A GEOMETRIC ANALYSIS OF KOSZUL STRUCTURES FOR TRIVARIATE MONOMIAL IDEALS

JARED PAINTER

ABSTRACT. The Koszul Algebra structure for codepth 3 commutative local rings has been studied significantly in recent years. Codepth 3 local rings can be described with 5 distinct classifications; $\mathbf{C}(c)$, \mathbf{T} , \mathbf{B} , $\mathbf{G}(r)$, and $\mathbf{H}(p,q)$, with $\mathbf{H}(p,q)$ being the most diverse of these classes. We describe geometric approaches to identify the Koszul structure of R/I when I is a monomial ideal in $R = \mathbf{k}[x, y, z]$ where \mathbf{k} is a field. Specifically, if I is \mathfrak{m} -primary and $I \subseteq \mathfrak{m}^2$, where \mathfrak{m} is the homogeneous maximal ideal of R, then the Koszul structure for R/I can be determined by analysis of the planar graph corresponding to the minimal free resolution of R/I. This allows us to bound the invariants, pand q, of the Koszul structure in terms of number of minimal generators, m, of I. Additionally, the type, n, of R/I corresponds to the number bounded faces of the planar graph, and is thus subject to Euler's bound, $n \leq 2m - 5$. We will argue that if R/I has maximum type of 2m - 5, then R/I is of the \mathbf{T} structure.