Formulas Cullen Zill AEM Chapters 3

I. (Linear, Homogeneous, Constant Coefficients)
$a y^{\prime \prime}+b y^{\prime}+c y=0 \Rightarrow$ try $y=e^{r x}$. Characteristic Equation $a r^{2}+b r+c=0$ has roots r_{1}, r_{2}. Discriminant: $\Delta=b^{2}-4 a c$. Three Cases:

1. $\Delta>0$ Real distinct roots $r_{1} \neq r_{2} \Rightarrow$ (general solution) $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$
2. $\Delta=0$ Real double root $r=r_{1}=r_{2} \Rightarrow$ (general solution) $y=c_{1} e^{r x}+c_{2} x e^{r x}$
3. $\Delta<0$ Complet roots $r=\alpha \pm i \beta \Rightarrow$ (general solution) $y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)$
II. (Euler Equation, $x>0$) $a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0 \Rightarrow$ try $y=x^{r}$

Characteristic Equation $a r^{2}+(b-a) r+c=0$ has roots r_{1}, r_{2}.
Three Cases:

1. Real distinct roots $r_{1} \neq r_{2} \Rightarrow$ (general solution) $y=c_{1} x^{r_{1}}+c_{2} x^{r_{2}}$
2. Real double root $r=r_{1}=r_{2} \Rightarrow$ (general solution) $y=c_{1} x^{r}+c_{2} \ln (x) x^{r}$
3. Complet roots $r=\alpha \pm i \beta \Rightarrow$ (general solution) $y=c_{1} x^{\alpha} \cos (\beta \ln (x))+c_{2} x^{\alpha} \sin (\beta \ln (x))$
III. (Nonhomogeneous Linear) $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)$ General solution: $y=y_{c}+y_{p}$

y_{c} is the general solution of
$y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$
:---:
$y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)$

There are two methods:
A. (Undetermined Coefficients) Guess the form of y_{p} from $R(x)$. This method requires that P and Q to be constants and R is a sum of terms of the form $x^{k}, x^{k} e^{\alpha x}, x^{k} e^{\alpha x} \cos (\beta x)$ or $x^{k} e^{\alpha x} \sin (\beta x)$.
B. (Variation of Parameters) Look for a particular solution in the form $y_{p}=u y_{1}+v y_{2}$. This approach leads to
$y_{p}(x)=-y_{1}(x) \int^{x} \frac{y_{2}(s) R(s)}{W(s)} d s+y_{2}(x) \int^{x} \frac{y_{1}(s) R(s)}{W(s)} d s, \quad W(s)=\operatorname{det}\left[\begin{array}{ll}y_{1}(s) & y_{2}(s) \\ y_{1}^{\prime}(s) & y_{2}^{\prime}(s)\end{array}\right]$
IV. (Reduction of Order) Suppose that y_{1} is a solution of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$. A second solution can be found in the form $y_{2}=y_{1} \int \frac{1}{y_{1}^{2}(x)} \exp \left(-\int^{x} p(x) d s\right) d x$.

A homogeneous linear differential equation with constant real coefficients of order n has the form

$$
\begin{equation*}
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=0 . \tag{*}
\end{equation*}
$$

We can introduce the notation $D=\frac{d}{d x}$ and write the above equation as

$$
P(D) y \equiv\left(D^{n}+a_{n-1} D^{(n-1)}+\cdots+a_{0}\right) y=0 .
$$

By the fundamental theorem of algebra we can factor $P(D)$ as

$$
\left(D-r_{1}\right)^{m_{1}} \cdots\left(D-r_{k}\right)^{m_{k}}\left(D^{2}-2 \alpha_{1} D+\alpha_{1}^{2}+\beta_{1}^{2}\right)^{p_{1}} \cdots\left(D^{2}-2 \alpha_{\ell} D+\alpha_{\ell}^{2}+\beta_{\ell}^{2}\right)^{p_{\ell}},
$$

where $\sum_{j=1}^{k} m_{j}+2 \sum_{j=1}^{\ell} p_{j}=n$.
There are two types of factors $(D-r)^{k}$ and $\left(D^{2}-2 \alpha D+\alpha^{2}+\beta^{2}\right)^{k}$:

$$
\text { The general solution of }(D-r)^{k} y=0 \text { is } y=\left(c_{1}+c_{2} x+\cdots+c_{k} x^{(k-1)}\right) e^{r x}
$$

$$
\text { The general solution of }\left(D^{2}-2 \alpha D+\alpha^{2}+\beta^{2}\right)^{k} y=0 \text { is }
$$

$$
y=\left(c_{1}+c_{2} x+\cdots+c_{k} x^{(k-1)}\right) e^{\alpha x} \cos (\beta x)+\left(d_{1}+d_{2} x+\cdots+d_{k} x^{(k-1)}\right) e^{\alpha x} \sin (\beta x) .
$$

The general solution contains one such term for each term in the factorization.

We can also argue as before and seek solutions of (*) in the form $y=e^{r x}$ to get a characteristic polynomial

$$
r^{n}+a_{n-1} r^{(n-1)}+\cdots+a_{0}=0 .
$$

In either case we find that the general solution consists of a sum of n expressions $\left\{y_{j}\right\}_{j=1}^{n}$ where each like $x^{k}, x^{k} e^{r x}, x^{k} e^{\alpha x} \cos (\beta x)$ or $x^{k} e^{\alpha x} \sin (\beta x)$. The y_{j} are linearly independent and the general solution is $y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}$. In the case $n=3$ the Wronskian of three functions y_{1}, y_{2}, y_{3} is

$$
W=W\left(y_{1}, y_{2}, y_{3}\right)=\left[\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right] .
$$

If the functions are solutions of a linear homogeneous ODE then the functions are linearly independent on an interval I if and only if the wronskian is not zero at a single $x \in I$ (and therefore for all $x \in I)$.

Our goal is to find the general solution of

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(x)(*)
$$

The general solution of $(*)$ is obtained as $y=y_{c}+y_{p}$ where

1. y_{c} is the general solution of the homogeneous problem, i.e. $y_{c}=c_{1} y_{1}+c_{2} y_{2}$ where y_{1}, y_{2} are two linearly independent solutions of $a y^{\prime \prime}+b y^{\prime}+c y=0$.
2. y_{p} is (any) particular solution of the nonhomogeneous problem $(*)$.

The main problem then is to find y_{p}.
Remarks on the Method of Undetermined Coefficients

Remark:

1. The general solution of the homogeneous problem is given as a sum of numbers times terms of the form

$$
\begin{equation*}
p(x), \quad p(x) e^{a x}, \quad p(x) e^{\alpha x} \cos (\beta x), \quad p(x) e^{\alpha x} \sin (\beta x) \tag{1}
\end{equation*}
$$

where $p(x)$ is a polynomial in x. No other types of solutions are possible!
2. This remains true for the nonhomogeneous problem $(*)$ provided the right hand side $f(x)$ is also given as a sum of terms of the form (1).
3. The main thing is to find y_{p} and here we consider the case of $f(x)$ in the form (1).

We consider $p(x)=C x^{m}+\cdots$ is a polynomial of degree m.

$$
a y^{\prime \prime}+b y^{\prime}+c y=p(x) e^{r_{0} x} \Rightarrow y_{p}=x^{s}\left(A_{m} x^{m}+\cdots+A_{1} x+A_{0}\right) e^{r_{0} x}
$$

1. $s=0$ if r_{0} is not a root of the characteristic polynomial $a r^{2}+b r+c=0 \quad(\dagger$.
2. $s=1$ if r_{0} is a simple root of (\dagger).
3. $s=2$ if r_{0} is a double root of (\dagger).
N.B. The above case includes the case $r_{0}=0$ in which case the right side is $p(x)$.

$$
a y^{\prime \prime}+b y^{\prime}+c y=\left\{\begin{array}{r}
p(x) e^{\alpha x} \cos (\beta x) \\
\text { or } \\
p(x) e^{\alpha x} \sin (\beta x)
\end{array} \Rightarrow \begin{array}{r}
\\
y_{p}= \\
x^{s}\left(A_{m} x^{m}+\cdots+A_{1} x+A_{0}\right) e^{\alpha x} \cos (\beta x) \\
\\
+x^{s}\left(B_{m} x^{m}+\cdots+B_{1} x+B_{0}\right) e^{\alpha x} \sin (\beta x)
\end{array}\right.
$$

1. $s=0$ if $r_{0}=\alpha+i \beta$ is not a root of (\dagger).
2. $s=1$ if $r_{0}=\alpha+i \beta$ is a simple root of (\dagger).
