An explicit Poincaré–Dulac normal form for Navier–Stokes equations

Ciprian Foias, Luan Hoang[†], Jean-Claude Saut

†Department of Mathematics and Statistics, Texas Tech University

*http://www.math.umn.edu/~lhoang/

1uan.hoang@ttu.edu

February 9, 2011 Applied Math Seminar Texas Tech University, Lubbock

Outline

Introduction

2 Main Result

3 Proof

Introduction

Navier-Stokes equations (NSE) in \mathbb{R}^3 with a potential body force

$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla)u - \nu \Delta u = -\nabla p - \nabla \phi, \\ \operatorname{div} u = 0, \\ \mathbf{u}(x, 0) = u^{0}(x), \end{cases}$$

u > 0 is the kinematic viscosity, $u = (u_1, u_2, u_3)$ is the unknown velocity field, $p \in \mathbb{R}$ is the unknown pressure, ϕ is the potential of the body force, u^0 is the initial velocity.

Let L > 0 and $\Omega = (0, L)^3$. The L-periodic solutions:

$$u(x + Le_j) = u(x)$$
 for all $x \in \mathbb{R}^3, j = 1, 2, 3,$

where $\{e_1, e_2, e_3\}$ is the canonical basis in \mathbb{R}^3 .

Zero average condition

$$\int_{\Omega} u(x)dx = 0,$$

Throughout $L=2\pi$ and $\nu=1$.

Functional setting

Let $\mathcal V$ be the set of $\mathbb R^3$ -valued L-periodic trigonometric polynomials which are divergence-free and satisfy the zero average condition. We define

$$H = \text{ closure of } \mathcal{V} \text{ in } L^2(\Omega)^3 = H^0(\Omega)^3,$$
 $V = \text{ closure of } \mathcal{V} \text{ in } H^1(\Omega)^3,$
 $\mathcal{D}(A) = \text{ closure of } \mathcal{V} \text{ in } H^2(\Omega)^3.$

Norm on $H: |u| = ||u||_{L^2(\Omega)}$, Norm on $V: ||u|| = |\nabla u|$, Norm on $\mathcal{D}(A): |\Delta u|$. The Stokes operator:

$$Au = -\Delta u$$
 for all $u \in \mathcal{D}(A)$.

The bilinear mapping:

$$B(u, v) = P_L(u \cdot \nabla v) \text{ for all } u, v \in \mathcal{D}(A).$$

 P_L is the Leray projection from $L^2(\Omega)$ onto H.

Spectrum of *A*:

$$\sigma(A) = \{|k|^2, 0 \neq k \in \mathbb{Z}^3\}.$$

If $N \in \sigma(A)$, denote by $R_N H$ the eigenspace of A corresponding to N. Otherwise, $R_N H = \{0\}$.

Functional form of NSE

Denote by \mathcal{R} the set of all initial data $u^0 \in V$ such that the solution u(t) is regular for all t > 0. The functional form of the NSE:

$$\frac{du(t)}{dt} + Au(t) + B(u(t), u(t)) = 0, \ t > 0,$$
$$u(0) = u^0 \in \mathcal{R},$$

where the equation holds in $\mathcal{D}(A)$ for all t>0 and u(t) is continuous from $[0,\infty)$ into V.

Poincaré-Dulac theory for ODE

Consider an ODE in \mathbb{R}^n of in the formal series form:

$$\frac{dx}{dt} + Ax + \Phi^{[2]}(x) + \Phi^{[3]}(x) + \ldots = 0, \ x \in \mathbb{R}^n,$$

- A is a linear operator from \mathbb{R}^n to \mathbb{R}^n
- each $\Phi^{[d]}$ is a homogeneous polynomial of degree d from \mathbb{R}^n to \mathbb{R}^n

Then by an iteration of particular formal changes of variable, there exists a formal series $y=x+\sum_{d=1}^{\infty}\Psi^{[d]}(x)$, where $\Psi^{[d]}$ is a homogeneous polynomial of degree d from \mathbb{R}^n to \mathbb{R}^n , which transforms the above ODE into an equation

$$\frac{dy}{dt} + Ay + \Theta^{[2]}(y) + \Theta^{[3]}(y) + \ldots = 0, \ y \in \mathbb{R}^n,$$

where all monomials of each $\Theta^{[d]}$ are resonant.

Poincaré-Dulac normal form for NSE

Functional form of NSE:

$$\frac{du}{dt} + Au + B(u, u) = 0.$$

A differential equation in E^{∞}

$$\frac{d\xi}{dt} + A\xi + \sum_{d=2}^{\infty} \Phi^{[d]}(\xi) = 0 \tag{*}$$

is a Poincaré-Dulac normal form for the NSE if

- (i) Each $\Phi^{[d]} \in \mathcal{H}^{[d]}(E^{\infty})$ and $\Phi^{[d]}(\xi) = \sum_{k=1}^{\infty} \Phi^{[d]}_k(\xi)$, where all $\Phi^{[d]}_k \in \mathcal{H}^{[d]}(E^{\infty})$ are resonant monomials,
- (ii) Equation (\star) is obtained from NSE by a formal change of variable $u = \sum_{d=1}^{\infty} \Psi^{[d]}(\xi)$ where $\Psi^{[d]} \in \mathcal{H}^{[d]}(E^{\infty})$.

Asymptotic expansion of regular solutions

For $u_0 \in \mathcal{R}$, the solution u(t) has an asymptotic expansion: [Foias-Saut]

$$u(t) \sim q_1(t)e^{-t} + q_2(t)e^{-2t} + q_3(t)e^{-3t} + ...,$$

where $q_i(t) = W_i(t, u^0)$ is a polynomial in t of degree at most (i-1) and with values are trigonometric polynomials. This means that for any $N \in \mathbb{N}$. $m \in \mathbb{N}$.

$$||u(t) - \sum_{j=1}^{N} q_j(t)e^{-jt}||_{H^m(\Omega)} = O(e^{-(N+\varepsilon)t})$$

as $t \to \infty$, for some $\varepsilon = \varepsilon_{N,m} > 0$

Normalization map

Let

$$W(u^0) = W_1(u^0) \oplus W_2(u^0) \oplus \cdots,$$

where $W_j(u^0) = R_j q_j(0)$, for j = 1, 2, 3... Then W is an one-to-one analytic mapping from \mathcal{R} to the Fréchet space

$$S_A = R_1 H \oplus R_2 H \oplus \cdots$$
.

Also, W'(0) = Id meaning

$$W'(0)u^0 = R_1u^0 \oplus R_2u^0 \oplus R_3u^0 \oplus \cdots.$$

Constructions of polynomials $q_i(t)$

If $u^0 \in \mathcal{R}$ and $W(u^0) = (\xi_1, \xi_2, ...)$, then q_j 's are the unique polynomial solutions to the following equations

$$q_j'+(A-j)q_j+\beta_j=0,$$

with $R_j q_j(0) = \xi_j$, where β_j 's are defined by

$$\beta_1 = 0 \text{ and for } j > 1, \ \beta_j = \sum_{k+l=j} B(q_k, q_l).$$

Explicitly, these polynomials $q_j(t)$'s are recurrently given by

$$q_{j}(t) = \xi_{j} - \int_{0}^{t} R_{j} \beta_{j}(\tau) d\tau + \sum_{n>0} (-1)^{n+1} [(A-j)(I-R_{j})]^{-n-1} (\frac{d}{dt})^{n} (I-R_{j}) \beta_{j},$$

where
$$[(A-j)(I-R_j)]^{-n-1}u(x) = \sum_{|k|^2 \neq j} \frac{a_k}{(|k|^2-j)^{n+1}} e^{ik \cdot x}$$
, for $u(x) = \sum_{|k|^2 \neq j} a_k e^{ik \cdot x} \in \mathcal{V}$.

Normal form in S_A

The S_A -valued function $\xi(t) = (\xi_n(t))_{n=1}^{\infty} = (W_n(u(t)))_{n=1}^{\infty} = W(u(t))$ satisfies the following system of differential equations

$$\begin{split} &\frac{d\xi_1(t)}{dt} + A\xi_1(t) = 0, \\ &\frac{d\xi_j(t)}{dt} + A\xi_j(t) + \sum_{k+l=j} R_j B(\mathcal{P}_k(\xi(t)), \mathcal{P}_l(\xi(t)) = 0, \ n > 1, \end{split}$$

where $P_j(\xi) = q_j(0,\xi)$ for $\xi \in S_A$. This system is the normal form (in S_A) of the Navier–Stokes equations associated with the asymptotic expansions of regular solutions.

The solution of the above system with initial data $\xi^0=(\xi^0_n)_{n=1}^\infty\in S_A$ is precisely $(R_nq_n(t,\xi^0)e^{-nt})_{n=1}^\infty$. Then the algorithm producing the polynomials $q_j(t)$ yields the normal form and its solutions.

Main Result

Notation: For any polynomial Q in ξ regardless if it depends on t, we denote $Q^{[d]}$, for $d \geq 0$, the sum of all its monomials of degree d, i.e., the homogeneous part of degree d of Q.

For $d \geq 1$, let

$$\mathcal{P}^{[d]}(\xi) = \sum_{j=d}^{\infty} \mathcal{P}_{j}^{[d]}(\xi) = \sum_{j=d}^{\infty} q_{j}^{[d]}(0,\xi).$$

For d > 2, let

$$\mathcal{B}^{[d]}(\xi) = \sum_{j=1}^{\infty} \ \mathcal{B}_{j}^{[d]}(\xi) = \sum_{j=1}^{\infty} \ \sum_{k+l=j} \ \sum_{m+n=d} \ R_{j}B(\mathcal{P}_{k}^{[m]}(\xi), \mathcal{P}_{l}^{[n]}(\xi)).$$

Rewrite the normal form:

$$\frac{d}{dt}\xi + A\xi + \sum_{d=2}^{\infty} \mathcal{B}^{[d]}(\xi) = 0.$$

Questions

- Convergence of $\mathcal{P}^{[d]}(\xi)$, $\mathcal{B}^{[d]}(\xi)$?
- What is the framework for the normal form: Sobove spaces, space of smooth functions, ...?
- Is it a Poincaré-Dulac normal form, that is, the power series form of which each monomial is resonant? If so, what is the change of variable $u = T(\xi)$ that transforms (formally) the Navier–Stokes equations into its normal form?

Answers

Let E^{∞} be the Fréchet space $C^{\infty}(\mathbb{R}^3,\mathbb{R}^3) \cap V$.

Then the above normal form is a Poincaré–Dulac normal form in E^{∞} for the Navier–Stokes equations obtained by the formal change of variable

$$u = \xi + \sum_{d=2}^{\infty} \mathcal{P}^{[d]}(\xi).$$

Along the way, $\mathcal{P}^{[d]}(\xi)$, $\mathcal{B}^{[d]}(\xi)$ are proved to converge in appropriate Sobolev spaces (depending on d).

Utilities

Set of (general) indices: $GI = \bigcup_{n=1}^{\infty} GI(n)$, where for $n \ge 1$,

$$GI(n) = {\bar{\alpha} = (\alpha_k)_{k=1}^{\infty}, \ \alpha_k \in \{0, 1, 2, ...\}, \ \alpha_k = 0 \text{ for } k > n}.$$

For $\bar{\alpha} \in GI$, define

$$|\bar{\alpha}| = \sum_{k=1}^{\infty} \alpha_k$$
 and $\|\bar{\alpha}\| = \sum_{k=1}^{\infty} k \alpha_k$.

For $d, n \ge 1$, define the set of special multi-indices:

$$SI(d,n) = \left\{ \bar{\alpha} = (\alpha_k)_{=1}^{\infty} \in GI, |\bar{\alpha}| = d, \|\bar{\alpha}\| = n \right\};$$

note $1 \le d \le n$ hence $SI(d,n) \subset GI(n)$. Also, for $n \ge d \ge 1$ and $n' \ge d' \ge 1$ we have

$$SI(d, n) + SI(d', n') \subset SI(d + d', n + n').$$

Homogeneous gauge

Let
$$\xi = (\xi_k)_{k=1}^{\infty} \in S_A$$
 and $\bar{\alpha} = (\alpha_k)_{k=1}^{\infty} \in GI(n)$, define
$$\left[\xi\right]^{\bar{\alpha}} = |\xi_1|^{\alpha_1} |\xi_2|^{\alpha_2} \dots |\xi_n|^{\alpha_n}.$$

For $n \ge d \ge 1$, define

$$\left[\left[\xi\right]\right]_{d,n} = \left(\sum_{\bar{\alpha} \in SI(d,n)} \left[\xi\right]^{2\bar{\alpha}}\right)^{1/2} = \left(\sum_{|\bar{\alpha}|=d, \|\bar{\alpha}\|=n} \left[\xi\right]^{2\bar{\alpha}}\right)^{1/2}.$$

We have the following properties

$$[\xi]^{\bar{\alpha}} [\xi]^{\bar{\alpha}'} = [\xi]^{\bar{\alpha}+\bar{\alpha}'},$$

$$[\xi]^{r\bar{\alpha}} = ([\xi]^{\bar{\alpha}})^r \text{ for } r = 0, 1, 2, \dots,$$

$$\sum_{|\bar{\alpha}|=d} [\xi]^{2\bar{\alpha}} = |\xi|^{2d}.$$

$$[[\xi]]_{d,n} \le \left(\sum_{\bar{\alpha}\in GI(n), |\bar{\alpha}|=d} [\xi]^{2\bar{\alpha}}\right)^{1/2} \le |P_n\xi|^d.$$

Multiplicative inequality

Lemma

Let $\xi \in S_A$, $n \ge d \ge 1$ and $n' \ge d' \ge 1$. Then

$$[[\xi]]_{d,n} \cdot [[\xi]]_{d',n'} \le e^{d+d'} [[\xi]]_{d+d',n+n'},$$

Note: The constant on the RHS is independent of n, n'. Proof.

$$\begin{aligned} \left[\left[\xi \right] \right]_{d,n}^{2} \cdot \left[\left[\xi \right] \right]_{d',n'}^{2} &= \left(\sum_{\bar{\alpha} \in SI(d,n)} \left[\xi \right]^{2\bar{\alpha}} \right) \left(\sum_{\bar{\alpha}' \in SI(d',n')} \left[\xi \right]^{2\bar{\alpha}'} \right) \\ &= \sum_{\bar{\alpha} \in SI(d,n), \bar{\alpha}' \in SI(d',n')} \left[\xi \right]^{2(\bar{\alpha} + \bar{\alpha}')} \end{aligned}$$

For above $\bar{\alpha}, \bar{\alpha}'$, the index $\bar{\gamma} = \bar{\alpha} + \bar{\alpha}'$ belongs to SI(d+d',n+n'). We need to compare the above sum to $\sum_{\bar{\gamma} \in SI(d+d',n+n')} \left[\xi\right]^{2\bar{\gamma}}$. Let $\bar{\gamma} = (\gamma_k)_{k=1}^{\infty} \in SI(d+d',n+n')$.

Suppose $\bar{\gamma} \in SI(d,n) + SI(d',n')$. We count the number of ways to write each $\bar{\gamma}$ as the sum $\bar{\alpha} + \bar{\alpha}'$. If k > n or k > n' then $\alpha_k = 0, \alpha'_k = \gamma_k$ or $\alpha'_{k} = 0, \alpha_{k} = \gamma_{k}$, hence one way.

Let $k \leq \min\{n, n'\}$. Counting via α_k : the set of possible values for α_k is $\{0,1,2,\ldots,\gamma_k\}$, hence at most γ_k+1 values. Thus the number of repetition of $\bar{\gamma}$ as the sum $\bar{\alpha} + \bar{\alpha}'$ is at most

$$N = N(\bar{\gamma}) = (\gamma_1 + 1)(\gamma_2 + 1) \dots (\gamma_n + 1) \le (\gamma_1 + 1)(\gamma_2 + 1) \dots (\gamma_{n+n'} + 1).$$

By generalized Young's inequality:

$$N \le \left(\frac{(\gamma_1 + 1) + (\gamma_2 + 1) + \dots + (\gamma_{n+n'} + 1)}{n + n'}\right)^{n+n'} \\
= \left(\frac{d + d' + n + n'}{n + n'}\right)^{n+n'} \\
= \left(1 + \frac{d + d'}{n + n'}\right)^{n+n'} \le e^{d+d'}. \quad \square$$

Poincaré inequality for homogeneous gauges

Lemma

For any $\xi \in S_A$, any numbers $\alpha, s \ge 0$ and $n \ge d \ge 1$, one has

$$[[A^{\alpha}\xi]]_{d,n} \leq \left(\frac{d}{n}\right)^{s} [[A^{\alpha+s}\xi]]_{d,n} \leq \left(\frac{d}{n}\right)^{s} |P_{n}A^{\alpha+s}\xi|^{d}.$$

Proof. For $|\bar{\alpha}| = d$ and $||\bar{\alpha}|| = n$ we have

$$[\xi]^{2\bar{\alpha}} = \prod_{k} |\xi_{k}|^{2\alpha_{k}} = \prod_{k} \frac{|k^{s}\xi_{k}|^{2\alpha_{k}}}{k^{2\alpha_{k}s}}$$
$$= \frac{\prod_{k} |k^{s}\xi_{k}|^{2\alpha_{k}}}{(\prod_{k} k^{\alpha_{k}})^{2s}} = \frac{[A^{s}\xi]^{2\bar{\alpha}}}{(\prod_{k} k^{\alpha_{k}})^{2s}}.$$

Let $k_0 = \max\{k : \alpha_k \neq 0\}$. Then $n = \sum k\alpha_k \leq k_0(\sum \alpha_k) = k_0 d$. Hence $k_0 \geq n/d$ and

$$\prod_{k} k^{\alpha_k} \ge k_0^{\alpha_{k_0}} \ge k_0 \ge n/d.$$

Therefore

$$\left[\xi\right]^{2\bar{\alpha}} \leq (d/n)^{2s} \left[A^s \xi\right]^{2\bar{\alpha}}.$$

Summing over $\bar{\alpha} \in SI(n,d)$ one obtains

$$[[\xi]]_{d,n} \le (d/n)^s [[A^s \xi]]_{d,d} \le (d/n)^s |P_n A^s \xi|^d.$$

Then replace ξ by $A^{\alpha}\xi$.

Simple nonlinear estimate

Lemma

For $\alpha \geq 1/2$ one has

$$|A^{\alpha}B(u,v)| \leq K^{\alpha}|A^{\alpha+1/2}u|\,|A^{\alpha+1/2}v|,$$

for all $u, v \in \mathcal{D}(A^{\alpha+1/2})$, where K > 1.

Note: This inequality is symmetric in u and v.

Degrees in t and ξ

Write

$$q_{j}(t,\xi) = \sum_{m=0}^{j-1} q_{j,m}(\xi)t^{m} = \sum_{m=0}^{j-1} \sum_{d=1}^{j} q_{j,m}^{[d]}(\xi)t^{m} = \sum_{d=1}^{j} q_{j}^{[d]}(t,\xi),$$

where $q_{j,m}(\xi)$ is a polynomial in ξ , and $q_{j,m}^{[d]}(\xi)$ and $q_{j}^{[d]}(t,\xi)$ are homogeneous polynomials in ξ of degree d.

Also, $q_j^{[d]}(t,\xi) = \sum_{|\bar{\alpha}|=d} q_j^{[d],(\bar{\alpha})}(t,\xi)$, where $\bar{\alpha} = (\alpha_k)_{k=1}^\infty \in \mathit{GI}$ and $q_j^{[d],(\bar{\alpha})}(t,\xi)$ is the sum of all monomials of $q_j^{[d]}(t,\xi)$ having degree α_k in ξ_k for all $k \geq 1$. Similarly,

$$\beta_j(t,\xi) = \sum_{m=0}^{j-2} \beta_{j,m}(\xi)t^m = \sum_{m=0}^{j-2} \sum_{d=1}^{j} \beta_{j,m}^{[d]}(\xi)t^m = \sum_{d=1}^{j} \beta_j^{[d]}(t,\xi),$$

where $\beta_{1,m}(\xi) = \beta_{1,m}^{[d]}(\xi) = \beta_1^{[d]}(t,\xi) = 0$ for all m,d,t and ξ ,

$$\beta_{j,m}(\xi) = \sum_{l+l'=j} \sum_{r+r'=m} B(q_{l,r}(\xi), q_{l',r'}(\xi)),$$

$$\beta_{j,m}^{[d]}(\xi) = \sum_{l+l'=j} \sum_{r+r'=m} \sum_{s+s'=d} B(q_{l,r}^{[s]}(\xi), q_{l',r'}^{[s']}(\xi)),$$

for
$$j \geq 2$$
 and $0 \leq m \leq j-2$, $\beta_j^{[d]}(t,\xi) = \sum_{|\bar{\alpha}|=d} \beta_j^{[d],(\bar{\alpha})}(t,\xi)$, where

$$\beta_{j}^{[d],(\bar{\alpha})}(t,\xi) = \sum_{l+l'=j} \sum_{k+k'=d} \sum_{\bar{\gamma}+\bar{\gamma}'=\bar{\alpha}} B(q_{l}^{[k],(\bar{\gamma})}(t,\xi), q_{l'}^{[k'],(\bar{\gamma}')}(t,\xi)).$$

Lemma

- (i) $\deg_t q_j(t,\xi) \le j-1$, $\deg_t q_j^{[d]}(t,\xi) \le d-1$.
- (ii) If $q_i^{[d],(\bar{\alpha})} \neq 0$ then $\bar{\alpha} \in SI(d,j)$.
- (iii) Consequently, for each (non-zero) monomial of $\mathcal{P}_j(\xi)$, $j \geq 1$, having degree α_k in ξ_k , $k \geq 1$, one has $\bar{\alpha} = (\alpha_k)_{k=1}^{\infty}$ belongs to SI(d,j) where $d = |\bar{\alpha}|$. Also, for each (non-zero) monomial of $B(\mathcal{P}_m(\xi), \mathcal{P}_n(\xi))$, having degree α_k in ξ_k , $k \geq 1$, one has $\bar{\alpha} = (\alpha_k)_{k=1}^{\infty}$ belongs to SI(d, m+n) where $d = |\bar{\alpha}|$.

Convention 0/0 = 0, shorthand notation

$$j|_{d} = \min\{j, d-1\}$$
 for all j, d .

It is clear from the above Lemma that $q_{j,m}^{[d]}=0$ for $m>(j-1)\big|_d$, and $\beta_{j,m}^{[d]}=0$ for $m>(j-2)\big|_{d-1}$.

Recursive formulas

For m=0:

$$R_k q_{j,0} = R_k \xi_j + \sum_{n=0}^{j-2} \left(\frac{(-1)^{n+1} n!}{(k-j)^{n+1}} R_k (I - R_j) \beta_{j,n} \right);$$

for m = 1, ..., j - 2:

$$R_k q_{j,m} = -\frac{R_k R_j \beta_{j,m-1}}{m} + \sum_{n=0}^{j-2-m} \left(\frac{(-1)^{n+1}}{(k-j)^{n+1}} \frac{(m+n)!}{m!} R_k (I - R_j) \beta_{j,m+n} \right);$$

and for m = i - 1:

$$R_k q_{j,j-1} = -\sum_{m=1}^{j-1} \frac{R_k R_j \beta_{j,j-2}}{j-1}.$$

Recursive formulas for homogeneous polynomials in ξ :

$$R_{k}q_{j,0}^{[d]} = R_{k}\xi_{j}^{[d]} + \sum_{n=0}^{j-2} \left(\frac{(-1)^{n+1}n!}{(k-j)^{n+1}}R_{k}(I-R_{j})\beta_{j,n}^{[d]}\right)$$

$$= R_{k}\xi_{j}^{[d]} + \sum_{n=0}^{(j-2)|_{d-1}} \left(\frac{(-1)^{n+1}n!}{(k-j)^{n+1}}R_{k}(I-R_{j})\beta_{j,n}^{[d]}\right),$$

$$R_{k}q_{j,m}^{[d]} = -\frac{R_{k}R_{j}\beta_{j,m-1}^{[d]}}{m}$$

$$+ \sum_{n=0}^{j-2-m} \left(\frac{(-1)^{n+1}}{(k-j)^{n+1}}\frac{(m+n)!}{m!}R_{k}(I-R_{j})\beta_{j,m+n}^{[d]}\right)$$

$$= -\frac{R_{k}R_{j}\beta_{j,m-1}^{[d]}}{m} + \sum_{n=m}^{(j-2)|_{d-1}} \left(\frac{(-1)^{n-m+1}}{(k-j)^{n-m+1}}\frac{n!}{m!}R_{k}(I-R_{j})\beta_{j,n}^{[d]}\right)$$
for $m = 1, \dots, (j-2)|_{d}$, and $R_{k}q_{j,j-1}^{[d]} = -\frac{R_{k}R_{j}\beta_{j,j-2}^{[d]}}{j-1}.$

Recursive estimates

Lemma

For $j \ge 2$, $d \ge 1$, $\alpha \ge 0$ and $\xi \in S_A$, one has

$$|A^{\alpha}q_{j,0}^{[d]}(\xi)|^{2} \leq 2(d!)(d-1)! \Big(|A^{\alpha}\xi_{j}^{[d]}|^{2} + \sum_{n=0}^{(j-2)|_{d-1}} |A^{\alpha}(I-R_{j})\beta_{j,n}^{[d]}(\xi)|^{2}\Big);$$

$$|A^{\alpha}q_{j,m}^{[d]}(\xi)|^{2} \leq (d!)(d-1)! \left(\frac{|A^{\alpha}R_{j}\beta_{j,m-1}^{[d]}(\xi)|^{2}}{m^{2}} + \frac{1}{m!^{2}} \sum_{n=0}^{(j-2)|_{d-1}} |A^{\alpha}(I-R_{j})\beta_{j,n}^{[d]}(\xi)|^{2}\right)$$

for
$$m = 1, \dots, (j-2)|_{d}$$
; and $|A^{\alpha}q_{j,j-1}^{[d]}(\xi)|^2 = \frac{|A^{\alpha}R_{j}\beta_{j,j-2}^{[d]}(\xi)|^2}{(j-1)^2}$.

Estimates of homogeneous polynomials

Proposition

For $j \ge d \ge 1$ and $0 \le m \le (j-1)|_{d}$, one has

$$|A^{\alpha}q_{j,m}^{[d]}(\xi)| \leq c(\alpha,d) \left[\left[A^{\alpha+\frac{3}{2}(d-1)}\xi \right] \right]_{d,j},$$

for all $\xi \in S_A$ and $\alpha \ge 1/2$, where the positive number $c(\alpha, d)$ is

$$c(\alpha,d)=(M_d)^{(\alpha+\tau_d)(d-1)},$$

with

$$M_d = K^2 + d^6 e^{2d} (d!)^2$$
 and $\tau_d = (d-1)/2$.

In particular, when m = 0 one has

$$|A^{\alpha}\mathcal{P}_{j}^{[d]}(\xi)| \leq c(\alpha,d) \left[\left[A^{\alpha+\frac{3}{2}(d-1)}\xi \right] \right]_{d,j}.$$

Proof.

By induction in j and the use of Multiplicative Inequality:

$$\left[\left[\,\xi\,\right]\right]_{d,n}\,\cdot\,\left[\left[\,\xi\,\right]\right]_{d',n'}\leq \mathrm{e}^{d+d'}\left[\left[\,\xi\,\right]\right]_{d+d',n+n'}\,.$$

Convergence of homogeneous polynomials

Theorem

Let $\alpha > 1/2$, d > 1 and $\xi \in \mathcal{D}(A^{\alpha+3d/2})$. (i) Then $\mathcal{P}^{[d]}(\xi)$ converges absolutely in $\mathcal{D}(A^{\alpha})$ and satisfies

$$|A^{\alpha}\mathcal{P}^{[d]}(\xi)| \leq \sum_{j=d}^{\infty} |A^{\alpha}\mathcal{P}_{j}^{[d]}(\xi)| \leq M(\alpha,d)|A^{\alpha+3d/2}\xi|^{d},$$

where $M(\alpha, d) > 0$. Moreover, $\mathcal{P}^{[d]}(\xi)$ is a continuous homogeneous polynomial of degree d from $\mathcal{D}(A^{\alpha+3d/2})$ to $\mathcal{D}(A^{\alpha})$. (ii) Similarly, $\mathcal{B}^{[d]}(\xi)$, $d \geq 2$, is a continuous homogeneous polynomial of degree d in ξ mapping $\mathcal{D}(A^{\alpha+3d/2})$ into $\mathcal{D}(A^{\alpha})$ for all $\alpha > 1/2$, and satisfies

$$|A^{\alpha}\mathcal{B}^{[d]}(\xi)| \leq \sum_{n=1}^{\infty} |A^{\alpha}\mathcal{B}_n^{[d]}(\xi)| \leq C(\alpha,d)|A^{\alpha+3d/2}\xi|^d.$$

Proof.

$$\sum_{j=1}^{\infty} |A^{\alpha} q_{j,m}^{[d]}(\xi)| \leq \sum_{j=d}^{\infty} c(\alpha, d) \left[\left[A^{\alpha + (3/2)(d-1)} \xi \right] \right]_{d,j}$$

$$\leq \sum_{j=d}^{\infty} c(\alpha, d) \left(\frac{d}{j} \right)^{3/2} |A^{\alpha + (3/2)(d-1) + 3/2} \xi|^{d}$$

$$= M(\alpha, d) |A^{\alpha + 3d/2} \xi|^{d}.$$

Explicit change of variable

Formally, $u=\sum_{j}\sum_{d}q_{j}^{[d]}(0,\xi)=\sum_{d}\sum_{j}q_{j}^{[d]}(0,\xi)$, hence

$$u = \mathcal{P}(\xi) \stackrel{\text{def}}{=\!=\!=} \xi + \sum_{d=2}^{\infty} \mathcal{P}^{[d]}(\xi) = \sum_{d=1}^{\infty} \mathcal{P}^{[d]}(\xi).$$

Note that this expansion, in fact, is the formal inverse of the normalization map W and hence is our natural choice.

This power series has the formal inverse of the form

$$\xi = \tilde{\mathcal{P}}(u) \stackrel{\text{def}}{==} u + \sum_{d=2}^{\infty} \tilde{\mathcal{P}}^{[d]}(u) = \sum_{d=1}^{\infty} \tilde{\mathcal{P}}^{[d]}(u),$$

where each $\tilde{\mathcal{P}}^{[d]}(u)$, $d\geq 1$, is a homogeneous polynomial of degree d, particularly, $\tilde{\mathcal{P}}^{[1]}(u)=\mathcal{P}^{[1]}(u)=u$.

Let $\hat{\mathcal{P}}^{[d]}$ be a symmetric d-linear mapping representing $\mathcal{P}^{[d]}$,

$$\tilde{\mathcal{P}}^{[d]}(u) = -\sum_{m=2}^{d} \left(\sum_{k_1 + \dots + k_m = d} \hat{\mathcal{P}}^{[m]}(\tilde{\mathcal{P}}^{[k_1]}u, \dots, \tilde{\mathcal{P}}^{[k_m]}u) \right)
= -\mathcal{P}^{[d]}(u) - \sum_{m=2}^{d-1} \left(\sum_{k_1 + \dots + k_m = d} \hat{\mathcal{P}}^{[m]}(\tilde{\mathcal{P}}^{[k_1]}u, \dots, \tilde{\mathcal{P}}^{[k_m]}u) \right)$$

for $d \geq 2$. In particular, when d = 2, $\tilde{\mathcal{P}}^{[2]}(u) = -\mathcal{P}^{[2]}(u)$.

Proposition

All $\tilde{\mathcal{P}}^{[d]}(u)$, $d \geq 1$, are continuous homogeneous polynomials of degree d in E^{∞} .

NSE under the change of variable

Let u(t) be a regular solution of Navier–Stokes equations. Then $u(t) \in E^{\infty}$ for all t > 0. We make a formal change of variable using $u = \mathcal{P}(\xi)$, or equivalently, $\xi = \tilde{\mathcal{P}}(u) = u + \sum_{d=2}^{\infty} \tilde{\mathcal{P}}^{[d]}(u)$. Taking the derivative in t formally, we obtain

$$\frac{d}{dt}\xi = \frac{d}{dt}u + \sum_{d=2}^{\infty} D\tilde{\mathcal{P}}^{[d]}(u)\frac{d}{dt}u \quad \text{(then use } \frac{d}{dt}u = -Au - B(u,u)\text{)}$$

$$= -A\xi - \sum_{d=2}^{\infty} A\mathcal{P}^{[d]}(\xi) - \sum_{k,l=1}^{\infty} B(\mathcal{P}^{[k]}(\xi), \mathcal{P}^{[l]}(\xi))\text{)} - \dots,$$

here, notation D denotes the Fréchet derivative operator. We then derive

$$\frac{d}{dt}\xi + \sum_{d=1}^{\infty} Q^{[d]}(\xi) = 0,$$

where each $Q^{[d]}(\xi)$, $d \ge 1$, is a homogeneous polynomial of degree d.

Computing $Q^{[d]}(\xi)$

Obviously, we have $Q^{[1]}(\xi) = A\xi$. Up to degree $d \ge 2$ in ξ , knowing the differential equation for ξ , we formally calculate

$$\frac{d}{dt}u = \left[\frac{d}{dt}\xi\right] + \sum_{m\geq 2} D\mathcal{P}^{[m]}(\xi)\frac{d}{dt}\xi$$

$$= \left[-A\xi - \sum_{d\geq 2} Q^{[d]}(\xi)\right] - \sum_{k\geq 2} D\mathcal{P}^{[k]}(\xi)\left(A\xi + \sum_{l\geq 2} Q^{[l]}(\xi)\right).$$

Therefore we obtain the recursive formula for $d \geq 2$:

$$Q^{[d]}(\xi) = H_A^{(d)} \mathcal{P}^{[d]}(\xi) + \sum_{k+l=d} B(\mathcal{P}^{[k]}(\xi), \mathcal{P}^{[l]}(\xi)) - \sum_{\substack{2 \le k, l \le d-1 \\ k+l=d+1}} D\mathcal{P}^{[k]}(\xi) (Q^{[l]}(\xi)),$$

where $H_A^{(d)}\mathcal{P}^{[d]}(\xi) = A\mathcal{P}^{[d]}(\xi) - D\mathcal{P}^{[d]}(\xi)A\xi$ ($H_A^{(d)}$ is the Poincaré homology operator).

Now the Navier-Stokes equations after the change of variable is

$$\frac{d}{dt}\xi + A\xi + \sum_{d=2}^{\infty} Q^{[d]}(\xi) = 0,$$

where the polynomials $Q^{[d]}(\xi)$, $d \ge 2$, are given explicitly.

Poincaré's homology operator

Lemma

For $\alpha \geq 1/2$, $d \geq 1$, then $H_{\Delta}^{(d)} \mathcal{P}^{[d]}(\cdot)$ maps $\mathcal{D}(A^{\alpha+3d})$ into $\mathcal{D}(A^{\alpha})$ and one has

$$H_A^{(d)}\mathcal{P}^{[d]}(\xi) = \sum_{j=1}^{\infty} (A-j)\mathcal{P}_j^{[d]}(\xi), \text{ for all } \xi \in \mathcal{D}(A^{\alpha+3d}).$$

Resonant monomials

Denote by $\mathcal{H}^{[d]}(E^{\infty})$ the space of homogeneous polynomials on E^{∞} of degree d.

Definition

Let $Q \in \mathcal{H}^{[d]}(E^{\infty})$. Then $Q(\xi)$ $(\xi \in E^{\infty} \text{ and } \xi_j = R_j \xi, j \in \mathbb{N})$, is a monomial of degree $\alpha_{k_i} > 0$ in ξ_{k_i} where $i = 1, 2, \ldots, m$, $\alpha_{k_1} + \ldots + \alpha_{k_m} = d$ and $k_1 < k_2 < \ldots < k_m$, if it can be represented as

$$Q(\xi) = \tilde{Q}(\underbrace{\xi_{k_1}, \dots, \xi_{k_1}}_{\alpha_{k_1}}, \underbrace{\xi_{k_2}, \dots, \xi_{k_2}}_{\alpha_{k_2}}, \dots, \underbrace{\xi_{k_m}, \dots, \xi_{k_m}}_{\alpha_{k_m}}),$$

where $\tilde{Q}(\xi^{(1)},\xi^{(2)},\ldots,\xi^{(d)})$ is a continuous d-linear map from $(E^{\infty})^d$ to E^{∞} .

The monomial $Q(\xi)$ with degree $d \ge 2$, is called *resonant* if $\sum_{i=1}^{m} \alpha_{k_i} k_i = j$ and $Q = R_j Q \ne 0$.

Partial symmetric representation

By the symmetrization of \tilde{Q} in each group of variables, specifically, α_{k_1} variables of $\xi^{(1)}, \xi^{(2)}, \dots, \xi^{\alpha_{k_1}}, \alpha_{k_2}$ variables of $\xi^{(\alpha_{k_1}+1)}, \xi^{(\alpha_{k_1}+2)}, \dots, \xi^{(\alpha_{k_1}+\alpha_{k_2})}, \dots$, and α_{k_m} variables of $\xi^{(d-\alpha_{k_m}+1)}, \xi^{(d-\alpha_{k_m}+2)}, \dots, \xi^{(d)}$, we will always assume without loss of generality that \tilde{Q} is symmetric in each of these groups of variables.

Goal

Compare the normal formal

$$\frac{d}{dt}\xi + A\xi + \sum_{d=2}^{\infty} \mathcal{B}^{[d]}(\xi) = 0$$

with the NSE under an explicit change of variable

$$\frac{d}{dt}\xi + A\xi + \sum_{d=2}^{\infty} Q^{[d]}(\xi) = 0.$$

Desired relation

Theorem

$$Q^{[d]}(\xi) = \mathcal{B}^{[d]}(\xi)$$
 for all $\xi \in E^{\infty}$ and $d \ge 2$.

Proof. Let $d \ge 2$. It was proved previously by Foias-Saut:

$$(A-j)\mathcal{P}_j(\xi) + \sum_{k+l=j} B(\mathcal{P}_k(\xi), \mathcal{P}_l(\xi)) = (D\mathcal{P}_j(\xi))(\sum_{k=2}^J \mathcal{B}_k(\xi)).$$

Collecting the homogeneous terms of degree d in ξ gives

$$(A - j)\mathcal{P}_{j}^{[d]}(\xi) + \sum_{m+n=d} \sum_{k+l=j} B(\mathcal{P}_{k}^{[m]}(\xi), \mathcal{P}_{l}^{[n]}(\xi)))$$

$$- \sum_{\substack{2 \le m, n \le d-1 \\ m+n=d+1}} D\mathcal{P}_{j}^{[m]}(\xi)(\mathcal{B}^{[n]}(\xi)) = R_{j}\mathcal{B}^{[d]}(\xi).$$

Summing in j we obtain

$$\mathcal{B}^{[d]}(\xi) = H_{A}\mathcal{P}^{[d]}(\xi) + \sum_{m+n=d} B(\mathcal{P}^{[m]}(\xi), \mathcal{P}^{[n]}(\xi))) - \sum_{\substack{2 \le m, n \le d-1 \\ m+n=d+1}} \boxed{D\mathcal{P}^{[m]}(\xi)(\mathcal{B}^{[n]}(\xi))}.$$

Compare with

$$Q^{[d]}(\xi) = H_A^{(d)} \mathcal{P}^{[d]}(\xi) + \sum_{m+n=d} B(\mathcal{P}^{[m]}(\xi), \mathcal{P}^{[n]}(\xi)) - \sum_{\substack{2 \le k, l \le d-1 \\ m+n=d+1}} \boxed{D\mathcal{P}^{[m]}(\xi)(Q^{[n]}(\xi))},$$

For d=2:

$$\mathcal{B}^{[2]}(\xi) = H_A^{(d)} \mathcal{P}^{[d]}(\xi) + B(\mathcal{P}^{[1]}(\xi), \mathcal{P}^{[1]}(\xi))) = Q^{[2]}(\xi).$$

Then prove by induction in d.

Summary

Theorem

The formal power series change of variable

$$u = \xi + \sum_{d=2}^{\infty} \mathcal{P}^{[d]}(\xi),$$

where $\xi \in E^{\infty} = C^{\infty}(\mathbb{R}^3, \mathbb{R}^3) \cap V$, reduces the Navier–Stokes equations to a Poincaré–Dulac normal form

$$\frac{d}{dt}\xi + A\xi + \sum_{d=2}^{\infty} \mathcal{B}^{[d]}(\xi) = 0.$$

THANK YOU FOR YOUR ATTENTION!