Navier-Stokes equations in thin domains with Navier friction boundary conditions

Luan Thach Hoang

Department of Mathematics and Statistics, Texas Tech University

www.math.umn.edu/~lhoang/

luan.hoang@ttu.edu

Applied Mathematics Seminar Texas Tech University September 17, 24, 2008

Outline

- Introduction
- 2 Main results
- 3 Functional settings
- 4 Linear and non-linear estimates
- Global solutions

Introduction

Navier-Stokes equations for fluid dynamics:

$$\begin{cases} \partial_t u + (u \cdot \nabla)u - \nu \Delta u = -\nabla p + f, \\ \text{div } u = 0, \\ u(x, 0) = u_0(x), \end{cases}$$

 $\nu>0$ is the kinematic viscosity, $u=(u_1,u_2,u_3)$ is the unknown velocity field, $p\in\mathbb{R}$ is the unknown pressure, f(t) is the body force, u_0 is the given initial data.

Navier friction boundary conditions

On the boundary $\partial\Omega$:

$$u \cdot N = 0,$$

 $\nu [D(u)N]_{tan} + \gamma u = 0,$

- N is the unit outward normal vector
- $\gamma \geq 0$ denotes the friction coefficients
- $[\cdot]_{tan}$ denotes the tangential part

•

$$D(u) = \frac{1}{2} \Big(\nabla u + (\nabla u)^* \Big).$$

Remarks

- $\nu = 0$, $\gamma = 0$: Boundary condition for inviscid fluids
- $\gamma = \infty$: Dirichlet condition.
- $\gamma = 0$: Navier boundary conditions (without friction) [Iftimie-Raugel-Sell](with flat bottom), [H.-Sell].
- If the boundary is flat, say, part of $x_3 = const$, then the conditions become the Robin conditions (see [Hu])

$$u_3 = 0$$
, $u_1 + \gamma \partial_3 u_1 = u_2 + \gamma \partial_3 u_2 = 0$.

 Compressible fluids on half planes with Navier friction boundary conditions [Hoff].

Assume $\nu = 1$.

Thin domains

$$\Omega = \Omega_{\varepsilon} = \{(x_1, x_2, x_3) : (x_1, x_2) \in \mathbb{T}^2, \ h_0^{\varepsilon}(x_1, x_2) < x_3 < h_1^{\varepsilon}(x_1, x_2)\},\$$

where $\varepsilon \in (0,1]$,

$$h_0^{\varepsilon} = \varepsilon g_0, \quad h_1^{\varepsilon} = \varepsilon g_1,$$

and g_0, g_1 are given C^3 functions defined on \mathbb{T}^2 ,

$$g = g_1 - g_0 \ge c_0 > 0.$$

The boundary is $\Gamma = \Gamma_0 \cup \Gamma_1$, where Γ_0 is the bottom and Γ_1 is the top.

Boundary conditions on thin domains

The velocity u satisfies the Navier friction boundary conditions on Γ_1 and Γ_0 with friction coefficients $\gamma_1=\gamma_1^\varepsilon$ and $\gamma_0=\gamma_0^\varepsilon$, respectively.

Assumption

There is $\delta \in [0, 1]$, such that for i=0,1,

$$0<\liminf_{\varepsilon\to 0}\frac{\gamma_i^\varepsilon}{\varepsilon^\delta}\le \limsup_{\varepsilon\to 0}\frac{\gamma_i^\varepsilon}{\varepsilon^\delta}<\infty.$$

Notation

Leray-Helmholtz decomposition

$$L^2(\Omega_{\varepsilon})^3 = H \oplus H^{\perp}$$

where

- $H = \{u \in L^2(\Omega_{\varepsilon})^3 : \nabla \cdot u = 0 \text{ in } \Omega_{\varepsilon}, \ u \cdot N = 0 \text{ on } \Gamma\},$
- $H^{\perp} = \{ \nabla \phi : \phi \in H^1(\Omega_{\varepsilon}) \}.$

Notation

Leray-Helmholtz decomposition

$$L^2(\Omega_\varepsilon)^3=H\oplus H^\perp$$

where

- $H = \{u \in L^2(\Omega_{\varepsilon})^3 : \nabla \cdot u = 0 \text{ in } \Omega_{\varepsilon}, u \cdot N = 0 \text{ on } \Gamma\},$
- $H^{\perp} = \{ \nabla \phi : \phi \in H^1(\Omega_{\varepsilon}) \}.$

Let V be the closure in $H^1(\Omega_{\varepsilon}, \mathbb{R}^3)$ of $u \in C^{\infty}(\overline{\Omega_{\varepsilon}}, \mathbb{R}^3) \cap H$ that satisfies the friction boundary conditions.

Notation

Leray-Helmholtz decomposition

$$L^2(\Omega_\varepsilon)^3=H\oplus H^\perp$$

where

- $H = \{u \in L^2(\Omega_{\varepsilon})^3 : \nabla \cdot u = 0 \text{ in } \Omega_{\varepsilon}, u \cdot N = 0 \text{ on } \Gamma\},$
- $H^{\perp} = \{ \nabla \phi : \phi \in H^1(\Omega_{\varepsilon}) \}.$

Let V be the closure in $H^1(\Omega_{\varepsilon}, \mathbb{R}^3)$ of $u \in C^{\infty}(\overline{\Omega_{\varepsilon}}, \mathbb{R}^3) \cap H$ that satisfies the friction boundary conditions.

Averaging operator:

$$M_0\phi(x')=rac{1}{\varepsilon g}\int_{h_0}^{h_1}\phi(x',x_3)dx_3,\quad \widehat{M}u=(M_0u_1,M_0u_2,0).$$

Main result

Theorem (Global strong solutions)

Let $\delta \in [2/3,1]$. There are $\varepsilon_0 > 0$ and $\kappa > 0$ such that if $\varepsilon \in (0,\varepsilon_0]$ and $u_0 \in V$ and $f \in L^{\infty}(L^2)$ satisfy

$$\begin{split} m_{u,0} &= \|\widehat{M}u_0\|_{L^2}^2, \quad m_{u,1} = \varepsilon \|u_0\|_{H^1}^2, \\ m_{f,0} &= \|\widehat{M}f\|_{L^{\infty}L^2}^2, \quad m_{f,1} = \varepsilon \|f\|_{L^{\infty}L^2}^2, \end{split}$$

are smaller than κ , then the regular solution exists for all $t \geq 0$:

$$u \in C([0,\infty), H^1(\Omega_{\varepsilon})) \cap L^2_{loc}([0,\infty), H^2(\Omega_{\varepsilon})).$$

Remark: The condition on u_0 is acceptable.

A Green's formula

[Solonnikov-Šcădilov]

$$\int_{\Omega} \Delta u \cdot v \, dx = \int_{\Omega} \left[-2(Du : Dv) + (\nabla \cdot u)(\nabla \cdot v) \right] \, dx$$
$$+ \int_{\partial \Omega} \left\{ 2((Du)N) \cdot v - (\nabla \cdot u)(v \cdot N) \right\} \, d\sigma.$$

If u is divergence-free and satisfies the Navier friction boundary conditions, v is tangential to the boundary then

$$-\int_{\Omega_{\varepsilon}} \Delta u \cdot v \, dx = 2 \int_{\Omega_{\varepsilon}} (Du : Dv) \, dx + 2\gamma_0 \int_{\Gamma_0} u \cdot v \, d\sigma + 2\gamma_1 \int_{\Gamma_1} u \cdot v \, d\sigma.$$

A Green's formula

[Solonnikov-Šcădilov]

$$\int_{\Omega} \Delta u \cdot v \, dx = \int_{\Omega} \left[-2(Du : Dv) + (\nabla \cdot u)(\nabla \cdot v) \right] \, dx$$
$$+ \int_{\partial \Omega} \left\{ 2((Du)N) \cdot v - (\nabla \cdot u)(v \cdot N) \right\} \, d\sigma.$$

If u is divergence-free and satisfies the Navier friction boundary conditions, v is tangential to the boundary then

$$-\int_{\Omega_{\varepsilon}} \Delta u \cdot v \, dx = 2 \int_{\Omega_{\varepsilon}} (Du : Dv) \, dx + 2\gamma_0 \int_{\Gamma_0} u \cdot v \, d\sigma + 2\gamma_1 \int_{\Gamma_1} u \cdot v \, d\sigma.$$

The right hand side is denoted by E(u, v).

Uniform Korn inequality

Is $E(\cdot,\cdot)$ bounded and coercive in $H^1(\Omega_{\varepsilon})$? We need Korn's inequality: $\|u\|_{H^1(\Omega_{\varepsilon})}^2 \leq C_{\varepsilon}E(u,u)$.

Lemma

There is $\varepsilon_0 > 0$ such that for $\varepsilon \in (0, \varepsilon_0]$, $u \in H^1(\Omega_{\varepsilon}) \cap H_0^{\perp}$ and u is tangential to the boundary of Ω_{ε} , one has

$$||u||_{L^2}^2 \leq C\varepsilon^{1-\delta}E(u,u),$$

$$C\|u\|_{H^1}^2 \le E(u,u) \le C'(\|\nabla u\|_{L^2}^2 + \varepsilon^{1-\delta}\|u\|_{L^2}^2),$$

where C, C' are positive constants independent of ε .

Stokes operator

Let P denotes the (Leray) projection on H. Then the Stokes operator is:

$$Au = -P\Delta u, \quad u \in D_A,$$

 $D_A = \{u \in H^2(\Omega_{\varepsilon})^3 \cap V : \text{ u satisfies the Navier friction boundary conditions} \}$ For $u \in D_A$, $v \in V$, one has

$$\langle Au, v \rangle = E(u, v).$$

Navier-Stokes equations:

$$\frac{du}{dt} + Au + B(u, u) = Pf,$$

where $B(u, v) = P(u \cdot \nabla u)$.

Inequalities

For $\varepsilon \in (0, \varepsilon_0]$, one has the following:

• If $u \in V = D_{\Lambda^{\frac{1}{2}}}$ then

$$||u||_{L^2} \le C \varepsilon^{(1-\delta)/2} ||A^{\frac{1}{2}}u||_{L^2}, \quad ||u||_{H^1} \le C ||A^{\frac{1}{2}}u||_{L^2},$$

$$||A^{\frac{1}{2}}u||_{L^2} \leq C(||\nabla u||_{L^2} + \varepsilon^{(\delta-1)/2}||u||_{L^2}).$$

• If $u \in D_A$ then

$$||A^{\frac{1}{2}}u||_{L^2} \le C\varepsilon^{(1-\delta)/2}||Au||_{L^2}, \quad ||u||_{L^2} \le C\varepsilon^{1-\delta}||Au||_{L^2}.$$

Interpreting the boundary conditions

Lemma

Let τ be a tangential vector field on the boundary. If u satisfies the Navier friction boundary conditions then one has on Γ that

$$\begin{split} \frac{\partial u}{\partial \tau} \cdot \mathbf{N} &= -u \cdot \frac{\partial \mathbf{N}}{\partial \tau}, \\ \frac{\partial u}{\partial \mathbf{N}} \cdot \tau &= u \cdot \left\{ \frac{\partial \mathbf{N}}{\partial \tau} - 2\gamma\tau \right\}. \end{split}$$

One also has [Chueshov-Raugel-Rekalo]

$$N \times (\nabla \times u) = 2N \times \{N \times ((\nabla N)^*u) - \gamma N \times u\}.$$

Our case: $|\nabla \mathbf{N}| \sim \varepsilon$ and $\gamma \sim \varepsilon^{\delta}$.

Linear and Non-linear Estimates

Proposition

If $\varepsilon \in (0, \varepsilon_0]$ and $u \in D_A$, then

$$\|Au + \Delta u\|_{L^2} \le C_1 \varepsilon^{\delta} \|\nabla u\|_{L^2} + C_1 \varepsilon^{\delta - 1} \|u\|_{L^2},$$

$$C_2 ||Au||_{L^2} \le ||u||_{H^2} \le C_3 ||Au||_{L^2}.$$

Linear and Non-linear Estimates

Proposition

If $\varepsilon \in (0, \varepsilon_0]$ and $u \in D_A$, then

$$||Au + \Delta u||_{L^{2}} \le C_{1} \varepsilon^{\delta} ||\nabla u||_{L^{2}} + C_{1} \varepsilon^{\delta - 1} ||u||_{L^{2}},$$
$$C_{2} ||Au||_{L^{2}} \le ||u||_{H^{2}} \le C_{3} ||Au||_{L^{2}}.$$

Proposition

There is $\varepsilon_0 > 0$ such that for $\varepsilon \in (0, \varepsilon_0]$, $\alpha > 0$ and $u \in D_A$, one has

$$\begin{split} |\langle u \cdot \nabla u, Au \rangle| &\leq \{\alpha + C\varepsilon^{1/2} \|A^{\frac{1}{2}}u\|_{L^{2}}\} \|Au\|_{L^{2}}^{2} + C_{\alpha}\varepsilon^{2\delta} \|u\|_{L^{2}}^{2} \|A^{\frac{1}{2}}u\|_{L^{2}}^{4} \\ &\quad + C_{\alpha}\varepsilon^{-1}\varepsilon^{\delta - 2/3} \|u\|_{L^{2}}^{2/3} \|A^{\frac{1}{2}}u\|_{L^{2}}^{2} + C_{\alpha}\varepsilon^{-1} \|u\|_{L^{2}}^{2} \|A^{\frac{1}{2}}u\|_{L^{2}}^{2}. \end{split}$$

where the positive number C_{α} depends on α but not on ε .

Corollary

Suppose $\delta \in [2/3,1]$, then there exists $\varepsilon_* \in (0,1]$ such that for any $\varepsilon < \varepsilon_*$ and $u \in D_A$, one has

$$\begin{aligned} |\langle u \cdot \nabla u, Au \rangle| &\leq \Big\{ \frac{1}{4} + d_1 \varepsilon^{1/2} \|A^{\frac{1}{2}} u\|_{L^2} \Big\} \|Au\|_{L^2}^2 \\ &+ d_2 \Big\{ \|u\|_{L^2}^2 \|A^{\frac{1}{2}} u\|_{L^2}^2 \Big\} \|A^{\frac{1}{2}} u\|_{L^2}^2 + d_3 \Big\{ 1 + \|u\|_{L^2}^2 \Big\} \varepsilon^{-1} \|A^{\frac{1}{2}} u\|_{L^2}^2. \end{aligned}$$

where positive constants d_1 , d_2 and d_3 are independent of ε .

Key identity

Lemma

Let $u \in D_A$ and $\Phi \in H^1(\Omega_{\varepsilon})^3$. One has

$$\int_{\Omega_{\varepsilon}} (\nabla \times (\nabla \times u)) \cdot \Phi dx = \int_{\Omega_{\varepsilon}} (\nabla \times \Phi) \cdot (\nabla \times u + G(u)) dx$$
$$- \int_{\Omega_{\varepsilon}} \Phi \cdot (\nabla \times G(u)) dx.$$

where

$$|G(u)| \leq C\varepsilon^{\delta}|u|, \quad |\nabla G(u)| \leq C\varepsilon^{\delta}|\nabla u| + C\varepsilon^{\delta-1}|u|.$$

Key identity

Lemma

Let $u \in D_A$ and $\Phi \in H^1(\Omega_{\varepsilon})^3$. One has

$$\int_{\Omega_{\varepsilon}} (\nabla \times (\nabla \times u)) \cdot \Phi dx = \int_{\Omega_{\varepsilon}} (\nabla \times \Phi) \cdot (\nabla \times u + G(u)) dx$$
$$- \int_{\Omega_{\varepsilon}} \Phi \cdot (\nabla \times G(u)) dx.$$

where

$$|G(u)| \leq C\varepsilon^{\delta}|u|, \quad |\nabla G(u)| \leq C\varepsilon^{\delta}|\nabla u| + C\varepsilon^{\delta-1}|u|.$$

- Linear estimate: $\Phi = Au + \Delta u$, $\nabla \times \Phi = 0$.
- Non-linear estimate: $\Phi = u \times (\nabla \times u)$.

Lemma

There is $\varepsilon_0 \in (0,1]$ such that if $\varepsilon < \varepsilon_0$ and $u \in H^2(\Omega_{\varepsilon})^3$ satisfies the Navier friction boundary conditions, then

$$\|\nabla^2 u\|_{L^2} \le C \|\Delta u\|_{L^2} + C \|u\|_{H^1}.$$

$$\int_{\Omega_{\varepsilon}} |\nabla^2 u|^2 dx = \int_{\Omega_{\varepsilon}} |\Delta u|^2 dx + \int_{\Gamma} \left(\frac{1}{2} \frac{\partial |\nabla u|^2}{\partial N} - \frac{\partial u}{\partial N} \cdot \Delta u \right) d\sigma.$$

Lemma

There is $\varepsilon_0 \in (0,1]$ such that if $\varepsilon < \varepsilon_0$ and $u \in H^2(\Omega_{\varepsilon})^3$ satisfies the Navier friction boundary conditions, then

$$\|\nabla^2 u\|_{L^2} \le C \|\Delta u\|_{L^2} + C \|u\|_{H^1}.$$

Remarks on the proof. Integration by parts

$$\int_{\Omega_{\varepsilon}} |\nabla^2 u|^2 dx = \int_{\Omega_{\varepsilon}} |\Delta u|^2 dx + \int_{\Gamma} \left(\frac{1}{2} \frac{\partial |\nabla u|^2}{\partial N} - \frac{\partial u}{\partial N} \cdot \Delta u \right) d\sigma.$$

Remove the second derivatives in the boundary integrals

Lemma

There is $\varepsilon_0 \in (0,1]$ such that if $\varepsilon < \varepsilon_0$ and $u \in H^2(\Omega_{\varepsilon})^3$ satisfies the Navier friction boundary conditions, then

$$\|\nabla^2 u\|_{L^2} \le C\|\Delta u\|_{L^2} + C\|u\|_{H^1}.$$

$$\int_{\Omega_{\varepsilon}} |\nabla^2 u|^2 dx = \int_{\Omega_{\varepsilon}} |\Delta u|^2 dx + \int_{\Gamma} \left(\frac{1}{2} \frac{\partial |\nabla u|^2}{\partial N} - \frac{\partial u}{\partial N} \cdot \Delta u \right) d\sigma.$$

- Remove the second derivatives in the boundary integrals
- ullet Appropriate order for arepsilon

Lemma

There is $\varepsilon_0 \in (0,1]$ such that if $\varepsilon < \varepsilon_0$ and $u \in H^2(\Omega_{\varepsilon})^3$ satisfies the Navier friction boundary conditions, then

$$\|\nabla^2 u\|_{L^2} \leq C \|\Delta u\|_{L^2} + C \|u\|_{H^1}.$$

$$\int_{\Omega_{\varepsilon}} |\nabla^2 u|^2 dx = \int_{\Omega_{\varepsilon}} |\Delta u|^2 dx + \int_{\Gamma} \left(\frac{1}{2} \frac{\partial |\nabla u|^2}{\partial N} - \frac{\partial u}{\partial N} \cdot \Delta u \right) d\sigma.$$

- Remove the second derivatives in the boundary integrals
- ullet Appropriate order for arepsilon
- The role of the positivity of the friction coefficients

Lemma

There is $\varepsilon_0 \in (0,1]$ such that if $\varepsilon < \varepsilon_0$ and $u \in H^2(\Omega_\varepsilon)^3$ satisfies the Navier friction boundary conditions, then

$$\|\nabla^2 u\|_{L^2} \le C\|\Delta u\|_{L^2} + C\|u\|_{H^1}.$$

$$\int_{\Omega_{\varepsilon}} |\nabla^2 u|^2 dx = \int_{\Omega_{\varepsilon}} |\Delta u|^2 dx + \int_{\Gamma} \left(\frac{1}{2} \frac{\partial |\nabla u|^2}{\partial N} - \frac{\partial u}{\partial N} \cdot \Delta u \right) d\sigma.$$

- Remove the second derivatives in the boundary integrals
- ullet Appropriate order for arepsilon
- The role of the positivity of the friction coefficients

$$\|\nabla^2 u\|_{L^2}^2 \leq \|\Delta u\|_{L^2}^2 + C\|u\|_{H^1}^2 + C\varepsilon^2 \|\nabla^2 u\|_{L^2}^2.$$

Estimate of the non-linear term

Write u = v + w where

$$v = Mu = (\widehat{M}u, \widehat{M}u \cdot \psi), \quad \psi(x) = \frac{1}{\varepsilon g} \left\{ (x_3 - h_0) \nabla_2 h_1 + (h_1 - x_3) \nabla_2 h_0 \right\}.$$

Then v is divergence free and tangential to the boundary. Important properties:

- v is a 2D-like vector field.
- w satisfies "good" inequalites:

$$\begin{split} \|v\|_{L^{4}} &\leq C\varepsilon^{-1/4} \|u\|_{L^{2}}^{1/2} \|u\|_{H^{1}}^{1/2}, \quad \|\nabla v\|_{L^{4}} \leq C\varepsilon^{-1/4} \|u\|_{H^{1}}^{1/2} \|u\|_{H^{2}}^{1/2} \\ \|w\|_{L^{2}} &\leq C\varepsilon \|\nabla w\|_{L^{2}}, \quad \|\nabla w\|_{L^{2}} \leq C\varepsilon \|u\|_{H^{2}} + C\varepsilon^{\delta} \|u\|_{L^{2}}, \\ \|w\|_{L^{\infty}} &\leq C\varepsilon^{1/2} \|u\|_{H^{2}} + C\varepsilon^{\delta/2} \|u\|_{L^{2}}^{1/2} \|u\|_{H^{2}}^{1/2}. \end{split}$$

Then write

$$\langle (u \cdot \nabla)u, Au \rangle = \langle (w \cdot \nabla)u, Au \rangle + \langle (v \cdot \nabla)u, Au + \Delta u \rangle - \langle (v \cdot \nabla)u, \Delta u \rangle.$$

Strong global solutions

- Do not need u = (v, w) and equations for each v and w
- Non-linear estimate and Uniform Gronwall's inequality

Steps:

- Estimates for $\|u(t)\|_{L^2}$ and $\int_{t-1}^t \|A^{\frac{1}{2}}u(s)\|_{L^2}^2 ds$
- Estimates for $\|A^{\frac{1}{2}}u(t)\|_{L^2}^2$ and the "right" ε^{-1} size.

L^2 -Estimates for u

Poincaré-like inequalities: $\|(I - \widehat{M})u\|_{L^2} \le C\varepsilon \|u\|_{H^1}$.

$$\frac{1}{2} \frac{d}{dt} \|u\|_{L^{2}}^{2} + \|A^{\frac{1}{2}}u\|_{L^{2}}^{2} \leq |\langle u, Pf \rangle| \leq |\langle \hat{M}u, \hat{M}Pf \rangle| + |\langle (I - \hat{M})u, (I - \hat{M})Pf \rangle|
\leq \frac{1}{2} \|A^{\frac{1}{2}}u\|_{L^{2}}^{2} + \|\widehat{M}Pf\|_{L^{\infty}L^{2}}^{2} + \varepsilon^{2} \|Pf\|_{L^{\infty}L^{2}}^{2}.$$

Hence Gronwall's inequality yields

$$\|u(t)\|_{L^{2}}^{2} \leq \|u_{0}\|_{L^{2}}^{2} e^{-c_{1}t} + \|\widehat{M}Pf\|_{L^{\infty}L^{2}}^{2} + \varepsilon^{2} \|Pf\|_{L^{\infty}L^{2}}^{2}.$$

$$\|u_0\|_{L^2}^2 = \|\widehat{M}u_0\|_{L^2}^2 + \|(I - \widehat{M})u_0\|_{L^2}^2 \leq \|\widehat{M}u_0\|_{L^2}^2 + C\varepsilon^2\|u_0\|_{H^1}^2 \leq C\kappa.$$

$$||u(t)||_{L^2}^2, \int_t^{t+1} ||A^{\frac{1}{2}}u||_{L^2}^2 ds \leq C\kappa.$$

H^1 -Estimate for u

$$\begin{split} &\frac{1}{2}\frac{d}{dt}\|A^{\frac{1}{2}}u\|_{L^{2}}^{2}+\|Au\|_{L^{2}}^{2}\leq\left\{\frac{1}{4}+d_{1}\varepsilon^{1/2}\|A^{\frac{1}{2}}u\|_{L^{2}}\right\}\|Au\|_{L^{2}}^{2}\\ &+d_{2}\Big\{\|u\|_{L^{2}}^{2}\|A^{\frac{1}{2}}u\|_{L^{2}}^{2}\Big\}\|A^{\frac{1}{2}}u\|_{L^{2}}^{2}+d_{3}\Big\{1+\|u\|_{L^{2}}^{2}\Big\}\varepsilon^{-1}\|A^{\frac{1}{2}}u\|_{L^{2}}^{2}+\|Au\|_{L^{2}}\|f\|_{L^{\infty}L^{2}}. \end{split}$$

$$\begin{split} & \frac{d}{dt} \|A^{\frac{1}{2}}u\|_{L^{2}}^{2} + (1 - 2d_{1}\varepsilon^{\frac{1}{2}} \|A^{\frac{1}{2}}u\|_{L^{2}}) \|Au\|_{L^{2}}^{2} \\ & \leq g \|A^{\frac{1}{2}}u\|_{L^{2}}^{2} + h, \end{split}$$

where

$$\begin{split} g &= 2d_2\|u\|_{L^2}^2\|A^{\frac{1}{2}}u\|_{L^2}^2, \\ h &= 2d_3\Big\{1 + \|u\|_{L^2}^2\Big\}\varepsilon^{-1}\|A^{\frac{1}{2}}u\|_{L^2}^2 + 2\|f\|_{L^{\infty}L^2}^2. \end{split}$$

One has

$$\int_{t-1}^t g(s)ds \leq C, \quad \int_{t-1}^t h(s)ds \leq \varepsilon^{-1}k,$$

where $k = k(\kappa)$ is small.

Note $\|A^{\frac{1}{2}}u_0\|_{L^2}^2 \le C(\|u_0\|_{H^1}^2 + \varepsilon^{\delta-1}\|u_0\|_{L^2}) \le k(\kappa)\varepsilon^{-1}$.

As far as $(1 - 2d_1\varepsilon^{\frac{1}{2}} \|A^{\frac{1}{2}}u\|_{L^2}) \ge \frac{1}{2}$, equivalently, $\|A^{\frac{1}{2}}u\|_{L^2}^2 \le d\varepsilon^{-1}$, one

- estimates $\|A^{\frac{1}{2}}u(t)\|_{L^2}^2$ for $t \leq 1$ by (usual) Gronwall's inequality,
- ullet uses Uniform Gronwall's inequality for $t\geq 1$ to obtain

$$\|A^{\frac{1}{2}}u(t)\|_{L^{2}}^{2} \leq \left(\int_{t-1}^{t} \|A^{\frac{1}{2}}u(s)\|_{L^{2}}^{2}ds + \int_{t-1}^{t} h(s)ds\right) \exp\left(\int_{t-1}^{t} g(s)ds\right),$$

The result is:

$$||A^{\frac{1}{2}}u(t)||_{L^2}^2 \leq \varepsilon^{-1}k(\kappa).$$

THANK YOU FOR YOUR ATTENTION.