The Normal Form of the Navier–Stokes equations in Suitable Normed Spaces

Ciprian Foias, Luan Hoang*, Eric Olson, Mohammed Ziane

*School of Mathematics, University of Minnesota www.math.umn.edu/~Ithoang/ Ithoang@math.umn.edu

April 4, 2007

PDE Seminar, School Mathematics, University of Minnesota

Outline

- Introduction
- Main Results
- Sketch of the Proof
- Open Problems

Introduction

Navier-Stokes equations (NSE) in \mathbb{R}^3 with a potential body force

$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla)u - \nu \Delta u = -\nabla p - \nabla \phi, \\ \operatorname{div} u = 0, \\ \mathbf{u}(x, 0) = u^{0}(x), \end{cases}$$

 $\nu>0$ is the kinematic viscosity, $u=(u_1,u_2,u_3)$ is the unknown velocity field, $p\in\mathbb{R}$ is the unknown pressure, ϕ is the potential of the body force, u^0 is the initial velocity.

Let L > 0 and $\Omega = (0, L)^3$. The L-periodic solutions:

$$u(x + Le_j) = u(x)$$
 for all $x \in \mathbb{R}^3, j = 1, 2, 3,$

where $\{e_1, e_2, e_3\}$ is the canonical basis in \mathbb{R}^3 .

Zero average condition

$$\int_{\Omega} u(x)dx = 0,$$

Throughout $L=2\pi$ and $\nu=1$.

The Stokes operator:

$$Au = -\Delta u$$
 for all $u \in \mathcal{D}_A$.

The bilinear mapping:

$$B(u, v) = P_L(u \cdot \nabla v)$$
 for all $u, v \in \mathcal{D}_A$.

 P_L is the Leray projection from $L^2(\Omega)$ onto H. Spectrum of A:

$$\sigma(A) = \{|k|^2, 0 \neq k \in \mathbb{Z}^3\}.$$

If $N \in \sigma(A)$, denote by R_NH the eigenspace of A corresponding to N. Otherwise, $R_NH = \{0\}$.

Denote by \mathcal{R} the set of all initial data $u^0 \in V$ such that the solution is regular for all times t > 0. In particular $u(t) \in \mathcal{D}_A$ for all t > 0. The functional form of the NSE:

$$\frac{du(t)}{dt} + Au(t) + B(u(t), u(t)) = 0, \ t > 0,$$
$$u(0) = u^0 \in \mathcal{R},$$

where the equation holds in \mathcal{D}_A for all t>0 and u(t) is continuous from $[0,\infty)$ into V.

Asymptotic expansion of regular solutions

Asymptotic expansion of $u(t) = u(t, u^0)$ (Foias-Saut)

$$u(t) \sim q_1(t)e^{-t} + q_2(t)e^{-2t} + q_3(t)e^{-3t} + ...,$$

where $q_j(t) = W_j(t, u^0)$ is a polynomial in t of degree at most (j-1) and with values are trigonometric polynomials. This means that for any $N \in \mathbb{N}$,

$$|u(t)-\sum_{j=1}^N q_j(t)e^{-jt}|=O(e^{-(N+\varepsilon)t}) \text{ for } t\to\infty,$$

with some $\varepsilon = \varepsilon_N > 0$. Moreover (Guillope), for $m \in \mathbb{N}$,

$$||u(t) - \sum_{j=1}^{N} q_j(t)e^{-jt}||_{H^m(\Omega)} = O(e^{-(N+\varepsilon)t})$$

as $t \to \infty$, for some $\varepsilon = \varepsilon_{N,m} > 0$

◆□ → ←同 → ← □ → □ → へ○ ○

Normalization map

Let

$$W(u^0) = W_1(u^0) \oplus W_2(u^0) \oplus \cdots,$$

where $W_j(u^0) = R_j q_j(0)$, for j = 1, 2, 3... Then W is an one-to-one analytic mapping from \mathcal{R} to the Frechet space

$$S_A = R_1 H \oplus R_2 H \oplus \cdots$$
.

Constructions of polynomials $q_j(t)$

If $u^0\in\mathcal{R}$ and $W(u^0)=(\xi_1,\xi_2,...)$, then q_j 's are the unique polynomial solutions to the following equations

$$q_j'+(A-j)q_j+\beta_j=0,$$

with $R_j q_j(0) = \xi_j$, where β_j 's are defined by

$$\beta_1 = 0 \text{ and for } j > 1, \ \beta_j = \sum_{k+l=j} B(q_k, q_l).$$

Explicitly, these polynomials $q_j(t)$'s are recurrently given by

$$q_{j}(t) = \xi_{j} - \int_{0}^{t} R_{j}\beta_{j}(\tau)d\tau + \sum_{n\geq 0} (-1)^{n+1} [(A-j)(I-R_{j})]^{-n-1} (\frac{d}{dt})^{n} (I-R_{j})\beta_{j},$$

where
$$[(A-j)(I-R_j)]^{-n-1}u(x) = \sum_{|k|^2 \neq j} \frac{a_k}{(|k|^2-j)^{n+1}} e^{ik \cdot x}$$
, for $u(x) = \sum_{|k|^2 \neq j} a_k e^{ik \cdot x} \in \mathcal{V}$.

Normal form of the Navier-Stokes equations

The S_A -valued function $\xi(t) = (\xi_n(t))_{n=1}^{\infty} = (W_n(u(t)))_{n=1}^{\infty} = W(u(t))$ satisfies the following system of differential equations

$$\begin{split} \frac{d\xi_1(t)}{dt} + A\xi_1(t) &= 0, \\ \frac{d\xi_n(t)}{dt} + A\xi_n(t) + \sum_{k+i=n} R_n B(q_k(0,\xi(t)), q_j(0,\xi(t)) = 0, \ n > 1. \end{split}$$

The solution of the above system with initial data $\xi^0 = (\xi_n^0)_{n=1}^\infty \in S_A$ is precisely $(R_n q_n(t, \xi^0) e^{-nt})_{n=1}^\infty$.

A construction of regular solutions

Split the initial data u^0 in V as $u^0 = \sum_{n=1}^{\infty} u_n^0$. We find the solution u(t) of the form $u(t) = \sum_{n=1}^{\infty} u_n(t)$, where for each n,

$$\frac{du_n(t)}{dt} + Au_n(t) + B_n(t) = 0, \quad t > 0,$$

with initial condition

$$u_n(0)=u_n^0,$$

where

$$B_1(t) \equiv 0, \quad B_n(t) = \sum_{j+k=n} B(u_j(t), u_k(t)), \ n > 1.$$

We call the above system the extended Navier-Stokes equations.

Existence theorems

Theorem (2006)

Let $S^0 = \sum_{n=1}^\infty \|u_n^0\| < \varepsilon_0$ and $u(t) = \sum_{n=1}^\infty u_n(t)$. If S^0 is small then $u(t), t \ge 0$, is the unique solution of the Navier–Stokes equations where $u^0 = \sum_{n=1}^\infty u_n^0 \in V$ and

$$\sum_{n=1}^{\infty} \|u_n(t)\| \le 2S^0 e^{-t}, \quad t > 0.$$

If $S^0 = \sum_{n=1}^{\infty} \|u_n^0\| < \infty$, then $u(t) = \sum_{n=1}^{\infty} u_n(t)$ is the regular solution in (0, T) for some T > 0.

Connection to the asymptotic expansions

Theorem (2006)

Suppose $\sum_{n=1}^{\infty} \|W_n(0,u^0)\| < \varepsilon_0$, then $u(t,u^0) = \sum_{n=1}^{\infty} W_n(t,u^0)e^{-nt}$ is the regular solution to the Navier–Stokes equations for all t > 0,

Theorem (2006)

Suppose $\limsup_{n\to\infty}\|W_n(0,u^0)\|^{1/n}<\infty$. Then there is T>0 such that

$$v(t) = \sum_{n=1}^{\infty} W_n(t, u^0) e^{-nt}$$

is absolutely convergent in V, uniformly in $t \in [T, \infty)$, $\sum_{n=1}^{\infty} W_n(t, u^0) e^{-nt}$ is the asymptotic expansion of v(t), and

$$u(t, u^0) = v(t)$$
 for all $t \in [T, \infty)$.

Algebraic relations

Let
$$V^{\infty} = V \oplus V \oplus V \oplus \cdots$$
. Define

$$W(t,\cdot): u \in \mathcal{R} \mapsto (W_n(t,u)e^{-nt})_{n=1}^{\infty} \in V^{\infty},$$

$$Q(t,\cdot): \bar{\xi} \in \mathcal{S}_A \mapsto (q_n(t,\bar{\xi})e^{-nt})_{n=1}^{\infty} \in V^{\infty}.$$

We primarily have

Constructed normed spaces

Let $(\tilde{\kappa}_n)_{n=2}^{\infty}$ be a fixed sequence of real numbers in the interval (0,1] satisfying

$$\lim_{n\to\infty} (\tilde{\kappa}_n)^{1/2^n} = 0.$$

We define the sequence of positive weights $(\rho_n)_{n=1}^{\infty}$ by

$$\rho_1 = 1, \quad \rho_n = \tilde{\kappa}_n \gamma_n \rho_{n-1}^2, \quad n > 1,$$

where $\gamma_n \in (0,1]$ are known and decrease to zero faster than n^{-n} . For $\bar{u} = (u_n)_{n=1}^{\infty} \in V^{\infty}$, let

$$\|\bar{u}\|_{\star} = \sum_{n=1}^{\infty} \rho_n \|u_n\|_{H^1(\Omega)},$$

Define $V^{\star} = \{ \bar{u} \in V^{\infty} : \|\bar{u}\|_{\star} < \infty \}, \quad S_{\mathcal{A}}^{\star} = S_{\mathcal{A}} \cap V^{\star}.$ Clearly V^{\star} and $S_{\mathcal{A}}^{\star}$ are Banach spaces.

Main Results

We summarize our results in the commutative diagram

Figure: Commutative diagram

where all mappings are continuous.

Determining the weights

Recursive estimates: $\rho_n ||W_n(u^0)|| \leq d_n$ where

$$d_1 = \rho_1 ||u^0||, \quad d_n = \rho_n ||u^0|| + \kappa_n g_0^n \{X^2 + (\sum_{k=1}^{n-1} d_k)^2\}, \ n > 1$$

where g_0, X are positive numbers depending on u^0 , κ_n can be chosen to be small.

Question: For which κ_n that $\sum_{n=1}^{\infty} d_n$ is finite?

We find decreasing ρ_n such that $\rho_n \leq \kappa_n \rho_{n-1}^2$.

Numeric series

Lemma

Let $(a_n)_{n=1}^{\infty}$ and $(k_n)_{n=2}^{\infty}$ be two sequences of positive numbers. Let $d_1=a_1$ and $d_n=a_n+k_n(\sum_{k=1}^{n-1}d_k)^2$, for n>1. Suppose

$$\lim_{n\to\infty}k_n^{1/2^n}=0.$$

If $\sum_{n=1}^{\infty} a_n$ is finite, so is $\sum_{n=1}^{\infty} d_n$. More precisely,

$$\sum_{n=1}^{\infty} d_n \leq \sum_{n=1}^{\infty} a_n + \alpha^2 \sum_{n=1}^{\infty} k_n M^{2(2^n-1)} < \infty,$$

where $\alpha = \sup\{a_n : n \in \mathbb{N}\}\$ and $M = 3\sup\{1, \alpha, k_n\alpha : n > 1\}.$

Recursive estimates

Sketch: Given $u^0 \in \mathcal{R}$, the asymptotic expansion of u(t) is

$$u(t) \sim \sum u_n(t) = \sum W_n(t, u^0) e^{-nt}$$
 as $t \to \infty$.

For $n \geq 2$, denote $\tilde{u}_n(t) = u(t) - \sum_{k=1}^{n-1} u_k(t)$. Suppose we have estimates for $\xi_j = W_j(u^0), q_j(\zeta) = W_j(\zeta, u^0)$ for $j = 1, \ldots, n-1$ and $\tilde{u}_j(\zeta)$ for $j = 2, \ldots, n$ for ζ in some domain of analyticity.

• Estimate $W_n(u^0) = \xi_n$ using

$$\begin{split} W_n(u^0) &= R_n \tilde{u}_n(0) - \int_0^\infty e^{n\tau} \sum_{\substack{k,j \leq n-1\\k+j \geq n+1}} R_n B(u_k, u_j) d\tau \\ &- \int_0^\infty e^{n\tau} R_n \big[B(u, \tilde{u}_n) + B(\tilde{u}_n, u) - B(\tilde{u}_n, \tilde{u}_n) \big] d\tau. \end{split}$$

for $n \in \sigma(A)$ and n > 2.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

- Estimate $q_n(0, \xi_1, ..., \xi_{n-1})$.
- Using extended NSE with initial data $u_n(0)$ being the above $q_n(0)$ to bound $\rho_n \|W_n(\zeta, u^0)e^{-n\zeta}\| \leq M_n e^{-\text{Re}\zeta}$. Then use Fragmen-Linderlöf type esitimate to obtain exact rate of decay.
- Using Navier–Stokes equations and Phragmen-Linderlöf type esitimate to bound bound $\|\tilde{u}_{n+1}(\zeta)\|$.

Above, we need to complexify NSE as well as extended NSE.

Formula of $q_n(0, \xi_1, \dots, \xi_{n-1})$

Recall: $q_n(t)$ is the polynomial solution of

$$q'_n + (A - n)q_n + \beta_n = 0, \quad R_n q_n(0) = \xi_n,$$
$$\beta_n = \sum_{k+j=n} B(q_k, q_j).$$

Then

$$R_{n}q_{n}(0) = \xi_{n}$$

$$P_{n-1}q_{n}(0) = \int_{0}^{\infty} e^{\tau(A-n)P_{n-1}}P_{n-1}\beta_{n}(\tau)d\tau$$

$$(I - P_{n})q_{n}(0) = -\int_{-\infty}^{0} e^{\tau(A-n)(P_{n^{2}} - P_{n})}(P_{n^{2}} - P_{n})\beta_{n}(\tau)d\tau.$$

Extended Navier-Stokes Equations

Let $(\rho_n)_{n=1}^{\infty}$ be a sequence of positive numbers satisfying

$$\rho_n = \kappa_n \min\{\rho_k \rho_j : k + j = n\}, \quad \kappa_n \in (0, 1], \quad n \ge 2.$$

with $\lim_{n\to\infty} \kappa_n^{1/n} = 0$.

Theorem

If $\bar{u}^0 \in V^{\star}$, then $S_{\mathrm{ext}}(t)\bar{u}^0 \in V^{\star}$ for all t>0. More precisely,

$$||S_{\text{ext}}(t)\bar{u}^0||_{\star} \le Me^{-t}, \ t > 0,$$

where $M = \|\bar{u}^0\|_{\star} + C_1 \sum_{n=2}^{\infty} \kappa_n (n-1) M_0^n$, $M_0 = \max\{1, 2C_1\kappa_n (n-1)\} \max\{1, 2\|\bar{u}^0\|_{\star}\}$.

Theorem

 $S_{\mathrm{ext}}(t)$ is continuous from V^{\star} to V^{\star} , for $t \in [0, \infty)$. More precisely, for any $\bar{u}^0 \in V^{\star}$ and $\varepsilon > 0$, there is $\delta > 0$ such that

$$\|S_{\rm ext}(t)\bar{v}^0-S_{\rm ext}(t)\bar{u}^0\|_\star<\varepsilon e^{-t},$$

for all $\bar{v}^0 \in V^*$ satisfying $\|\bar{v}^0 - \bar{u}^0\|_* < \delta$ and for all $t \geq 0$.

Phragmen-Linderlöf type estimates.

Theorem

Let $f(\zeta)$ be analytic on the right half plane H_0 , bounded by a constant M and

$$\sup_{x>0}e^{\alpha x}|f(x)|<\infty,$$

where α is a positive number. Then

$$|f(\zeta)| \leq Me^{-\alpha \operatorname{Re}\zeta}, \ \zeta \in H_0.$$

Our domain of analyticity when $\|u^0\|$ is small

$$D = \{ \tau + i\sigma : \tau > 0, |\sigma| < c\tau e^{\alpha \tau} \},$$

where $c, \alpha > 0$.

Lemma

Let $c \ge \sqrt{2}, \alpha > 0$, then the transformation

$$\phi(\zeta) = \zeta - \frac{1}{\alpha}\log(1 + \alpha\zeta)$$

conformally maps D to a set containing the right half plane. Moreover, $\phi([0,\infty))=[0,\infty)$.

Corollary

Suppose $u(\zeta)$ is analytic in $D(c,\alpha)$ where $c \ge \sqrt{2}, \alpha > 0$,

$$|u(\zeta)| \leq M, \quad \zeta \in D(c, \alpha),$$

$$\sup_{t>0}e^{nt}|u(t)|<\infty,\quad t>0,$$

where n is a positive constant. Then

$$|u(\zeta)| \leq Me^{-n\operatorname{Re}\zeta}|1 + \alpha\zeta|^{n/\alpha}, \quad \zeta \in \phi_{\alpha}^{-1}(H_0).$$

Corollary

Let $q(\zeta)$ be a polynomial of degree less than or equal to p and

$$|e^{-N\zeta}q(\zeta)| \le M, \quad \zeta \in D.$$

Then

$$|q(\zeta)| \le M|1 + \alpha\zeta|^{N/\alpha}, \quad \zeta \in \phi^{-1}(H_0),$$

$$|q(\zeta)| \le M(p+1)(1 + \alpha a + \alpha r_a)^{N/\alpha} \left(\frac{|\zeta| + a}{r_a}\right)^p, \quad \zeta \in \mathbb{C}.$$

The range of the normalization map

Let
$$u^0 \in \mathcal{R}$$
, estinate $\|W(u^0)\|_{\star} = \sum_{n=1}^{\infty} \rho_n \|W_n(u^0)\|_{H^1(\Omega)}$.

The range of the normalization map

Let
$$u^0 \in \mathcal{R}$$
, estinate $\|W(u^0)\|_\star = \sum_{n=1}^\infty \rho_n \|W_n(u^0)\|_{H^1(\Omega)}$.

Estimates when $||u^0||$ is small. Above esimates are adequate.

The range of the normalization map

Let
$$u^0 \in \mathcal{R}$$
, estinate $\|W(u^0)\|_{\star} = \sum_{n=1}^{\infty} \rho_n \|W_n(u^0)\|_{H^1(\Omega)}$.

Estimates when $||u^0||$ is small. Above esimates are adequate.

Estimates when $||u^0||$ is large. Combine above estimates on $[t_0, \infty)$, when t_0 is large, with the energy estimate on $[0, t_0)$.

Continuity of the normalization map, etc.

Similar to the estimates for the range. Final form: Given $u^0, v^0 \in \mathcal{R}$, with $\|u^0 - v^0\| < 1$. Let $w^0 = u^0 - v^0$, w(t) = u(t) - v(t). Then

$$\rho_n || W_n(u^0) - W_n(v^0) || \le y_n,$$

$$y_1 = \rho_1 || w^0 ||,$$

$$y_n = \rho_n ||w^0|| + \kappa_n M^n \Big(|w^0| + ||w(t_0)|| + \sum_{k=1}^{n-1} y_k \Big),$$

where M depends on u^0 , positive t_0 is fixed.

Lemma

Given $\varepsilon > 0$, there is $\delta = \delta(u^0) > 0$ such that if $||u^0 - v^0|| < \delta$, then $\sum_{n=1}^{\infty} y_n < \varepsilon$.

Summary

We have proved the commutative diagram

Figure: Commutative diagram

where all mappings are continuous.

Open problems

- Find u^0 such that $\sum_{n=1}^{\infty} \|W_n(0, u^0)\| < \varepsilon_0$ or $\limsup_{n\to\infty} \|W_n(0, u^0)\|^{1/n} < \infty$.
- Relations between the classical Leray weak solutions and the solutions to the extended Navier-Stokes equations.
- More properties and applications of the normalization map.