
Addi$onal	Examples	of	the	
Central	Limit	Theorem	in	Prac$ce	



Example	1:	Popula.on	Distribu.on	
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The	distribu$on	is	heavily	posi$vely	skewed	



Example	1:	Distribu.on	of	Sample	Mean	with	n=15	
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Example	1:	Distribu.on	of	Sample	Mean	with	n=30	
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Our	rule	of	thumb	does	not	hold	here.		The	sampling	distribu$on	is	s$ll	
posi$vely	skewed.		We	will	need	an	even	large	sample	size	for	the	CLT	to	
work.	



Example	1:	Distribu.on	of	Sample	Mean	with	n=50	
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Even	a	sample	size	of	50	is	s$ll	not	sufficient	here.		We	will	need	an	even	
large	sampler	size	for	the	CLT	to	apply.	



Example	1:	Distribu.on	of	Sample	Mean	with	n=100	
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Even	a	sample	size	of	100	is	s$ll	not	sufficient	here.		We	will	s$ll	need	an	
even	larger	sample	size	for	the	CLT	to	apply.	



Example	1:	Distribu.on	of	Sample	Mean	with	n=200	
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This	distribu$on	is	s$ll	not	quite	normally	distributed	with	200	observa$ons,	
but	it	is	much	closer	than	what	we	saw	with	the	smaller	sample	sizes.		It	
wouldn’t	be	a	terrible	idea	to	use	the	CLT	with	this	sample	size	for	this	
distribu$on.	



Example	2:	Popula.on	Distribu.on	
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The	popula$on	has	a	bimodal	distribu$on	with	peaks	of	different	heights.	



Example	2:	Distribu.on	of	Sample	Mean	with	n=15	
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Even	though	the	distribu$on	is	not	quite	normal	yet,	we	see	that	it	is	
already	unimodal	and	bell-shaped	with	a	slight	posi$ve	skew,	despite	the	
popula$on	having	two	peaks.	



Example	2:	Distribu.on	of	Sample	Mean	with	n=30	
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With	just	30	observa$ons,	we	see	that	the	sampling	distribu$on	already	
looks	preQy	close	to	being	normally	distributed.		It’s	helpful	to	see	what	
happens	with	even	larger	sample	sizes,	though.	



Example	2:	Distribu.on	of	Sample	Mean	with	n=50	
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The	sampling	distribu$on	is	even	more	normally	distributed	now	than	it	
was	before!		We	also	can	see	that	the	amount	of	variability	has	
decreased,	too,	showing	the	Law	of	Large	Numbers	in	ac$on,	as	well.	



Example	2:	Distribu.on	of	Sample	Mean	with	n=100	
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The	sampling	distribu$on	looks	very	much	like	a	normal	distribu$on	now,	
so	we	should	have	absolutely	no	doubts	about	applying	the	CLT.		We	see	
again	that	the	amount	of	variability	has	decreased	even	more,	as	well.	



Example3:	Popula.on	Distribu.on	
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This	popula$on	is	trimodal	with	peaks	of	different	heights.	



Example	3:	Distribu.on	of	Sample	Mean	with	n=15	

0 2 4 6 8 10 12 14
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
n=15

Once	again,	the	sampling	distribu$on	is	unimodal	for	a	small	sample	size	
despite	the	popula$on	having	many	peaks.	



Example	3:	Distribu.on	of	Sample	Mean	with	n=30	
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Unlike	the	previous	example,	here	30	observa$ons	is	not	quite	enough	to	
get	a	sampling	distribu$on	that	looks	normal.		It	is	s$ll	a	liQle	posi$vely	
skewed.	



Example	3:	Distribu.on	of	Sample	Mean	with	n=50	
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The	sampling	distribu$on	is	closer	to	being	normal	than	it	was	for	30	
observa$ons,	but	it	is	s$ll	slightly	skewed	posi$vely.		We	can	take	a	look	at	the	
probability	plot	of	this	distribu$on	to	help	us	understand	it	even	beQer,	
though.	



Example	3:	Distribu.on	of	Sample	Mean	with	n=50	
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QQ Plot of Sample Data versus Standard Normal

From	this	probability	plot,	we	can	see	that,	since	it	closely	follows	a	linear	
paQern	for	most	of	the	data,	it	is	very	close	to	being	normal.		The	tails	
devia$ng	from	the	line	quite	as	much	as	they	do,	though,	suggests	that	even	
more	observa$ons	would	be	help	improve	the	normality	of	the	distribu$on.	



Example	3:	Distribu.on	of	Sample	Mean	with	n=100	
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The	shape	of	the	distribu$on	here	is	s$ll	nearly	iden$cal	to	what	we	had	for	50	
observa$ons,	though	the	amount	of	variability	has	decreased	considerably	
s$ll.		This	shows	that	even	though	we	might	get	close	to	having	a	normal	
distribu$on	with	a	rela$vely	small	sample	size,	it	might	take	many	more	
observa$ons	to	get	a	really	good	approxima$on.	


