Navier–Stokes equations with Navier boundary conditions in nearly flat domains

Luan T Hoang* and George R Sell

*School of Mathematics, University of Minnesota www.math.umn.edu/~Ithoang/ Ithoang@math.umn.edu

April 9, 2007 Dynamical Systems and PDE Seminars School Mathematics, University of Minnesota

Outline

- Introduction
- Main results
- Settings
- Boundary conditions
- Non-linear estimate
- 6 Global sotutions

Introduction

Navier-Stokes equations (NSE) in \mathbb{R}^3 with a potential body force

$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla)u - \nu \Delta u = -\nabla p + f, \\ \text{div } u = 0, \\ u(x, 0) = u_0(x), \end{cases}$$

 $\nu>0$ is the kinematic viscosity, $u=(u_1,u_2,u_3)$ is the unknown velocity field, $p\in\mathbb{R}$ is the unknown pressure, f(t) is the body force, u_0 is the initial velocity.

Navier boundary conditions

On the boundary $\partial\Omega$:

$$u \cdot N = 0,$$

 $\nu [D(u)N]_{tan} = 0,$

where N is the outward normal vector, $[\cdot]_{\mathrm{tan}}$ denotes the tangential part,

$$D(u) = \frac{1}{2} \Big(\nabla u + (\nabla u)^* \Big).$$

We assume: $\nu = 1$.

Note: if the bounadry is flat, say, part of $x_3 = const$, then the condiontions become the free boundary condition

$$u_3=0, \quad \partial_3 u_1=\partial_3 u_2=0.$$

Works by Temam-Ziane, primitive equations.

Thin domains

$$\Omega = \Omega^{\varepsilon} = \{(x_1, x_2, x_3) : (x_1, x_2) \in \mathbb{T}^2, \ h_0^{\varepsilon}(x_1, x_2) < x_3 < h_1^{\varepsilon}(x_1, x_2)\},\$$

where $\varepsilon \in (0,1]$,

$$h_0^{\varepsilon} = \varepsilon g_0, \quad h_1^{\varepsilon} = \varepsilon g_1,$$

and g_0, g_1 are given C^4 functions defined on \mathbb{T}^2 .

The boundary is $\Gamma = \Gamma_0 \cup \Gamma_1$, where Γ_0 is the bottom and Γ_1 is the top.

We define

$$M_0\phi(x') = \frac{1}{h_1 - h_0} \int_{h_0}^{h_1} \phi(x', x_3) dx_3,$$
$$\widehat{M}u = (M_0 u_1, M_0 u_2, 0).$$

Main results

Theorem (Global Existence Theorem)

There are $\kappa > 0$ and $\varepsilon_0 > 0$ such that if $0 < \varepsilon \le \varepsilon_0$, $u_0 \in V$ and f:

$$||u_0||_{H^1}^2 \le \kappa^2 \varepsilon^{-1}, \quad ||\widehat{M}u_0||_{L^2}^2 \le \kappa^2, ||Pf||_{L^{\infty}L^2}^2 \le \kappa^2 \varepsilon^{-1}, \quad ||\widehat{M}(Pf)||_{L^{\infty}L^2}^2 \le \kappa^2$$
(1)

then there exists a unique, globally defined strong solution u=u(t) of the Navier-Stokes equations, with $u(0)=u_0$:

$$u\in C^0([0,\infty);H^1(\Omega^{\varepsilon}))\cap L^{\infty}((0,\infty);H^1(\Omega^{\varepsilon}))\cap L^2_{\mathrm{loc}}([0,\infty);H^2(\Omega^{\varepsilon})).$$

Also, one has

$$||u(t)||_{H^1}^2 \le \varepsilon^{-1} \left(M_1^2 e^{-2\alpha t} + L_1^2 \right), \quad \text{for all } t \ge 0,$$

where $M_1, L_1, \alpha > 0$.

Theorem (Global Attractor)

Suppose f is independent of t, and f satisfies the above condition. Then the global attractor $\mathcal A$ for the above strong solutions also attracts all Leray-Hopf weak solutions of the Navier–Stokes equations .

A Green's formula

$$\int_{\Omega} \Delta u \cdot v \, dx = \int_{\Omega} \left[-2(Du : Dv) + (\nabla \cdot u)(\nabla \cdot v) \right] \, dx$$
$$+ \int_{\partial \Omega} \left\{ 2((Du)N) \cdot v - (\nabla \cdot u)(v \cdot N) \right\} \, d\sigma.$$

If u is divergence-free and satisfies the Navier boundary condition, v is tangential to the boundary then

$$-\int_{\Omega} \Delta u \cdot v \, dx = 2 \int_{\Omega} (Du : Dv) \, dx.$$

Uniform Korn inequality

Let
$$H_0 = \{(a_1, a_2, 0) : a_1 \partial_1 g + a_2 \partial_2 g = 0\}$$
, where $g = g_1 - g_0$.

Lemma

Let $u \in H^1(\Omega^{\varepsilon}) \cap H_0^{\perp}$, u is tangential to the boundary of Ω^{ε} . Then

$$C_1 \|u\|_{H^1} \le \|Du\|_{L^2} \le C_2 \|u\|_{H^1},$$

for $\varepsilon \in (0,1]$, and C_1, C_2 are positive constant independent of ε .

Boundary conditions

Lemma

Let au be a tangential vestor field on the boundary. If u satisfies the Navier boundary conditions then

$$\frac{\partial u}{\partial \tau} \cdot N + u \cdot \frac{\partial N}{\partial \tau} = 0,$$

$$\frac{\partial u}{\partial N} \cdot \tau = u \cdot \frac{\partial N}{\partial \tau}.$$

Combining with the trace theorem on the thin domain:

$$\|u_3\|_{L^2} \leq C\varepsilon \|u\|_{H^1},$$

$$\|\partial_3 u_1\|_{L^2} \leq C\varepsilon \|u\|_{H^2}, \quad \|\partial_3 u_2\|_{L^2} \leq C\varepsilon \|u\|_{H^2}.$$

The Stokes operator

Leray-Helmholtz decomposition

$$L^2(\Omega^{\varepsilon})^3 = H \oplus H_0 \oplus H_1^{\perp} = H_1 \oplus H_1^{\perp},$$

where $H_1^{\perp} = \{ \nabla \phi : \phi \in H^1(\Omega^{\varepsilon}) \}.$

$$\mathfrak{D}(A) = \{u \in H^2(\Omega^{\varepsilon}) \cap H : \text{ u satisfies the Navier boundary conditions}\}.$$

Let P denotes the (Leray) projection on H. Then the Stokes operator is:

$$Au = -P\Delta u, \quad u \in \mathcal{D}(A).$$

Lemma

If ε is small and $u \in \mathfrak{D}(A)$ then

$$||Au + \Delta u||_{L^2} \le C_1(\varepsilon ||\nabla u||_{L^2} + ||u||_{L^2}),$$

$$C_2 \|Au\|_{L^2} < \|u\|_{H^2} < C_3 \|Au\|_{L^2},$$

where C_1 , C_2 , C_3 are independent of ε .

Also, if
$$u \in V = \mathcal{D}(A^{1/2})$$
 then

$$C_1 \|A^{1/2}u\|_{L^2} \le \|u\|_{H^1} \le C_5 \|A^{1/2}u\|_{L^2}.$$

Non-linear estimate

Proposition

For any $\varepsilon \in (0,1]$, $u \in \mathcal{D}(A)$ and $\beta > 0$, one has

$$|\langle (u \cdot \nabla)u, Au \rangle| \leq \beta \|u\|_{H^{2}}^{2} + C\varepsilon^{1/2} \|u\|_{H^{1}} \|u\|_{H^{2}}^{2} + C_{\beta}\varepsilon^{-1} \|u\|_{L^{2}}^{2} \|u\|_{H^{1}}^{2},$$

where C > 0 is independent of β and ε ; and $C_{\beta} > 0$ is independent of ε .

Non-linear estimate

Proposition

For any $\varepsilon \in (0,1]$, $u \in \mathcal{D}(A)$ and $\beta > 0$, one has

$$\begin{aligned} |\langle (u \cdot \nabla) u, Au \rangle| &\leq \beta \|u\|_{H^{2}}^{2} + C \varepsilon^{1/2} \|u\|_{H^{1}} \|u\|_{H^{2}}^{2} \\ &+ C_{\beta} \varepsilon^{-1} \|u\|_{L^{2}}^{2} \|u\|_{H^{1}}^{2}, \end{aligned}$$

where C > 0 is independent of β and ε ; and $C_{\beta} > 0$ is independent of ε .

Corollary

There is $\varepsilon_* \in (0,1]$ such that for any $\varepsilon < \varepsilon_*$, $u \in \mathcal{D}(A)$ and any $\beta > 0$ we have

$$|\langle (u \cdot \nabla)u, Au \rangle| \leq \beta \|Au\|_{L^{2}}^{2} + C\varepsilon^{1/2} \|A^{1/2}u\| \|Au\|_{L^{2}}^{2} + C_{\beta}\varepsilon^{-1} \|u\|_{L^{2}}^{2} \|A^{1/2}u\|^{2},$$

where C>0 is independent of β and ε ; and $C_{\beta}>0$ is independent of ε .

Sketch of the proof

Averaging operator:

$$Mu = (M_0u_1, M_0u_2, (M_0u_1, M_0u_2) \cdot \psi),$$

where ψ is determined so that $Mu \in H_1$ whenver $u \in H_1$.

Let v = Mu and w = u - v.

Establish Ladyzhenskaya inequality for v.

Establish Agmon, Poincare, Ladyzhenskaya, Galiardo-Nirengberg, Sobolev inequalities for *w*.

$$\langle u \cdot \nabla u, Au \rangle = \langle w \cdot \nabla u, Au \rangle + \langle v \cdot \nabla u, Au + \Delta u \rangle - \langle v \cdot \nabla u, \Delta u \rangle.$$

Integration by parts: $-\langle v\cdot \nabla u, \Delta u\rangle = \mathit{I}_2 + \mathit{I}_3$, where

$$I_3 = \int_{\Gamma} (v \cdot \nabla) u \frac{\partial u}{\partial N} d\sigma.$$

Proof (continued)

Let
$$b = (v \cdot \nabla)u = b_1\tau_1 + b_2\tau_2 + b_3N$$
.
$$|b_1\tau_1 \cdot \frac{\partial u}{\partial N}| = |b_1u \cdot \frac{\partial N}{\partial \tau}| \le C\varepsilon |v| |\nabla u| |u|.$$
$$|b_3N \cdot \frac{\partial u}{\partial N}| \le C|b_3| |\nabla u|.$$

Noting that $v = v_1 \tau_1 + v_2 \tau_2$,

$$|b_3| = |(\nabla u)v \cdot N| = |-(\nabla N)v \cdot u)| = |u \cdot (v_1 \frac{\partial N}{\partial \tau_1} + v_2 \frac{\partial N}{\partial \tau_2})| \le \varepsilon |u||v|.$$

Hence

$$I_3 \leq \varepsilon \int_{\Gamma} |u||v||\nabla u|d\sigma.$$

Global sotutions

Note $\|(I-\widehat{M})u\|_{L^2} \leq C\varepsilon \|u\|_{H^1}$.

 L^2 -Estimate.

$$\begin{aligned} |\langle f, u \rangle| &= |\langle (I - \widehat{M})Pf, (I - \widehat{M})u \rangle + \langle \widehat{M}Pf, \widehat{M}u \rangle| \\ &= C\varepsilon \|Pf\|_{L^2} \|u\|_{H^1} + \|\widehat{M}Pf\|_{L^2} \|u\|_{L^2}. \end{aligned}$$

Then

$$\begin{split} \frac{d}{dt} \|u\|_{L^{2}}^{2} + 2\alpha \|A^{1/2}u\|_{L^{2}}^{2} &\leq C \|\widehat{M}Pf\|_{L^{2}}^{2} + C\varepsilon^{2} \|Pf\|_{L^{2}}^{2}. \\ \|u_{0}\|_{L^{2}}^{2} &= \|\widehat{M}u_{0}\|_{L^{2}}^{2} + \|(I - \widehat{M})u_{0}\|_{L^{2}}^{2} &\leq \|\widehat{M}u_{0}\|_{L^{2}}^{2} + C\varepsilon^{2} \|u_{0}\|_{H^{1}}^{2}. \\ \|u(t)\|_{L^{2}}^{2}, \int_{t}^{t+1} \|A^{1/2}u\|_{L^{2}}^{2} ds &\leq C\kappa^{2} (e^{-2\alpha t} + 1). \end{split}$$

 H^1 -estmimate

$$\frac{1}{2}\frac{d}{dt}\|A^{1/2}u\|_{L^{2}}^{2}+\|Au\|_{L^{2}}^{2}\leq \beta\|u\|_{H^{2}}^{2}+C\varepsilon^{1/2}\|u\|_{H^{1}}\|u\|_{H^{2}}^{2}+C_{\beta}\varepsilon^{-1}\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{L^{2}}^{2}+\|u\|_{L^{2}}^{2}\|u\|_{L^{2}}^{2}+\|u\|_{L^{$$

$$\frac{d}{dt}\|A^{1/2}u\|_{L^{2}}^{2}+(1-C\varepsilon^{1/2}\|A^{1/2}u\|_{L^{2}})\|Au\|_{L^{2}}^{2}\leq C\varepsilon^{-1}\|u\|_{L^{2}}^{2}\|A^{1/2}u\|_{L^{2}}^{2}+C\|Pf\|_{L^{2}}^{2}$$

As far as $1 - C \varepsilon^{1/2} \|A^{1/2}u\|_{L^2} < 1/2$, say in [0, T) then by the Uniform Gronwall Inequality one has for 1 < t < T:

$$\|A^{1/2}u(t)\|_{L^{2}}^{2} \leq \int_{t-1}^{t} C\varepsilon^{-1}\|u\|_{L^{2}}^{2}\|A^{1/2}u\|_{L^{2}}^{2} + C\|Pf\|_{L^{2}}^{2} + \|A^{1/2}u\|_{L^{2}}^{2} ds \leq C\kappa^{2}\varepsilon^{-1}\|u\|_{L^{2}}^{2} + C\|Pf\|_{L^{2}}^{2} + C\|Pf\|_{L^$$

Acknowlegement. We thank Marta Lewicka for sharing her geometric point of view on the boundary condition.

THANK YOU FOR YOUR ATTENTION.