A COHEN-MACAULAY ALGEBRA HAS ONLY FINITELY MANY SEMIDUALIZING MODULES

LARS WINTHER CHRISTENSEN AND SEAN SATHER-WAGSTAFF

ABSTRACT. We prove the result stated in the title, which answers the equicharacteristic case of a question of Vasconcelos.

In this paper, R is a commutative noetherian local ring. A finitely generated R-module C is *semidualizing* if the homothety morphism $R \to \operatorname{Hom}_R(C, C)$ is an isomorphism and $\operatorname{Ext}_R^{\geq 1}(C, C) = 0$. Examples include R itself and (if one exists) a dualizing R-module in the sense of Grothendieck. Semidualizing modules have properties similar to those of dualizing modules [2] and arise in several contexts.

Let $\mathfrak{S}_0(R)$ denote the set of isomorphism classes of semidualizing *R*-modules. Vasconcelos, calling these modules "spherical," asked whether $\mathfrak{S}_0(R)$ is finite when *R* is Cohen-Macaulay and whether it has even cardinality when it contains more than one element [8, p. 97]. In [7] affirmative answers to these questions are given, e.g., for certain determinantal rings. Here we prove:

(1) **Theorem.** If R is Cohen-Macaulay and equicharacteristic, then $\mathfrak{S}_0(R)$ is finite.

(2) **Remark.** This result also yields an answer to the parity part of Vasconcelos' question for certain Cohen-Macaulay rings. Let R be as in Theorem (1). If R is Gorenstein, then $\mathfrak{S}_0(R)$ has exactly one element, namely the isomorphism class of R; see [2, cor. (8.6)]. On the other hand, if R has a dualizing module and is not Gorenstein, then $\mathfrak{S}_0(R)$ has even cardinality. Indeed, in the derived category of R, every semidualizing R-complex is isomorphic to a shift of a semidualizing R-module; see [4, cor. 3.4]. Thus, the set of shift-isomorphism classes of semidualizing R-complexes is finite, and so [2, prop. (3.7)] shows that it has even cardinality.

In preparation for the proof of Theorem (1), we recall some recent results that allow us to reduce it to a problem in representation theory over artinian k-algebras.

Date: 16 November 2007.

²⁰⁰⁰ Mathematics Subject Classification. 13C13, 13H10.

 $Key\ words\ and\ phrases.$ Selforthogonal, self-orthogonal, semidualizing, semi-dualizing, spherical modules.

This work was done while L.W.C. visited University of Nebraska–Lincoln, partly supported by grants from the Danish Natural Science Research Council and the Carlsberg Foundation.

S.S.-W. was partially supported by NSF grant NSF 0354281.

(3) **Fact.** Let $\varphi \colon R \to S$ be a local ring homomorphism of finite flat dimension, i.e., such that S has finite flat dimension as an R-module via φ . If C is a semidualizing R-module, then $S \otimes_R C$ is a semidualizing S-module by [2, prop. (5.7)]. If C and C' are semidualizing R-modules such that $S \otimes_R C$ and $S \otimes_R C'$ are isomorphic as S-modules, then C and C' are isomorphic as R-modules; see [3, thm. 4.5 and 4.9]. Thus, the functor $S \otimes_R -$ induces an injective map $\mathfrak{S}_0(\varphi) \colon \mathfrak{S}_0(R) \hookrightarrow \mathfrak{S}_0(S)$.

(4) Lemma. Assume there are local ring homomorphisms of finite flat dimension

$$R \xrightarrow{\varphi} R' \xleftarrow{\rho} Q \xrightarrow{\tau} Q'$$

such that ρ is surjective with kernel generated by a *Q*-regular sequence. Then there are inequalities of cardinalities $|\mathfrak{S}_0(R)| \leq |\mathfrak{S}_0(\widehat{Q})| \leq |\mathfrak{S}_0(\widehat{Q}')|$.

Proof. The completion morphism $\epsilon \colon R \to \widehat{R}$ conspires with the completions of the given maps to yield the following

$$\mathfrak{S}_{0}(R) \xrightarrow{\mathfrak{S}_{0}(\hat{\varphi}\epsilon)} \mathfrak{S}_{0}(\widehat{R'}) \xrightarrow{\mathfrak{S}_{0}(\hat{\rho})} \mathfrak{S}_{0}(\widehat{Q}) \xrightarrow{\mathfrak{S}_{0}(\hat{\tau})} \mathfrak{S}_{0}(\widehat{Q'}).$$

The injectivity of the induced maps is justified in Fact (3); the surjectivity of $\mathfrak{S}_0(\hat{\rho})$ follows from [3, prop. 4.2] because \hat{Q} is complete and $\hat{\rho}$ is surjective with kernel generated by a \hat{Q} -regular sequence. The desired inequalities now follow.

(5) **Proof of (1).** Let \boldsymbol{x} be a system of parameters for R and set $R' = R/(\boldsymbol{x})$ with $\varphi: R \to R'$ the natural surjection. Using Lemma (4) with $Q' = Q = R' \cong \widehat{R'}$, we may replace R with R' in order to assume that R is artinian.

There is a flat homomorphism of artinian local rings $R \to R''$, such that R'' has algebraically closed residue field; see [5, prop. 0.(10.3.1)]. By Fact (3) we may replace R by R'' to assume that its residue field k is algebraically closed. As R is equicharacteristic and artinian, Cohen's structure theorem implies R is a k-algebra.

For an *R*-module *M*, let $\nu(M)$ denote the minimal number of generators of *M*. Let *C* be a semidualizing *R*-module and let *E* be the injective hull of *k*. Homevaluation [1, prop. 5.3] and the homothety map yield a sequence of isomorphisms

$$C \otimes_R \operatorname{Hom}_R(C, E) \cong \operatorname{Hom}_R(\operatorname{Hom}_R(C, C), E) \cong \operatorname{Hom}_R(R, E) \cong E$$

Hence, there is an inequality $\nu(C) \leq \nu(E)$. This gives the second inequality below; the first is from a surjection $R^{\nu(C)} \twoheadrightarrow C$.

 $\operatorname{length}_R C \le \nu(C) \cdot \operatorname{length} R \le \nu(E) \cdot \operatorname{length} R$

By [6, proof of first prop. in sec. 3] there are only finitely many isomorphism classes of *R*-modules *M* with $\operatorname{Ext}_{R}^{\geq 1}(M, M) = 0$ and $\operatorname{length}_{R} M \leq \nu(E) \cdot \operatorname{length} R$. From the displayed inequalities it follows that $\mathfrak{S}_{0}(R)$ is a finite set. \Box

Finally we illustrate how (1) and (4) apply to answer Vasconcelos' finiteness question for certain rings of mixed characteristic.

(6) **Example.** Let Q be a complete Cohen-Macaulay local ring with residue field of characteristic p > 0. If p is Q-regular, then $\mathfrak{S}_0(R)$ is finite for every local ring R such that $\hat{R} \cong Q$ or $\hat{R} \cong Q/(p^n)$ for some $n \ge 2$: Theorem (1) implies that $\mathfrak{S}_0(Q/(p))$ is finite, and Lemma (4) applies to the diagram $R \to \hat{R} \leftarrow Q \to Q/(p)$.

Acknowledgments

We thank Ragnar-Olaf Buchweitz, Hubert Flenner, Graham Leuschke, and Diana White for useful conversations related to this work. We also thank the referee for thoughtful suggestions.

References

- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999, With an appendix by David A. Buchsbaum, Reprint of the 1956 original. MR1731415
- Lars Winther Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1839–1883. MR1813596
- Anders Frankild and Sean Sather-Wagstaff, Reflexivity and ring homomorphisms of finite flat dimension, Comm. Algebra 35 (2007), no. 2, 461–500. MR2294611
- 4. _____, The set of semidualizing complexes is a nontrivial metric space, J. Algebra **308** (2007), no. 1, 124–143. MR2290914
- Alexander Grothendieck, Éléments de géométrie algébrique III. Étude cohomologique des faisceaux cohérents I, Inst. Hautes Études Sci. Publ. Math. (1961), no. 11, 167. MR0163910
- Dieter Happel, Selforthogonal modules, Abelian groups and modules (Padova, 1994), Math. Appl., vol. 343, Kluwer Acad. Publ., Dordrecht, 1995, pp. 257–276. MR1378204
- Sean Sather-Wagstaff, Semidualizing modules and the divisor class group, Illinois J. Math. 51 (2007), no. 1, 255-285. MR2346197
- Wolmer V. Vasconcelos, Divisor theory in module categories, North-Holland Publishing Co., Amsterdam, 1974, North-Holland Mathematics Studies, No. 14, Notas de Matemática No. 53. [Notes on Mathematics, No. 53]. MR0498530

DEPARTMENT OF MATH. AND STAT., TEXAS TECH UNIVERSITY, LUBBOCK, TX 79409, U.S.A. *E-mail address*: lars.w.christensen@ttu.edu *URL*: http://www.math.ttu.edu/~lchriste

DEPARTMENT OF MATHEMATICS, 300 MINARD HALL, NORTH DAKOTA STATE UNIVERSITY, FARGO, ND 58105-5075, U.S.A.

E-mail address: Sean.Sather-Wagstaff@ndsu.edu *URL*: http://math.ndsu.nodak.edu/faculty/ssatherw/