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Introduction

Navier-Stokes equations for fluid dynamics:

Oru+ (u-V)u—vAu=—-Vp+f,
div u =0,
u(x,0) = uo(x),

v > 0 is the kinematic viscosity,

u = (uy, Uz, uz) is the unknown velocity field,
p € R is the unknown pressure,

f(t) is the body force,

up is the given initial data.
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Navier friction boundary conditions

On the boundary 09:

u-N=0,
v[D(u)Ntan + yu =0,

@ N is the unit outward normal vector
@ v > 0 denotes the friction coefficients
@ [ - Jtan denotes the tangential part

D(u) = %(VU—{- (Vu)*).
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e v =0, 7= 0: Boundary condition for inviscid fluids

~v = oo: Dirichlet condition.

~ = 0: Navier boundary conditions (without friction)
[Iftimie-Raugel-Sell](with flat bottom), [H.-Sell].

If the boundary is flat, say, part of x3 = const, then the conditions
become the Robin conditions (see [Hu])

u3 =0, u+~y03u1 = up+yd3ux = 0.

Compressible fluids on half planes with Navier friction boundary
conditions [Hoff].
Assume v = 1.
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Q=Q. = {(x1,%,x3) : (x1,%) € T?, h§(x1,x2) < x3 < hi(x1, %)},
where € € (0, 1],
ho = cgo, hi =ceg1,
and gy, g1 are given C3 functions defined on T2,

g=81—8 = ¢ >0.

The boundary is ' =g U1, where g is the bottom and I'; is the top.

L. Hoang- Texas Tech Navier friction boundary conditions Applied Math Seminar, Sept. 17,24, 2008



Boundary conditions on thin domains

The velocity u satisfies the Navier friction boundary conditions on I'; and
o with friction coefficients 71 = 7 and v = 75, respectively.

There is § € [0, 1], such that for i=0,1,

E ,.YE
0<I|m|nf — <limsup — < cc.
e—0 ¢ e—0 €
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Leray-Helmholtz decomposition
2(Q.)2=HaeHt

where
e H={uel?(Q.)*:V-u=0inQ., u-N=0onT},
o H- ={V¢:¢c HY(Q:)}.
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Leray-Helmholtz decomposition
2(Q.)2=HaeHt

where

e H={uel?(Q.)*:V-u=0inQ., u-N=0onT},

o H- ={V¢:¢c HY(Q:)}.
Let V be the closure in H1(Q:,R3) of u € C*®(Q.,R3) N H that satisfies
the friction boundary conditions.
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Leray-Helmholtz decomposition
2(Q.)2=HaeHt

where
e H={uel?(Q.)*:V-u=0inQ., u-N=0onT},
o HY = {Vé: 6 e H(Q)}.
Let V be the closure in H1(Q:,R3) of u € C*®(Q.,R3) N H that satisfies

the friction boundary conditions.
Averaging operator:

1 (M -~
Mop(x') = — d(X',x3)dx3, Mu = (Mouz, Myus, 0).
€8 Jhy
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Main result

Theorem (Global strong solutions)

Let § € [2/3,1]. There are eg > 0 and k > 0 such that if e € (0,0 and
up € V and f € L>=(L?) satisfy

muo = |[Mugl|22,  mus = elluoll?,

mro = [IMFfl{iz, mra = el fllfc e,

are smaller than r, then the regular solution exists for all t > 0:

u € C([0,00), H(R:)) N L ([0, 00), H*(€2:)).

Remark: The condition on wug is acceptable.
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A Green's formula

[Solonnikov-Scidilov]

/Au-vdxz/[—2(Du:Dv)+(V'u)(V-v)] dx
Q Q

+ [ {2((Du)N)-v —(V-u)(v-N)}do.
o0

If uis divergence-free and satisfies the Navier friction boundary conditions,
v is tangential to the boundary then

— Au-vdsz/ (Du:Dv)dx—I—2fyo/ u-vda+2’yl/ u-vdo.
Q. € o M
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A Green's formula

[Solonnikov-Scidilov]

/Au-vdxz/[—2(Du:Dv)+(V'u)(V-v)] dx
Q Q

+ [ {2((Du)N)-v —(V-u)(v-N)}do.
o0

If uis divergence-free and satisfies the Navier friction boundary conditions,
v is tangential to the boundary then

— Au-vdsz/ (Du:Dv)dx—I—2fyo/ u-vda+2’yl/ u-vdo.
Q. € o M

The right hand side is denoted by E(u, v).
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Uniform Korn inequality

Is E(-,-) bounded and coercive in H*(£.)?
We need Korn's inequality: ”“H%—Il(ﬂg) < GE(u,u).

There is eg > 0 such that for e € (0,e0], u € HY(Q:) N Hy and u is
tangential to the boundary of €., one has

||U||%2 < Cgl_éE(u7 u)?

Cllullfs < E(u,u) < C'(IVullZ + & |lullZ2),

where C, C' are positive constants independent of .
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Stokes operator

Let P denotes the (Leray) projection on H. Then the Stokes operator is:
Au= —PAu, u€ Dy,
Da = {u € H*(Q.)*NV : u satisfies the Navier friction boundary conditions)
For u € Da,v € V, one has
(Au,v) = E(u,v).
Navier-Stokes equations:

%—l—Au—{—B(u,u) = Pf,

where B(u,v) = P(u- Vu).
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Inequalities

For £ € (0, 0], one has the following:

e IfueV =D ;1 then
A2

—_ 1 1
lullz < CeU=D2)|Az a2, lulln < CllA2ull,2,

|A2ulli2 < CIVull2 + €072l u 2).
o If u € Dy then

1 — —
1A2ull2 < CeB=O2||Au) 2, lullz < Ce' || Aul| 2.
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Interpreting the boundary conditions

Lemma

Let T be a tangential vector field on the boundary. If u satisfies the Navier
friction boundary conditions then one has on I that

@ ON
or or

L ON
R W
One also has [Chueshov-Raugel-Rekalo]

N x (V xu)=2Nx{N x ((VN)*u) —yN x u}.

Our case: |[VN| ~ e and v ~ &%
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Linear and Non-linear Estimates

Proposition
If e € (0,e0] and u € Dp, then

1Au+ Aullz < G| Vull 2 + G Hull 2,

G| Aull 2 < lullpe < G||Aul| 2.
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Linear and Non-linear Estimates

Proposition
If £ € (0,20] and u € Dy, then

1Au+ Aullz < G| Vull 2 + G Hull 2,

G| Aull 2 < lullpe < G||Aul| 2.

| A,

Proposition

There is g9 > 0 such that for ¢ € (0,9], & > 0 and u € Dy, one has

1
(u- Vo, Au)| < {o+ Ce¥/2| A ul| 2} AulZ: + Coe® ||ull2:]| A2 2

1 1
+ Cae 7202wl A2 ]2 + Cae™HullFall A2 ulZ.

where the positive number C, depends on « but not on ¢.
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Corollary

Suppose ¢ € [2/3,1], then there exists e, € (0,1] such that for any € < e,
and u € Dy, one has

1
(- Vo, Au)| < {5 + re"2|A2ulliz | Au .

1 1 _ 1
+ da{||ulfall Az ulZ bIARulEs + {1 + llulZ be AR ull.

where positive constants di, d» and d3 are independent of ¢.
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Key identity

Lemma

Let u € Dy and ® € H*(Q.)3. One has

/(VX(VXU))-d)dX:/ 7 5% 63 (7 % 2
Q. Qe

—/ - (V x G(u))dx.
Qe

where

1G(u)] < CE%ul, |VG(u)| < CO|Vu| + C® Y.
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Key identity

Lemma

Let u € Dy and ® € H*(Q.)3. One has

/(VX(VXU))-d)dX:/ 7 5% 63 (7 % 2
Q. Qe

—/ - (V x G(u))dx.
Qe

where

1G(u)] < CE%ul, |VG(u)| < CO|Vu| + C® Y.

@ Linear estimate: ® = Au+ Au, V x & =0.

@ Non-linear estimate: ® = u x (V x u).
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Estimate of ||V2ul|2

There is g9 € (0,1] such that ife < g9 and u € H*(.)3 satisfies the
Navier friction boundary conditions, then

IV2ull 2 < CllAu]l2 + Cllull .

Remarks on the proof. Integration by parts

10|Vu|>  du

212 2

V = + = — - Au | do.
/J ul“dx /E|Aul dx /r<2 N N Au)do
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Estimate of ||V2ul|2

There is g9 € (0,1] such that ife < g9 and u € H*(.)3 satisfies the
Navier friction boundary conditions, then

IV2ull 2 < CllAu]l2 + Cllull .

Remarks on the proof. Integration by parts

10|Vul>  Ou

2 12 2

dx = Aul“d = — — - Au | do.
/Q€]Vu| X /QE| ul x+/r<2 N oy Du)do

@ Remove the second derivatives in the boundary integrals
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Estimate of || V2ul|,2

There is g9 € (0,1] such that ife < g9 and u € H*(.)3 satisfies the
Navier friction boundary conditions, then

IV2ull 2 < CllAu]l2 + Cllull .

Remarks on the proof. Integration by parts

10|Vul>  Ou

2 12 2

dx = Aul“d = — — - Au | do.
/Q€]Vu| X /QE| ul x+/r<2 N oy Du)do

@ Remove the second derivatives in the boundary integrals

@ Appropriate order for ¢
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Estimate of || V2ul|,2

There is g9 € (0,1] such that ife < g9 and u € H*(.)3 satisfies the
Navier friction boundary conditions, then

IV2ull 2 < CllAu]l2 + Cllull .

Remarks on the proof. Integration by parts

10|Vul>  Ou

2 12 2

dx = Aul“d = — — - Au | do.
/Q€]Vu| X /QE| ul x+/r<2 N oy Du)do

@ Remove the second derivatives in the boundary integrals

@ Appropriate order for ¢
@ The role of the positivity of the friction coefficients
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Estimate of || V2ul|,2

There is g9 € (0,1] such that ife < g9 and u € H*(.)3 satisfies the
Navier friction boundary conditions, then

IV2ull 2 < CllAu]l2 + Cllull .

Remarks on the proof. Integration by parts

10|Vul>  Ou

2 12 2

dx = Aul“d = — — - Au | do.
/Q€]Vu| X /QE| ul x+/r<2 N oy Du)do

@ Remove the second derivatives in the boundary integrals

@ Appropriate order for ¢
@ The role of the positivity of the friction coefficients

IV2ullfe < |Aulfe + Cllullfp + Ce2[[V2ullfa.
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Estimate of the non-linear term

Write u = v + w where

v=Mu=(Mu,Mu-p), t(x)= glg {(x3 — ho)Vahy + (h1 — x3)V2ho} .

Then v is divergence free and tangential to the boundary.
Important properties:

@ v is a 2D-like vector field.
@ w satisfies “good” inequalites:

_ 1/2 1/2 _ 1/2 1/2
Ivile < Ce VA4l lullie, 119Vl < Ce Y4 |ull TN ullhs

w2 < CellVw]z, [V < Cellullpe + Clull2,
1/2 1/2
lwlliw < CeY2|ull o + C¥/2|lul 12| ull i
Then write

(u-V)u,Au) = ((w - V)u, Au) + ((v - V)u, Au+ Au) — ((v - V)u, Au).
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Strong global solutions

@ Do not need u = (v, w) and equations for each v and w

@ Non-linear estimate and Uniform Gronwall’s inequality
Steps:
e Estimates for |lu(t)||,2 and ftt—l ||A%u(s)||%2ds

e Estimates for HA%u(t)H%2 and the “right” 7! size.
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[2-Estimates for u

Poincaré-like inequalities: ||(/ — I\Aﬂ)u||Lz < Cellu|| -

1 d 1 ~ ~ A A
§a||u||f2 + |AZu||2> < [(u, P < [(Mu, MPF)| + (1 — M)u, (I — M)Pf)|
1, 1 -~
< §HA2UHf2 +[IMPF|[foc 2 + (| PFl|fc 2

Hence Gronwall’s inequality yields

lu()lIZ2 < lluollZ2e™ + IMPF|[Foc 2 + &2 PFIIZ oo -
luollfz = IMuolZ2 + (1 = M)uoll 2 < |Muolfz + Ce2|luolifp < Cr.

t41
(@)l [ IAtulfaos < Cn J
t
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H'-Estimate for u

1 1
S SIALu, + Aulz, < {5 + et Adul e Al

1 1 _ 1
o { 22142 2 AR w2+ o { 1 ulls fo 1A% ) 2ot A o 1] o 2

d, 1 1.1
EHAZUH% + (1 —2die2 || Az ul|12) || Aul?.

< g||A2ul? + h,

where
1
g = 2ds||u)|%.||Az u|)2.,
1
h=2d5{1+ ullf: J= M AR Ul + 20 3 o

L. Hoang- Texas Tech Navier friction boundary conditions Applied Math Seminar, Sept. 17,24, 2008



One has . .
/ g(s)ds < C, / h(s)ds < e 'k,
t—1 t—1

where k = k(k) is small.
1
Note [|Azuo|[7. < C(l[uollF + & Huolli2) < k(r)e™™.
As far as (1 — 2d15%\|A%uHL2) > 1, equivalently, HA%qu2 < de71, one

. 1 - .
o estimates [|A2u(t)||2, for t <1 by (usual) Gronwall’s inequality,
@ uses Uniform Gronwall's inequality for t > 1 to obtain

ol < ([ 1atuas+ [ nos)en ([ o)),

The result is:

|42 u(®)lIfz < e k(). )
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THANK YOU FOR YOUR ATTENTION.
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