LARGE SAMPLE CONFIDENCE INTERVALS

MATH 3342 Section 7.2

Previous Assumptions

Suppose μ is the parameter of interest:

- 1. The data is from a SRS. There are no non-sampling errors.
- 2. The variable of interest is exactly Normal distributed.
- 3. We don't know the population mean μ , but we **do** know the population standard deviation σ .

What if these assumptions are not valid?

Large Sample CI with σ Known

- Let X_1, \dots, X_n be a SRS from a population with mean μ and standard deviation σ .

• If *n* is large, then \overline{X} is approximately Normally distributed.

• It follows that

$$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

is a large-sample confidence interval for μ with an approximate confidence level of $100(1-\alpha)\%$

The Score CI for *p*

Let
$$\tilde{p} = \frac{\hat{p} + z_{\alpha/2}^2 / (2n)}{1 + z_{\alpha/2}^2 / n}$$
.

Then a CI for *p* with a confidence level of approximately $100(1-\alpha)\%$ is:

$$\tilde{p} \pm z_{\alpha/2} \frac{\sqrt{\hat{p}(1-\hat{p})/n + z_{\alpha/2}^2/(4n^2)}}{1 + z_{\alpha/2}^2/n}$$

Large-Sample Confidence Bounds

• A large-sample upper confidence bound for μ is:

$$\mu < \overline{\mathbf{x}} + z_{\alpha} \cdot \frac{s}{\sqrt{n}}$$

• A large-sample lower confidence bound for $\boldsymbol{\mu}$ is:

$$\mu > \overline{\mathbf{x}} - z_{\alpha} \cdot \frac{s}{\sqrt{n}}$$

- Also called one-sided confidence intervals.
- Can be calculated similarly for *p*.