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Abstract. A commutative noetherian ring with a dualizing complex is Goren-

stein if and only if every acyclic complex of injective modules is totally acyclic.
We extend this characterization, which is due to Iyengar and Krause, to ar-

bitrary commutative noetherian rings, i.e. we remove the assumption about a

dualizing complex. In this context Gorenstein, of course, means locally Goren-
stein at every prime.

1. The Theorem

Let R be a commutative ring. A complex A of R-modules with H(A) = 0 is called
acyclic. An acyclic complex P of projective R-modules is called totally acyclic if
HomR(P,Q) is acyclic for every projective R-module Q; likewise an acyclic complex
I of injective R-modules is called totally acyclic if HomR(E, I) is acyclic for every
injective R-module E. Finally, an acyclic complex F of flat R-modules is called
F-totally acyclic if F ⊗R E is acyclic for every injective R-module E.

The invariant splf R = sup{proj.dimR F | F is a flat R-module} is finite if and
only if every flat R-module has finite projective dimension. Indeed, a direct sum
of flat modules is flat with proj.dimR(

⊕
λ∈Λ Fλ) = supλ∈Λ{proj.dimR Fλ}. A ring

with splf R ≤ n is called n-perfect ; in particular, a 0-perfect ring is a perfect ring
in the sense of Bass’ Theorem P. With these definitions in place we can state our:

Theorem 1.1. Let R be a commutative noetherian ring. Among the conditions

(i) The local ring Rp is Gorenstein for every prime ideal p of R
(ii) Every acyclic complex of injective R-modules is totally acyclic

(iii) Every acyclic complex of flat R-modules is F-totally acyclic
(iv) Every acyclic complex of projective R-modules is totally acyclic

the following implications hold

(i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv) .

Moreover, if splf R is finite, then all four conditions are equivalent.

The proof is given in the next section. Here we continue with a discussion of the
precursors of the theorem and the condition splf R <∞; in the rest of this section
R is assumed to be noetherian.
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If the ring R has finite Krull dimension—if it is local, in particular—then it is
Gorenstein if and only if inj.dimRR is finite. It is standard to call a ring that
satisfies part (i) in the theorem Gorenstein, but notice that such a ring need not
have finite injective dimension as a module over itself. Nagata’s regular ring of
infinite Krull dimension serves as an example.

Equivalence of the conditions (i), (ii), and (iv) in the theorem was proved by
Iyengar and Krause [6, Corollary 5.5] under the assumption that R has a dua-
lizing complex. That assumption implies that R has finite Krull dimension; see
Hartshorne [5, Corollary V.7.2], and as we recall next that implies splf R <∞.

For a ring of finite Krull dimension d, one has splf R ≤ d by work of Gruson and
Raynaud [10, Theorem II.(3.2.6)] and Jensen [7, Proposition 6]. In this context the
equivalence of conditions (i), (iii), and (iv) in the theorem was proved by Murfet
and Salarian [8, Theorem 4.27 & Corollary 4.28], and the equivalence of all four
conditions was recently proved by Estrada, Fu, and Iacob [3].

Thus, the novelty of Theorem 1.1 is twofold; it establishes:
• the equivalence of conditions (i)–(iii) for rings of infinite Krull dimension.
• the equivalence of (i)–(iv) for certain rings of infinite Krull dimension. Indeed,

by a result of Gruson and Jensen [4, Theorem 7.10] one has splf R ≤ n + 1 if
R has cardinality at most ℵn for some natural number n.

2. The proof

Our argument for (ii)⇒ (i) is an application of a result due to Š ’tov́ıček [11]. The
rest of the proof is based on, mostly, standard arguments that can be found in some
form in the literature. We repeat them for the reader’s convenience and to clarify
under which conditions they apply.

Outline. For any commutative ring R, one can consider the following conditions:

(1) Every acyclic complex of projective R-modules is F-totally acyclic.
(2) Every acyclic complex of injective R-modules is totally acyclic.
(3) Every acyclic complex of flat R-modules is F-totally acyclic.
(4) Every acyclic complex of projective R-modules is totally acyclic.

For a noetherian ring R one can also consider:

(3bis) The local ring Rp is Gorenstein for every prime ideal p of R.

The proof of Theorem 1.1 goes as follows. These implications always hold:

(1) ⇐⇒ (3) ⇐= (2) see Claims 2.2 and 2.3.

Under the assumption that R is coherent, one has

(1) =⇒ (4) see [8, Lemma 4.20] or Claim 2.4,

and if R is coherent with splf R finite, then one also has

(1) ⇐= (4) see [8, Lemma 4.20] or Claim 2.5.

If R is noetherian, then one has

(3bis) ⇐⇒ (3) see [8, Theorem 4.27] or Claim 2.6,

and

(3bis) =⇒ (2) see Claim 2.1.

This finishes the proof of Theorem 1.1.

∗ ∗ ∗
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Recall that an R-module C is called cotorsion if Ext1
R(F,C) = 0 holds for every

flat R-module F .

Claim 2.1. Let R be noetherian. If the local ring Rp is Gorenstein for every prime
ideal p in R, then every acyclic complex of injective R-modules is totally acyclic.

Proof. Let I be an acyclic complex of injective R-modules. It is sufficient to
show that HomR(E, I) is acyclic for every indecomposable injective R-module
E = E(R/p). Fix such a module, it has an Rp-module structure, and the R-action
factors through this structure, so standard adjunction yields

HomR(E, I) ∼= HomR(Rp ⊗Rp
E, I) ∼= HomRp

(E,HomR(Rp, I)) .

By [11, Corollary 5.9] the cycle submodules of the complex I are cotorsion, so
the complex HomR(Rp, I) of injective Rp-modules is acyclic. As Rp is Goren-
stein, the injective module E has finite projective dimension, and it follows that
HomRp

(E,HomR(Rp, I)) and hence HomR(E, I) acyclic. �

Claim 2.2. Every acyclic complex of projective R-modules is F-totally acyclic if
and only if every acyclic complex of flat R-modules is F-totally acyclic.

Proof. The “if” part is trivial as projective modules are flat. For the converse,
let F be an acyclic complex of flat modules. It follows from [9, Propositions 8.1
& 9.1] that, in the homotopy category of complexes of flat modules, there is a
distinguished triangle P → F → C →, where P is a complex of projective modules
and C is pure acyclic; i.e. H(C) = 0 = H(C ⊗R M) for every module M . It follows
that P is acyclic, so by assumption it is F-totally acyclic, and hence so is F . �

Claim 2.3. If every acyclic complex of injective R-modules is totally acyclic, then
every acyclic complex of flat R-modules is F-totally acyclic.

Proof. Let F be an acyclic complex of flat R-modules. The character complex
HomZ(F,Q/Z) is an acyclic complex of injective R-modules, so the complex

HomR(E,HomZ(F,Q/Z)) ∼= HomZ(F ⊗R E,Q/Z)

is by assumption acyclic for every injective R-module E. It follows that F ⊗R E is
acyclic for every injective R-module E. �

The classes of flat modules and cotorsion modules make up a complete cotorsion
pair; that is a theorem of Bican, El Bashir, and Enochs [1]. In particular, there
is for every R-module M an exact sequence 0 → M → C → F → 0 where C is
cotorsion and F is flat. If M is flat, then so is C, so by iteration a flat R-module
admits a, possibly infinite, coresolution by flat cotorsion modules.

Claim 2.4. Let R be coherent and P be an acyclic complex of projective R-modules.
If P is F-totally acyclic, then HomR(P,G) is acyclic for every flat R-module G; in
particular, P is totally acyclic.

Proof. For every injective R-module E the complex P ⊗R E and hence

HomZ(P ⊗R E,Q/Z) ∼= HomR(P,HomZ(E,Q/Z))

is acyclic. By [12, Lemma 3.2.3] an R-module is cotorsion and flat if and only if
it is a direct summand of the character module HomZ(E,Q/Z) of some injective
R-module E. Thus, HomR(P,C) is acyclic for every flat cotorsion R-module C.
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Let G be a flat R-module with cotorsion coresolution G → C. The fact that
HomR(P,Ci) is acyclic for every i implies by [2, Lemma 2.5] that HomR(P,C) is
acyclic. Consider the augmented coresolution

G+ = 0 −→ G −→ C0 −→ C1 −→ · · · −→ Ci −→ Ci+1 −→ · · · .

It is a pure acyclic complex of flat R-modules, so by [9, Theorem 8.5] the com-
plex HomR(P,G+) is acyclic. Since the complex G+ is the mapping cone of the
morphism G→ C, one now has H(HomR(P,G)) ∼= H(HomR(P,C)) = 0. �

Claim 2.5. Let R be coherent with splf R finite. Every totally acyclic complex P
of projective R-modules is F-totally acyclic.

Proof. Let P be a totally acyclic complex of projective R-modules and E be an
injective R-module. The complex P ⊗R E is acyclic if the character complex

HomZ(P ⊗R E,Q/Z) ∼= HomR(P,HomZ(E,Q/Z))

is acyclic. The R-module HomZ(E,Q/Z) is flat, see [12, Lemma 3.1.4], so by
assumption it has finite projective dimension. As HomR(P,Q) is acyclic for every
projective R-module Q, it follows that HomR(P,HomZ(E,Q/Z)) is acyclic. �

Claim 2.6. Let R be noetherian. Every acyclic complex of flat R-modules is totally
acyclic if and only if Rp is Gorenstein for every prime ideal p of R.

Proof. “If”: Let F be an acyclic complex of flat R-modules and E be an injective
R-module. The complex F ⊗R E is acyclic if (F ⊗R E)p ∼= Fp ⊗Rp

Ep is acyclic for
every prime p. Fix p; the complex Fp of flat Rp-modules is acyclic and, since Rp is
Gorenstein, the injective Rp-module Ep has finite flat dimension; hence Fp ⊗Rp

Ep

is acyclic.
“Only if”: Fix a prime p. The local ring Rp is Gorenstein if its pRp-adic com-

pletion R̂p is Gorenstein. As an R-module R̂p is flat, so every injective R̂p-module

is injective over R. Let P be an acyclic complex of projective R̂p-modules; it is a
complex of flat R-modules and hence F-totally acyclic. Thus, for every injective

R̂p-module E the complex P ⊗R E ∼= P ⊗
R̂p

E is acyclic. That is, P is F-totally

acyclic and hence totally acyclic by Claim 2.4. Being a complete local ring, R̂p has
a dualizing complex, and it follows from [6, Corollary 5.5] that it is Gorenstein. �

Remark 2.7. We do not know if condition (2.7.1) below is equivalent to finiteness
of splf R; it is not even clear that it implies finite projective dimension of the flat
R-module

∏
p Rp.

(2.7.1) proj.dimRRp <∞ for every prime ideal p of R .

We show in Claim 2.8 that (4)⇒ (1) holds if R is noetherian and satisfies (2.7.1).
Thus all four conditions in Theorem 1.1 are equivalent for such rings.

Claim 2.8. Let R be noetherian. If proj.dimRRp is finite for every prime ideal p
of R, then every totally acyclic complex of projective R-modules is F-totally acyclic.

Proof. Let P be a totally acyclic complex of projective R-modules and let E be
an injective R-module. The complex P ⊗R E is acyclic if (P ⊗R E)p ∼= P ⊗R Ep is
acyclic for every prime p. Fix p; it is sufficient to prove that the character complex

HomZ(P ⊗R Ep,Q/Z) ∼= HomR(P,HomZ(Ep,Q/Z))
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is acyclic. The Rp-module HomZ(Ep,Q/Z) is flat, so it has finite projective dimen-
sion over Rp. Every projective Rp-module has finite projective dimension over R
by the assumption proj.dimRRp < ∞. It follows that proj.dimR HomZ(Ep,Q/Z)
is finite. By assumption HomR(P,Q) is acyclic for every projective R-module Q,
and it follows that HomR(P,HomZ(E,Q/Z)) is acyclic. �
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