Probability and Random Variables

STA 2300 Chapter 5

France State Stress State Stress State State

Random Processes

• Exhibit chance behavior:

- Individual outcomes are uncertain, but there is a regular distribution in a large number of repetitions.
- Unpredictable in the short-run, but produce a predictable pattern in the long-run.
- Experiments and observational studies are types of random processes.
 - Will refer to both generically as experiments

Events

- Outcomes or a collection of outcomes that share some property of interest.
- Examples:
 - Rolling an odd number.
 - Flipping exactly two heads on four coin tosses.
 - Drawing a heart from a deck of cards.

Example

- Describe the sample space S:
- A new business is started. After two years, it is either still in business or it has closed.

Example

- Describe the sample space S:
- A quality inspector examines four portable CD players and rates each as either "acceptable" or "unacceptable." You record the sequence of ratings.

Calculating Probabilities

- Empirical Approach
- Theoretical Approach

<section-header>Empirical Approach 1. Repeat or observe a process many times and count the number of times event A occurs. 2. Estimate P(A): $p(A) = \frac{\# \ times \ A \ occurs}{total \ \# \ observations}$

Example: Rolling a Die

- You roll a die 5000 times.
- The number of times you roll a 5 is 830.
- Based on this information, calculate P(roll a 5).
- Is it likely that this die is fair?
 - Fair meaning that each number is equally likely to be rolled.

Complements

- The complement of event A is the set of all outcomes in S that are not contained in A.
- The event that A does not occur
- Denoted by "not A".

Unions

- The union of A and B is the event consisting of the outcomes that are either in A or B or in both.
- Denoted by "A or B"

Intersections

- The intersection of events A and B is the event consisting of all outcomes that are in both A and B.
- Denoted by "A & B"

The Null Set

- The event consisting of no outcomes.
- Also called the null event.
- \blacksquare Denoted by \varnothing
- If A&B = Ø, the events are said to be disjoint or mutually exclusive.

- Rule 1: The probability P(A) of any event A satisfies 0 ≤ P(A) ≤ 1.
 - ° If A can never occur, then P(A) = 0.
 - ° If A is certain to occur, then P(A) = 1.
- Rule 2: If S is the sample space, then P(S)=1.
 - ^e All possible outcomes must have probabilities that sum to one.

Probability Rules

Rule 4: The complement of any event A, A^c, is the event that A does not occur.

$$P(A^c) = 1 - P(A)$$

Probability Rules • Rule 6: For *any* events A and B, the probability of either event occurring is the following: P(A or B) = P(A) + P(B) - P(A and B)

Note

- The addition rules can be extended beyond two events.
- Example: For disjoint events A, B, and C:

P(A or B or C) = P(A) + P(B) + P(C)

Example: Wealth

- A = Event that a selected household is wealthy (income > \$100,000)
- B = Event that the householder completed college
- P(A) = 0.13
- P(B) = 0.25
- P(A and B) = 0.08

Example: Wealth

- Draw a Venn diagram of the sample space.
- P(A or B) = ?
- Shade the event C = The household is educated, but not wealthy.
- P(C) = ?

- Let E₁, E₂, E₃, ... be the outcomes in sample space S.
- The probability of compound event A is the sum of the P(E_i)'s for all E_i's in A:

$$P(A) = \sum_{all \; E_i 's \; in \; A} P(E_i)$$

Equal-likelihood Model

- Let N be the total number of outcomes in S.
- The probability of any outcome is $\frac{1}{N}$
- Let f be the number of outcomes in event
 A.

$$P(A) = \frac{f}{N}$$

Probability Models

- Consists of two parts:
 - The sample space S
 - A way of assigning probabilities to events
- Common ways of depicting a model:
 - Probability distribution table
 - Probability histogram
 - Density curve

Random Variables

- A random variable is a variable whose value is a numerical outcome of a random process.
- The probability distribution of a random variable X tells us what values X can take and how to assign probabilities to those values.

Example: AC Units						
Weekly Air Conditioning Units Ordered						
Units ordered X	0	1	2	3	4	5
Probability	0.05	0.15	0.27	0.33	0.13	0.07
Calculate the expec	ted nu	umber	of un	its ord	dered	weekly.

Variance of X

- X is a discrete RV with a set of possible values D and mean µ.
- The variance of X, denoted by σ², is given by:

$$\sigma^2 = \sigma_X^2 = \sum_{x \in D} (x - \mu)^2 \cdot P(X = x)$$

Also called the population variance.

Alternative Formula for σ^2

The following formula serves as an alternative to the definition for σ²

$$\sigma^2 = \sigma_X^2 = \left[\sum_{x \in D} x^2 \cdot P(X = x)\right] - \mu^2$$

σ is the **population standard deviation**.

