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The Binomial Distribution

Math 2300
Section 5.6

The Binomial Setting

• ‘n’ identical trials
w Examples:

§ 15 tosses of a coin
§ 10 CDs chosen from a warehouse

• Two mutually exclusive outcomes on 
each trial (“success” or “failure”)
w e.g.: Head or tail in each toss of a coin; 

CD defective or not defective
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The Binomial Setting

• Trials are independent
w The outcome of one trial does not affect 

the outcome of the other
• Constant probability for each trial

w Probability of a tail is the same each time 
we toss the coin

w Probability of getting a defective CD is 
the same each time we select one

A Binomial Distribution

• The RV X counts the number of 
successes.

• Parameters:
w n: reflects the total number of 

observations or trials.
w p: reflects the probability of success on 

any one observation.
• X can be any integer between 0 and n.
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Example: Assembly Process

• A company assembles a component 
used in DVD players.

• It has determined that there are 3 
independent opportunities for error in 
assembling the component.

• Each opportunity has P(Defect) = 0.1

Assumptions

• n is 3
w Because the opportunities for error are 

the number of observations.
• Either an error occurs or it does not.
• Must assume the chance of an error is 

the same for each opportunity.
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Example: Assembly Process

• Of interest to the consumer:
w The RV X, the number of defects in the 

component
• How likely is it that the product has 

exactly one defect?
w One or fewer defects?

Tree Representation
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1st opportunity 2nd opportunity 3rd opportunity

We know that any 
one error occurs 
with probability 0.1
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Using the Multiplication Rule
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Event A = 1st opportunity 
no error

Event B = 2nd opportunity 
no error

Probability of no error in 
the first two opportunities

= P(A and B) = P(A)P(B)
Multiply 
within paths:

(.9)(.9) = .81= (0.9)(0.9) = 0.81

Binomial Probabilities
What is the probability of observing 

exactly one defect?
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.1(.9)(.9) = .081

.9(.1)(.9) = .081

.9(.9)(.1) = .081

Multiply within 
paths:

Add results 
together 
(disjoint 
events):

.081
+.081
+.081

0.243
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Binomial Coefficient

• Counts the number of “paths.”
• Number of ways of getting k

successes in n observations.
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For k = 0, 1, 2, … , n.

Example: One defect in 
three opportunities
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Binomial pmf

• X has a binomial distribution
• p is probability of success on each 

observation
• x = 0, 1, 2, …, or n.

• For all other x, P(X=x) = 0

P(X = x) =
n
x
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Assembly Process Example

• How likely is it that the product has 
exactly one defect?
w One or fewer defects?

• Recall: n = 3 k = 1 p = 0.1

P(X =1) =
3
1
!
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%
&0.11(1− 0.1)3−1 = 3(0.1)(.9)2 = 0.243

Example: Assembly Process

P(X =1) = 0.243

How likely is it that the product has one or 
fewer defects?

P(X = 0) =
3
0
!

"
#
$

%
&0.10(1− 0.1)3−0 =1(1)(.9)3 = 0.729

P(X ≤1) = P(X = 0)+P(X =1)
= 0.729+ 0.243= 0.972



8

Mean of the Binomial 
Distribution

µ = np

• Assembly Process:
w n = 3
w p = 0.1

µ = 3*0.1 = 0.3 errors

Variance of the Binomial 
Distribution

• Assembly Process:

σ 2 = np(1− p) = npq

σ = npq

σ 2 = 3*0.1(1− 0.1) = 0.27 errors2

σ = 0.27 ≈ 0.52 errors


