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Abstract. Let p be a prime ideal in a commutative noetherian ring R and de-

note by k(p) the residue field of the local ring Rp. We prove that if an R-module

M satisfies ExtnR(k(p),M) = 0 for some n ⩾ dimR, then ExtiR(k(p),M) = 0

holds for all i ⩾ n. This improves a result of Christensen, Iyengar, and Marley
by lowering the bound on n. We also improve existing results on Tor-rigidity.

This progress is driven by the existence of minimal semi-flat-cotorsion replace-
ments in the derived category as recently proved by Nakamura and Thompson.

1. Introduction

Over a commutative noetherian ring R, the injective and flat dimension of a module
can be detected by vanishing of Ext and Tor with coefficients in residue fields k(p)
at the prime ideals p of R. This drives the interest in rigidity properties of Ext and
Tor—here rigidity refers to the phenomenon that vanishing of, say, Extn implies
vanishing of Exti for all i ⩾ n. Rigidity of Ext and Tor with coefficients in residue
fields was studied by Christensen, Iyengar, and Marley in [7]. Here we push the
investigation further in two directions: (1) We eliminate certain asymmetries in the
rigidity statements for Ext/Tor and injective/flat dimension obtained in [7]. (2) We
establish and improve results on flat dimension that are conceptually dual to results
on injective dimension already in the literature, including results obtained in [7].

We work with complexes of modules and our main result, found in Section 3, is:

Theorem. Let R be a commutative noetherian ring and M an R-complex. If for
an integer n ⩾ dimR+ supH∗(M) one has ExtnR(k(p),M) = 0 for all prime ideals
p in R, then inj.dimR M < n holds.

This improves [7, Theorem 5.7] and aligns perfectly with [7, Theorem 4.1] on flat
dimension. By a result of Christensen and Iyengar [6, Theorem 1.1], the proof
reduces to show, for complexes, the statement on Ext-rigidity made in the Abstract.

In Section 4 we prove results on flat dimension of complexes which are dual
to already established results on injective dimension. In one of these, we remove a
boundedness assumption from [12, Theorem 4.8], which is dual to [7, Corollary 5.9]:

Theorem. Let R be a commutative noetherian ring of finite Krull dimension and
M an R-complex. If M has finite flat dimesion, then the next equality holds,

flat dimR M = sup
p∈SpecR

{depthRp − depthRp
RHomR(Rp,M)} .
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A novel aspect of our arguments involves the notion of minimal semi-flat-cotorsion
replacements. Recall first that a flat-cotorsion module is one which is both flat
and right Ext1-orthogonal to flat modules. A semi-flat complex consisting of flat-
cotorsion modules is called a semi-flat-cotorsion complex. Work of Gillespie [10]
shows that every complex is isomorphic in the derived category to a semi-flat-
cotorsion complex; such a complex is called a semi-flat-cotorsion replacement.

Minimality plays a crucial role in considerations of rigidity and homological di-
mensions. A complex M is minimal if every homotopy equivalence M → M is an
isomorphism. Minimal semi-injective resolutions always exist, and they detect in-
jective dimension; several proofs in [7] rely on this. On the other hand, although
semi-flat resolutions always exist, they may not contain a homotopically equivalent
minimal summand that detects the flat dimension, see [8, Example 3.9]. Recently,
Nakamura and Thompson [12] showed that every complex over a commutative noe-
therian ring of finite Krull dimension has a minimal semi-flat-cotorsion replacement
and that such a complex detects the flat dimension.

In this paper, we also take the opportunity to clarify a couple of statements in
[7]; see Remarks 2.4 and 5.3.

∗ ∗ ∗

In this paper R is a commutative noetherian ring. We widely adopt the notation
used in [7]; in particular, we use both homological and cohomological notation.

1.1. Let M be an R-complex.
For an integer s we denote by ΣsM the complex with the module Mi−s in degree

i and differential dΣ
sM = (−1)sdM .

Set inf H∗(M) := inf{i | Hi(M) ̸= 0} and inf H∗(M) := inf{i | Hi(M) ̸= 0}, and
define supH∗(M) and supH∗(M) similarly.

In case R is local with maximal ideal m, the right derived m-torsion functor is
denoted RΓm and LΛm is the left derived m-completion functor. The corresponding
local (co)homology modules are denoted H∗

m(M) and Hm
∗ (M). As always,

depthR M = inf Ext∗R(k,M) and widthR M = inf TorR∗ (k,M)

where k denotes the residue field R/m.

We recall from [12] some properties of minimal semi-flat-cotorsion complexes
that will be used frequently.

1.2. Assume that R has finite Krull dimension and let M be an R-complex. By
[12, Theorem 3.4] there exists a minimal semi-flat-cotorsion complex F isomorphic
to M in the derived category: a minimal semi-flat-cotorsion replacement of M .

If M has finite flat dimension, then it follows from [12, Lemma 4.1] that Fi = 0
holds for i > flat dimR M .

If Hi(M) = 0 holds for i ≪ 0, then Fi = 0 for i ≪ 0 by [12, Lemma 4.1].
For every prime ideal p in R the complex HomR(Rp, F ) is isomorphic in the

derived category to RHomR(Rp,M), see [12, (A.1)]. Further, it consists by [15,
Lemma 2.2] of flat-cotorsion R-modules, so if Fi = 0 for i ≪ 0, then HomR(Rp, F )
is a semi-flat-cotorsion replacement of RHomR(Rp,M) over both R and Rp.
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2. Rigidity of Tor

The main result of this section, Theorem 2.2 below, removes a boundedness condi-
tion on H∗(M) from [7, Proposition 3.3(1)] and aligns perfectly—see Remark 2.3
below—with [7, Proposition 3.2] on rigidity of Ext.

Lemma 2.1. Let (R,m, k) be a local ring and F a minimal semi-flat-cotorsion
R-complex. There is an isomorphism of R-complexes k ⊗R F ∼= k ⊗R Λm(F ), and
both complexes have zero differential.

Proof. The canonical map F → Λm(F ) induces per [14, Theorem 2.2.2] an iso-
morphism of complexes k ⊗R F → k ⊗R Λm(F ). Minimality of F implies per [12,
Theorem 2.3] that k ⊗R F , and hence also k ⊗R Λm(F ), has zero differential. □

Theorem 2.2. Let (R,m, k) be a local ring and M an R-complex. If one has

TorRn+1(k,M) = 0 for an integer n ⩾ supHm
∗ (M), then TorRi (k,M) = 0 holds for

all i > n and the next equality holds,

supTorR∗ (k,M) = depthR− depthR M .

Proof. If the complex k ⊗L
R M is acyclic, then one has supTorR∗ (k,M) = −∞, so

the assertion of the theorem is trivial, and so is the equality since depthR M = ∞
holds in this case, see [9, Definitions 2.3 and 4.3]. Hence we may assume that
k ⊗L

R M is not acyclic. From [7, (2.6)] it follows that LΛm(M) is not acyclic. If
supHm

∗ (M) = ∞ holds, then the statement is vacuously true. Thus, we may assume
that supHm

∗ (M) < ∞ holds and set s := supHm
∗ (M).

Let F be a minimal semi-flat-cotorsion replacement of M , see 1.2, and set P =
Λm(F ). As F is semi-flat, one has LΛm(M) = P , see for example [13, Proposition
3.6], and Lemma 2.1 yields the isomorphism k ⊗L

R M ≃ k ⊗R P in the derived
category. For every i ∈ Z the m-complete module Pi = Λm(Fi) is flat-cotorsion, see
[15, Lemma 2.2]. The complex Σs(P⩾s) is a semi-flat-cotorsion replacement of the
module C = Coker(Ps+1 → Ps). For every integer i > s there are isomorphisms

TorRi (k,M) ∼= Hi(k ⊗R P ) ∼= Hi(k ⊗R P⩾s) ∼= TorRi−s(k,C) .

Let n ⩾ s and assume that TorRn+1(k,M) = 0 holds. By the isomorphisms above

one has TorRn+1−s(k,C) = 0. The complex P , and hence the truncated complex
P⩾s, is m-complete, so the module C is derived m-complete. It now follows from
[7, Lemma 2.1] that the module C has flat dimension at most n− s; in particular,

TorRi (k,M) = TorRi−s(k,C) = 0 holds for all i ⩾ n+ 1. This proves the first claim.
To prove the asserted equality, let E be the injective envelope of k. Adjunction

yields

HomR(Tor
R
i (k,M), E) ∼= ExtiR(k,HomR(M,E)) ,

so ExtiR(k,HomR(M,E)) = 0 holds for i ≫ 0. Now faithful injectivity of E, to-
gether with [7, Proposition 3.2], yields

supTorR∗ (k,M) = supExt∗R(k,HomR(M,E))

= depthR− widthR HomR(M,E)

= depthR− depthR M ,

where the last equality is standard, see for example [9, Proposition 4.4]. □
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Remark 2.3. The bound on n in [7, Proposition 3.2] appears to be 1 lower than the
bound in Theorem 2.2, but as noted in the opening paragraph of [7, Section 3] the
lower bound cannot possibly be attained. We show below that one could similarly
lower the bound in Theorem 2.2 by 1 as TorRs (k,M) ̸= 0 holds for s = supHm

∗ (M).
Let M be an R-complex and F a minimal semi-flat-cotorsion replacement of M .

Set n = supHm
∗ (M). In degree n, the complex Λm(F ) is nonzero and Lemma 2.1

yields TorRn (k,M) = k ⊗R Λm(F )n, which is nonzero, see [14, Observation 2.1.2].

Remark 2.4. The conclusion of [7, Lemma 2.1] states that TorRn (−,M) = 0 holds if

M is a derived a-complete complex with inf H∗(M) > −∞ and TorRn (R/p,M) = 0
holds for all prime ideals p that contain a. We notice here that the proof in [7]

only demonstrates this for TorRn (−,M) as a functor on the category of R-modules
(not R-complexes). This is sufficient for the purposes of its use in both [7] and the
proof above. To see that the conclusion fails for Tor as a functor on complexes, let
(R,m, k) be a complete local ring and notice that though TorRn (k,R) = 0 holds for

every n ⩾ 1 one has TorRn (Σ
nk,R) ∼= k.

3. Injective dimension

The next result improves the bound on n in [7, Proposition 5.4 and Theorem 5.7].

Theorem 3.1. Let R be a commutative noetherian ring and M an R-complex. If
for an integer n ⩾ dimR + supH∗(M) one has ExtnR(k(p),M) = 0 for all prime
ideals p in R, then inj.dimR M < n holds.

Proof. We may assume that R has finite Krull dimension and that M is not acyclic.
We may also assume that Hi(M) = 0 holds for i ≫ 0, otherwise the statement is
vacuous. For every prime ideal p in R one has

0 = ExtnR(k(p),M) ∼= ExtnRp
(k(p),RHomR(Rp,M))

by Hom–tensor adjunction in the derived category. It suffices, by [6, Theorem 1.1]
and [7, Proposition 3.2], to show that dimR+supH∗(M) ⩾ supH∗

pp
RHomR(Rp,M)

holds. For every Rp-complex X there is an isomorphism RΓpp
X ≃ RΓpX in the

derived category over Rp; this follows for example from [1, Lemma (3.2.3)] and ex-
plains the first and last isomorphisms in the next display. The second isomorphism
holds by [1, Corollary (5.1.1)] while the third comes from [4, Proposition 8.3].

(1)

RΓpp
RHomR(Rp,M) ≃ RΓpRHomR(Rp,M)

≃ RΓpLΛ
pRHomR(Rp,M)

≃ RΓpRHomR(Rp, LΛ
pM)

≃ RΓpp
RHomR(Rp, LΛ

pM) .

Let F be a minimal semi-flat-cotorsion replacement of M . In cohomological nota-
tion one has F i = 0 for i ≫ 0, see 1.2, so the complex ΛpF ≃ LΛpM is again a
semi-flat-cotorsion R-complex, see [15, Lemma 2.2]. In the derived category, the
complex P = HomR(Rp,Λ

pF ) is now isomorphic to RHomR(Rp, LΛ
pM). Further

[12, Lemma 4.1] yields P i = 0 for i > supH∗(M) + dimR/p, which explains the
second inequality in the computation below. The first equality holds by (1) and
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the first inequality holds by [7, (2.7)],

supH∗
pp
(RHomR(Rp,M)) = supH∗(RΓpp

RHomR(Rp, LΛ
pM))

⩽ dimRp + supH∗(RHomR(Rp, LΛ
pM))

= dimRp + supH∗(P )

⩽ dimRp + dimR/p+ supH∗(M)

⩽ dimR+ supH∗(M) . □

From the proof above one easily extracts the following rigidity result; for modules
it was stated in the Abstract.

Porism 3.2. Let p be a prime ideal in R and M an R-complex. If for an integer
n ⩾ dimR+supH∗(M) one has ExtnR(k(p),M) = 0, then ExtiR(k(p),M) = 0 holds
for all i ⩾ n.

The bound on n in Theorem 3.1 and Porism 3.2 is sharp: Let (R,m, k) be a
Cohen-Macaulay local ring that is not Gorenstein. One has

inf Ext∗R(k,R) = depthR = dimR but supExt∗R(k,R) = inj.dimR R = ∞ .

This also shows that the bound on n in the next proposition is sharp. This statement
is parallel to the first part of [7, Theorem 4.1] and could have been made in [7].

Proposition 3.3. Let R be a commutative noetherian ring and M an R-complex.
If for a prime ideal p and an integer n ⩾ dimRp + supH∗(RHomR(Rp,M)) one
has ExtnR(k(p),M) = 0 then

supExt∗R(k(p),M) = depthRp − widthRp
RHomR(Rp,M) < n .

Proof. Hom–tensor adjunction in the derived category yields for every integer n an
isomorphism

ExtnR(k(p),M) ∼= ExtnRp
(k(p),RHom(Rp,M)) .

Thus, the assertions follow immediately from [7, Proposition 3.2] since one has
n ⩾ dimRp+supH∗(RHomR(Rp,M)) ⩾ supH∗

pp
(RHom(Rp,M)); see [7, (2.7)]. □

4. Flat dimension

In this section we prove three statements that are dual to statements about injective
dimension in the literature. Our proofs rely on the existence and structure of
minimal semi-flat-cotorsion replacements, hence the assumption that the ring has
finite Krull dimension. The first result below is a counterpart to [7, Theorem 5.1],
and could have been stated even in [12].

Theorem 4.1. Let R be a commutative noetherian ring of finite Krull dimension
and M an R-complex with inf H∗(M) > −∞. If for an integer n ⩾ supH∗(M) one
has

Tor
Rp

n+1(k(p),RHomR(Rp,M)) = 0 for every prime ideal p in R ,

then the flat dimension of M is at most n.

Proof. Let F be a minimal semi-flat-cotorsion replacement of M ; the assumption
inf H∗(M) > −∞ guarantees that Fi = 0 holds for i ≪ 0, see 1.2. Per [12, Remark
4.5], for every integer i one has

Fi =
∏

p∈SpecR

Λp
(
R

(Bp
i )

p

)
,
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where the cardinality of Bp
i is the κ(p)-dimension of Tor

Rp

i (k(p),RHomR(Rp,M)).
Thus it follows from the assumption that |Bp

n+1| = 0 holds for all primes p. As
n ⩾ supH∗(M) holds, the flat dimension of M is at most n. □

The boundedness condition in the next result, which is dual to [2, Proposition
5.3.I], is necessary, without it the flat dimension may grow under colocalization; see
Example 5.1.

Proposition 4.2. Let R be a commutative noetherian ring of finite Krull dimension
and M an R-complex with inf H∗(M) > −∞. The next equalities hold

flat dimR M = sup {i ∈ Z | TorRp

i (k(p),RHom(Rp,M)) ̸= 0 for some p ∈ SpecR}
= sup

p∈SpecR
{flat dimRp

RHomR(Rp,M)} .

Proof. If M is acyclic, all three quantities equal −∞, and so we may assume H∗(M)

is nonzero. Set s := supH∗(M), one has TorRp
s (k(p),RHom(Rp,M)) ̸= 0 for some

prime ideal p in R, see [12, Remark 4.5]. The inequality

flat dimR M ⩽ sup {i ∈ Z | TorRp

i (k(p),RHom(Rp,M)) ̸= 0 for some p ∈ SpecR}

now follows immediately from Theorem 4.1. To verify the opposite inequality,
assume that f := flat dimR M is finite and let F be a minimal semi-flat-cotorsion
replacement of M . As inf H∗(M) > −∞ holds, one has Fi = 0 for i > f and i ≪ 0,
see 1.2. For every prime ideal p in R, the Rp-complex HomR(Rp, F ) is semi-flat-
cotorsion and isomorphic to RHomR(Rp,M) in the derived category over Rp. Since
HomR(Rp, F )i = HomR(Rp, Fi) = 0 holds for i > f one has

sup {i ∈ Z | TorRp

i (k(p),RHom(Rp,M)) ̸= 0} ⩽ flat dimRp
RHomR(Rp,M)

⩽ flat dimR M . □

For complexes with bounded homology the next result was proved in [12, The-
orem 4.8]; it compares to [7, Proposition 5.2 and Corollary 5.9], and the proof is
modeled on the proof of [7, Proposition 5.2].

Theorem 4.3. Let R be a commutative noetherian ring of finite Krull dimension
and M an R-complex. If M has finite flat dimension, then

flat dimR M = sup
p∈SpecR

{depthRp − depthRp
RHomR(Rp,M)} .

Proof. The equality is trivial if M is acyclic, so assume that it is not and set
f := flat dimR M . Let F be a semi-flat replacement of M with Fi = 0 for i > f .
To prove the asserted equality it suffices to show that the inequality

(2) flat dimR F ⩾ depthRp − depthRp
RHomR(Rp, F )

holds for every prime p with equality for some p. For every n ⩽ f there is an exact
sequence of complexes of flat R-modules

0 −→ F⩽n−1 −→ F −→ F⩾n −→ 0 .

The complex F⩾n is a bounded complex of flat modules, so it is semi-flat and hence
so is F⩽n−1; see for example [5, 6.1]. Evidently one has

flat dimR F⩽n−1 ⩽ n− 1 and flat dimR F⩾n = f .
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Now Proposition 4.2 and [7, (2.3)] conspire to yield

(3) f = sup
p∈SpecR

{depthRp − depthRp
RHomR(Rp, F⩾n)} .

To prove (2) we fix a prime ideal p. Without loss of generality we can assume that
depthRp

RHomR(Rp, F ) is finite, set d = −depthRp
RHomR(Rp, F ). Now one has

−d ⩾ inf H∗(RHomR(Rp, F )) ⩾ inf H∗(F ) = − supH∗(F ) ⩾ −f

and, thus, d ⩽ f . As one now has

depthRp
RHomR(Rp, F⩽d−1) ⩾ inf H∗(RHomR(Rp, F⩽d−1))

⩾ inf H∗(F⩽d−1)

⩾ 1− d

= 1 + depthRp
RHomR(Rp, F ) ,

the depth lemma yields

depthRp
RHomR(Rp, F ) = depthRp

RHomR(Rp, F⩾d) .

The inequality (2) follows from (3) by taking n = d.
Now choose by (3) a prime ideal p such that

(4) f = depthRp − depthRp
RHomR(Rp, F⩾f−1)

holds. The inequality (2) holds for every complex of finite flat dimension; applied
to the truncated complex F⩽f−2 it yields

(5) f − 2 ⩾ flat dimR F⩽f−2 ⩾ depthRp − depthRp
RHomR(Rp, F⩽f−2) .

Elimination of depthRp between (4) and (5) yields

depthRp
RHomR(Rp, F⩾f−1) + 2 ⩽ depthRp

RHomR(Rp, F⩽f−2) .

Now apply the depth lemma to the triangle

RHomR(Rp, F⩽f−2) −→ RHomR(Rp, F ) −→ RHomR(Rp, F⩾f−1) −→

to get depthRp
RHomR(Rp, F ) = depthRp

RHomR(Rp, F⩾f−1); substituting this

into (4) yields the desired result. □

Remark 4.4. For an R-complex M of finite flat dimension, the equality

flat dimR M = sup
p∈SpecR

{depthRp − depthRp
Mp}

holds, see [7, (4.3)]. Echoing [7, Remark 5.10] we remark that we do not know
how the numbers depthRp

Mp and depthRp
RHomR(Rp,M) compare: If (R,m, k)

is local of positive Krull dimension and E is the injective envelope of k, then one
has depthRp

RHomR(Rp, E) = 0 for every prime ideal p by the isomorphisms

RHomRp
(k(p),RHomR(Rp, E)) ≃ RHomR(k(p), E) ≃ HomR(k(p), E) ̸= 0 .

On the other hand, for p ̸= m the module Ep is zero and hence of infinite depth.
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5. Examples

We close with a series of examples to show that boundedness conditions, such
as the one in Proposition 4.2, are necessary in certain statements about semi-
flat complexes. In particular, neither colocalization nor completion need preserve
finiteness of flat dimension. The examples build on [12, Example 5.11].

Example 5.1. Let k be a field and consider the local ring R = k[[x, y]]/(x2); it has
only two prime ideals: p = (x) and m = (x, y). By [12, Example 5.11] there exists a
minimal semi-flat-cotorsion R-complex Y , called YP in [12], such that HomR(Rp, Y )
is not semi-flat.

Set F = (Y )⩽0 and F ′ = (Y )⩾1, the hard truncations of Y above at 0 and below
at 1, respectively. There is an exact sequence 0 → F → Y → F ′ → 0 which is
degreewise split. Application of HomR(Rp,−) now yields the exact sequence

0 −→ HomR(Rp, F ) −→ HomR(Rp, Y ) −→ HomR(Rp, F
′) −→ 0 .

Since the complex HomR(Rp, F
′) consists of flat modules and HomR(Rp, F

′)i = 0
holds for i ≪ 0, it is semi-flat. Since HomR(Rp, Y ) is not semi-flat, neither is the
complex HomR(Rp, F ).

It follows from [12, Theorem 2.3] that F is a minimal semi-flat-cotorsion complex;
as H0(F ) ̸= 0 it has flat dimension 0. We claim, however, that HomR(Rp, F ) has
infinite flat dimension. Suppose, to the contrary, that the complex HomR(Rp, F )
has finite flat dimension. Choose a semi-flat resolution P → HomR(Rp, F ) with
Pi = 0 for i ≫ 0 and let C be its mapping cone. Evidently, C is an acyclic complex
of flat R-modules and Ci = 0 holds for i ≫ 0. We argue that C is pure-acyclic; that
is, all its cycle modules are flat: For every integer i, let Zi = Ker(Ci → Ci−1) be
the cycle module in degree i. There is an exact sequence 0 → Zi → Ci → Zi−1 → 0.
The ring R is Gorenstein of Krull dimension 1, so by a result of Bass [3, Corollary
5.6] the finitistic flat dimension of R is 1. As Ci is flat, it follows that Zi is flat. As
i was arbitrary, this shows that C is pure-acyclic. It now follows from [5, Theorem
7.3] that C is semi-flat. As C fits in a short exact sequence with the complexes P
and HomR(Rp, F ), of which the latter is not semi-flat, this is a contradiction. It
follows that HomR(Rp, F ) has infinite flat dimension.

One can draw the same conclusion as in the previous example about the m-
completion of F :

Example 5.2. Let R and F be as in Example 5.1. By [12, (1.17)] there is an exact
sequence

0 −→ HomR(Rp, F ) −→ F −→ Λm(F ) −→ 0 .

As F is semi-flat of finite flat dimension, equal to 0, but HomR(Rp, F ) is not semi-
flat and does not have finite flat dimension, it follows that the complex Λm(F ) is
not semi-flat and does not have finite flat dimension.

The examples above are dual to the examples in [7, Section 6], and we take this
opportunity to clarify one of the statements made there.

Remark 5.3. Let (R,m, k) be local. It is stated in [7, Remark 6.2] that the support
of the product ER(k)

N is all of SpecR, and that is correct though the argument
provided in [7] is too brief to be accurate. Here is a complete argument:

Set E = ER(k) and for every n ∈ N let En denote the submodule

(0 :E mn) ∼= HomR(R/mn, E) .
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It is the injective envelope of the artinian ring R/mn, so one has (0 :R En) = mn.
Indeed, for x in R the isomorphism R/mn ∼= HomR/mn(En, En) ∼= HomR(En, En)

identifies the homothety En
x−→ En with the coset x+mn in R/mn. Each submodule

En has finite length; in particular, it is generated by elements en,1, . . . , en,mn . Now
let e be the family of all these generators in the countable product

∏
n∈N

∏mn

i=1 E.

It follows from Krull’s intersection theorem that the homomorphism R → EN given
by 1 7→ e is injective, since an element in the kernel annihilates En for every n ∈ N
and hence belongs to the intersection

⋂
n∈N mn. As localization is exact, Rp is now

a non-zero submodule of (EN)p for every prime ideal p in R.

Let R be a commutative noetherian ring, P a projective R-module, and F a semi-
flat R-complex. As products of flat R-modules are flat, HomR(P, F ) is a complex
of flat R-modules. If Fi = 0 holds for i ≪ 0, then the complex HomR(P, F ) satisfies
the same boundedness condition, whence it is semi-flat. Without this boundedness
condition the conclusion may fail.

Example 5.4. Let R be the ring and F the semi-flat R-complex from Example 5.1.
There exist projective R-modules P such that HomR(P, F ) is not semi-flat: As R is
Gorenstein of Krull dimension 1, the finitistic projective dimension of R is 1 by [3,
Corollary 5.6]. It follows that there is an exact sequence 0 → P1 → P0 → Rp → 0
where P1 and P0 are projective R-modules. As F is a complex of flat-cotorsion
modules, in particular modules that are Ext1-orthogonal to Rp, it yields an exact
sequence

0 −→ HomR(Rp, F ) −→ HomR(P0, F ) −→ HomR(P1, F ) −→ 0 .

Assume towards a contradiction that HomR(P1, F ) and HomR(P0, F ) are both
semi-flat R-complexes. As Fi = 0 holds for i > 0, it follows that both complexes
have finite flat dimension, at most 0, and hence so has HomR(Rp, F ). This contra-
dicts the conclusion in Example 5.1 that HomR(Rp, F ) has infinite flat dimension.

For the ring R = k[[x, y]]/(x2) with p = (x) from Example 5.1 one has Rp = Ry,
so it follows from [12, Example 1.6] that the modules P0 and P1 can be chosen as
countable direct sums of copies of R. Thus, F is an example of a semi-flat complex
such that the product FN is not semi-flat. Compare this to the fact that for a
semi-injective complex I the coproduct I(N) need not be semi-injective; see Iacob
and Iyengar [11, Theorem 2.8].
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