P-VALUES AND CAUTIONS ABOUT TESTS

MATH 2300 Sections 9.3, 9.4 and 9.5, Part 2

P-Values

- The probability of obtaining a test statistic at least as extreme as the test statistic we calculated from the sample.
 - Assuming H_o is true!!!
- The smaller the P-value, the stronger the evidence against $\ensuremath{\mathsf{H}_{o}}\xspace.$
- Provide another method to determine whether the null hypothesis should be rejected.

The Decision Rule

- If the P-Value is less than or equal to α, reject the **null** hypothesis in favor of the alternative.
- If the P-value is greater than α, do **not** reject the null hypothesis.

Example

- P-Value = 0.1142
- Would you reject H₀ at the following significance levels?
 - α = 0.01
 α = 0.05
 α = 0.10
 α = 0.15

P-Values for the Z-test: Use Table II	
Alternative Hypothe	esis P-Value
$\mu > \mu_o$	1- (proportion less than z)
$\mu < \mu_o$	Proportion less than z
$\mu\neq\mu_o$	2^* (proportion less than $- z $)

Formal Steps for a Hypothesis Test Using P-Values

- 1. State H_0 and H_a .
- 2. Calculate the **test statistic**.
- 3. Calculate the P-value.
- 4. Reach conclusion about H_0 using the decision rule.
- 5. State your conclusion in the context of your specific study.

P-Values for the Z-test: Use Table IV to Approximate	
P-Value	
1- (proportion less than t)	
Proportion less than t	
2*(proportion less than - t)	

Statistical Significance

- An event is said to be **statistically significant** if it is unlikely to occur by chance alone.
- If the P-Value < α, then our parameter of interest is significantly different than the value claimed in H₀.

Cautions

- There is no sharp border between "significant" and "insignificant," only increasingly strong evidence as the P-Value decreases.
- Statistical significance is not the same as practical significance.
- Badly designed experiments will produce useless results.
 - $\boldsymbol{\cdot}$ It's important to know how the data was produced.
- As always, be aware of outliers.