

Formal Steps for a Hypothesis Test 1. State H₀ and H_a. 2. Calculate the test statistic. 3. Calculate the P-value. 4. Reach conclusion about H₀ using the decision rule. 5. State your conclusion in the context of your specific study.

Assumptions for the Z-Test X₁, X₂,...,X_n are iid. The population is distributed Normally. The mean μ is unknown We know the population standard deviation σ. Unlikely in practice.

The Z-Test

• The test statistic used is the Z-statistic

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

 The Z-statistic has a standard Normal distribution when H_o is true.

P-Values for the Z-test	
Alternative Hypothesis	P-Value
$\mu > \mu_o$	$P(Z \ge z)=1-P(Z \le z)$
$\mu < \mu_o$	$P(Z \le z)$
$\mu\neq\mu_o$	$2*P(Z \ge z) = 2*P(Z \le - z)$

Example: Different Alternatives

If z = -2.1, find the p-value when:

- b) $H_a: \mu < \mu_o$
- c) $H_a: \mu \neq \mu_o$

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$

- Does NOT have a Normal distribution.
- It has a **t distribution** with *n* − *ldegrees of freedom*.

ejection Regions for the -Test		
Alternative Hypothesis	Rejection Region	
$\mu > \mu_o$	$t \geq t_{\alpha,n\text{-}1}$	
$\mu < \mu_o$	$t \leq$ - $t_{\alpha,n-1}$	
$\mu \neq \mu_o$	Either $t \le -t_{\alpha/2,n-1}$ Or $t \ge t_{\alpha/2,n-1}$	

Statistical Significance

- An event is said to be statistically significant if it is unlikely to occur by chance alone.
- If the P-Value < α, then our parameter of interest is significantly different than the value claimed in H₀.

Cautions

- There is no sharp border between "significant" and "insignificant," only increasingly strong evidence as the P-Value decreases.
- Statistical significance is not the same as practical significance.
- Badly designed experiments will produce useless results.
 - $\hfill\square$ It's important to know how the data was produced.
- As always, be aware of outliers.