U’ € U, there is M >0
such that fori = 1,2, x € U’ and t > 0,

1
sup |vi(x, 1)] < M (1+ %) [t sup 70(x)] + As + VB + A7 |.

xeU’

Consequently, if

lim {SUP(!V(XJ)H!VV(XJ)IHVz (<, £)1) + sup g (x, t)!}z
t—=oo Lycy

xel

then for any x € U,

tILn;ovl( t) = Il)moovz( t) =0.

Luan Hoang - Texas Tech Non-linear Problems in Fluid Dynamics TTU - Oct. 1, 2013 49



Theorem (In unbounded domains)

Let n > 3. Assume (E1), A1; &t supp |V - (A(x)c(x, t))| < oo and

def
Ao == max{sup |oo(x)|, sup |g(x,t)|} < co.
U

[ x[0,00
(i) There exists a solution o(x, t) € CXZ”tl(D) N C(D) such that
‘U(X, t)’ < C[Alo + All(t I 1)] .

(ii) IflimpySo0 oo(x) =0 and lim|y|—o00 SUPo<t<T |V (A(x)c(x,t))| =0
for each T > 0, then

lim ( sup lo(x, t)|) =0 forany T >0;
70 MIxl=r}x[0,T]

there is a continuous, increasing function r(t) > 0 with lim;_ r(t) = 0o
such that

tln;c)( sup |o(x, t)]) =0.
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Scientific activities (since joining TTU in Fall 2008)

@ Conference talks: 8

o TTU talks: 11

e Invited talks in other institutions: University of Chicago (2010),
Indiana University (2011), University of Tennessee (2011).

e Co-organizer of special sessions/mini-symposia: 3 in America, 1 in
Italy

@ Co-organizer of RedRaider Mini-symposia 2009 and 2013

o Co-organizer of Applied Mathematics Seminars (2008—present)

@ Reviewer for: Discrete and Continuous Dynamical Systems - Series A,
Journal of Mathematical Analysis and Applications, Journal of
Dynamics and Differential Equations, Journal of Differential
Equations, Electronic Journal of Differential Equations, Nonlinear
Analysis Series A: Theory, Methods and Applications
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