
PURE-MINIMAL CHAIN COMPLEXES

LARS WINTHER CHRISTENSEN AND PEDER THOMPSON

Abstract. We introduce a notion of pure-minimality for chain complexes of

modules and show that it coincides with (homotopic) minimality in standard
settings, while being a more useful notion for complexes of flat modules. As

applications, we characterize von Neumann regular rings and left perfect rings.

Introduction

Given a chain complex, it is natural to ask whether it has a “smallest” subcom-
plex of the same homotopy type, as such a subcomplex would carry all pertinent
information of the ambient complex without homotopic redundancy. Initiated by
Eilenberg and Zilber [9] in the context of simplicial complexes, this perspective has
come to play a significant role in the homological study of rings and modules.

Let R be an associative unital ring. A chain complex M of R-modules is called
minimal if every homotopy equivalence M → M is an isomorphism; see Avramov
and Martsinkovsky [3] and Roig [13]. Many homological invariants of modules, such
as their injective and projective dimension, can be read off from minimal resolutions,
provided that they exist. Minimal injective and minimal flat resolutions exist for
every R-module; indeed, any resolution constructed from injective envelopes or
from flat covers is a minimal chain complex; see e.g. Thompson [15]. Over a perfect
ring every module has a minimal projective resolution, and over a semi-perfect ring
every finitely generated module has a minimal projective resolution.

While minimal flat resolutions exist, they do not quite behave as one might
hope. For example, let p be a prime and consider the local ring Z(p) with pZ(p)-
adic completion Z∧(p). We show in Example (3.9) that F = 0→ Z(p) → Z∧(p) → 0

is a minimal chain complex of Z(p)-modules. It is evidently a flat resolution of
the module Z∧(p)/Z(p), however, Z∧(p)/Z(p) is a flat Z(p)-module and, as such, a

minimal flat resolution of itself. This non-uniqueness of minimal flat resolutions is,
perhaps, unsurprising as flat resolutions do not come with comparison maps the way
projective and injective resolutions do. The difference between the flat resolutions

F and Z∧(p)/Z(p) is the pure subcomplex P = 0→ Z(p)
1−→ Z(p) → 0; indeed, there

is a pure exact sequence 0→ P → F → Z∧(p)/Z(p) → 0 of chain complexes. This
points to a notion of minimality that forbids the existence such subcomplexes.

In this paper, a chain complex is called pure-minimal if the zero complex is
the only pure acyclic pure subcomplex. This definition is inspired by the example
recounted above and by the fact that in a minimal chain complex the zero complex

Date: 12 June 2018.

2010 Mathematics Subject Classification. Primary 16E05. Secondary 16E10; 16L30.
Key words and phrases. Pure-minimal chain complex, flat dimension, perfect ring.
L.W.C. was partly supported by Simons Foundation collaboration grant 428308.

1



2 LARS WINTHER CHRISTENSEN AND PEDER THOMPSON

is the only contractible direct summand. In settings where minimality is well-
understood, such as for chain complexes of projective modules over a perfect ring,
we show that pure-minimality coincides with minimality (Theorem (3.13)).

Our central construction (Theorem (5.1)) shows that given a chain complex M of
R-modules, there exists a pure-minimal chain complex that is isomorphic to M in
the derived category over R. Moreover, in settings where minimal chain complexes
are known to exist, the construction recognizes them (Corollary (5.3)).

As an application of our construction, we show (Theorem (5.6)) that for every
chain complex M of R-modules there exists a pure-minimal semi-flat1 complex F
that is isomorphic to M in the derived category over R, and that the flat dimension
of M can be read off from F . In fact, pure-minimality is also an appropriate
notion of minimality for degreewise finitely generated semi-projective complexes
over a noetherian ring (Theorem (5.4)). As further applications, we characterize
von Neumann regular rings (Corollary (5.2)) and left perfect rings (Theorem (5.7)).

The paper is organized as follows. In Section 1 we study pure acyclic chain
complexes and give a characterization of von Neumann regular rings in terms of pure
homological algebra (Theorem (1.11)); in Section 2 we continue with a few technical
results on pure quasi-isomorphisms. In Section 3 we define pure-minimality and
compare it with other notions of minimality. We focus separately on minimality of
acyclic chain complexes in Section 4. The main results advertised above are found
in Section 5. In the appendix we establish sufficient conditions for acyclicity of
chain complexes.

∗ ∗ ∗
Throughout, R is an associative algebra over a commutative unital ring k which,
if no other choice is more appealing, can be Z. The term R-module refers to a
left R-module, while a right R-module is considered to be a (left) module over the
opposite ring R◦.

A chain complex of R-modules is for short called an R-complex. The category of
R-complexes is denoted C(R). For an R-complex M , write ∂M for the differential
and define the subcomplexes Z(M) and B(M) with zero differentials by specifying
their modules: Zi(M) = Ker(∂Mi ) and Bi(M) = Image(∂Mi+1). Further, set C(M) =
M/B(M) and H(M) = Z(M)/B(M). A complex M is said to be acyclic if the
sequence 0 → Zi(M) → Mi → Zi−1(M) → 0 is exact for every i ∈ Z; that is,
H(M) is the zero complex. A complex M is called contractible if the identity 1M

is null-homotopic; a contractible complex is acyclic.
Homology is a functor on C(R). A morphism α : M → N in C(R) is called a

quasi-isomorphism if H(α) is an isomorphism. Prominent quasi-isomorphisms are
homotopy equivalences; they are morphisms that have an inverse up to homotopy.

For R-complexes L and M , the total Hom complex is denoted HomR(L,M).
For an R◦-complex N and an R-complex M , the total tensor product complex is
written N ⊗RM .

1. Pure acyclic complexes

In this first section we recall fundamentals of pure homological algebra, with focus
on pure acyclicity, and give a characterization of von Neumann regular rings.

1 In the literature, e.g. in [1] by Avramov and Foxby, such complexes are also called dg-flat.
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(1.1) Resolutions of complexes. An R-complex F is called semi-flat if it consists
of flat R-modules and the functor − ⊗R F preserves acyclicity. A complex F of
flat modules with Fi = 0 for i � 0 is semi-flat, this follows for example from
Corollary (A.2). Similarly, a complex I (a complex P ) is called semi-injective
(semi-projective) if it consists of injective modules (projective modules) and the
functor HomR(−, I) preserves acyclicity (HomR(P,−) preserves acyclicity). Every
semi-projective complex is semi-flat. A complex P of projective modules with
Pi = 0 for i � 0 is semi-projective, and a complex I of injective modules with
Ii = 0 for i� 0 is semi-injective, this follows for example from Propositions (A.1)
and (A.3).

Every R-complex M has a semi-projective resolution and a semi-injective reso-
lution; that is, there are quasi-isomorphisms

P
'−−−→M

'−−−→ I

with P semi-projective and I semi-injective; see [1]. For a module, a classical
projective (injective) resolution is a semi-projective (-injective) resolution.

(1.2) Purity in the category of modules. An exact sequence of R-modules
0→ L→M → N → 0 is called pure if the induced sequence of k-modules

0 −→ HomR(A,L) −→ HomR(A,M) −→ HomR(A,N) −→ 0

is exact for every finitely presented R-module A. Equivalently, the sequence of k-
modules 0→ B ⊗R L→ B ⊗RM → B ⊗R N → 0 is exact for every R◦-module B.

An R-module F is flat if and only if every exact sequence 0→ L→M → F → 0
is pure. For a flat R-module F , an exact sequence 0→ L→ F → N → 0 is pure if
and only if L and N are flat.

On the other hand, an R-module E is fp-injective if and only if every exact
sequence 0→ E →M → N → 0 is pure. For an fp-injective R-module E, an exact
sequence 0→ L→ E → N → 0 is pure if and only if L is fp-injective.

(1.3) Remark. In view of (1.2) the following conditions are equivalent.

(i) Every R-module is flat.

(ii) Every short exact sequence of R-modules is pure.

(iii) Every R-module is fp-injective.

The rings that satisfy these conditions are precisely the von Neumann regular
rings—also called absolutely flat rings.

(1.4) Definition. An exact sequence of R-complexes 0 → L → M → N → 0 is
called degreewise pure (degreewise split) if the sequence 0 → Li → Mi → Ni → 0
of R-modules is pure (split) for every i ∈ Z. A subcomplex L ⊆M , and a quotient
complex M/L, are called degreewise pure (degreewise split) if the canonical exact
sequence 0→ L→M →M/L→ 0 is degreewise pure (degreewise split).

(1.5) Lemma. Let M be an R-complex. Under any one of the conditions

(a) R is left noetherian and M is a complex of injective R-modules,

(b) R is left perfect and M is a complex of projective R-modules, or

(c) R is semi-perfect or left noetherian and M is a complex of finitely generated
projective R-modules,

every degreewise pure exact sequence of R-complexes is degreewise split.
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Proof. Consider a degreewise pure exact sequence of R-complexes

(∗) 0 −→ L −→M −→ N −→ 0 .

(a): It follows from (1.2) that L is a complex of fp-injective modules. As R is left
noetherian, fp-injective R-modules are injective. Thus, (∗) is degreewise an exact
sequence of injective modules, in particular it is degreewise split exact.

(b): It follows from (1.2) that N is a complex of flat modules. As R is left
perfect, flat R-modules are projective. Thus, (∗) is degreewise an exact sequence
of projective modules, in particular it is degreewise split exact.

(c): The complex N is degreewise finitely generated, and as in (b) it is a complex
of flat modules. Over a semi-perfect or left noetherian ring, finitely generated flat
modules are projective, so as in (b) the sequence (∗) is degreewise split exact. �

(1.6) Definition. An R-complex M is called pure acyclic if it is acyclic and the
sequence 0→ Zi(M)→Mi → Zi−1(M)→ 0 is pure exact for every i ∈ Z.

(1.7) Example. Every acyclic semi-flat complex is pure acyclic, see [7, thm. 7.3].
On the other hand, the Z/4Z-complex known as the Dold complex,

· · · −→ Z/4Z 2−→ Z/4Z 2−→ Z/4Z −→ · · · ,
is an acyclic complex of flat modules which is not pure acyclic. Indeed, the cycle
submodules 2Z/4Z are torsion and hence not flat, cf. (1.2).

Recall that an R-module P is pure-projective if the sequence

0 −→ HomR(P,L) −→ HomR(P,M) −→ HomR(P,N) −→ 0

is exact for every pure exact sequence 0 → L → M → N → 0 of R-modules.
Pure-injective modules are defined dually.

(1.8) Remark. An R-complex M is by definition pure acyclic if (and only if)
HomR(A,M) is acyclic for every finitely presented R-module A. Emmanouil [10,
thm. 3.6] shows that M is pure acyclic (if and) only if HomR(A,M) is acyclic for
every complex A of pure-projective R-modules. Dually, M is pure acyclic if and
only if HomR(M,E) is acyclic for every pure-injective R-module E, equivalently,
every complex E of pure-injective R-modules. This was proved by Š ’tov́ıček [14,
thm. 5.4]; see also Bazzoni, Cortés Izurdiaga, and Estrada [4, rmk. 4.7].

From the proof of [4, cor. 2.6], one can extract:

(1.9) Fact. Every pure acyclic complex of pure-projective modules is contractible.

For complexes of projective modules this follows from an earlier result of Benson
and Goodearl [5, thm. 2.5]; see [7, prop. 7.6]. From the proof of [4, cor. 4.5] one
can extract the dual result:

(1.10) Fact. Every pure acyclic complex of pure-injective modules is contractible.

To close the section we apply these two facts to characterize von Neumann regular
rings in pure homological terms.

(1.11) Theorem. The following conditions are equivalent.

(i) R is von Neumann regular.

(ii) Every acyclic R-complex is pure acyclic.
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(iii) Every R-complex is semi-flat.

(iv) Every complex of pure-projective R-modules is semi-projective.

(v) Every complex of pure-injective R-modules is semi-injective.

Proof. The (bi)implications (i)⇔ (ii) and (iii)⇒ (i) are clear from Remark (1.3).
(i)⇒ (iii): Let M be an R-complex and A be an acyclic R◦-complex. As every

R-module is flat, it follows from Corollary (A.2) that A⊗RM is acyclic, whence
M is semi-flat.

(ii) ⇒ (v): Let J be a complex of pure-injective R-modules. By assumption
every short exact sequence of R-modules is pure, so J is a complex of injective

modules. Let ι : J
'−−−→ I be a semi-injective resolution. The complex Cone ι is

an acyclic, hence pure acyclic, complex of injective R-modules, so by (1.10) it is
contractible. For an acyclic R-complex A, there is a triangle

HomR(A, J) −→ HomR(A, I) −→ HomR(A,Cone ι) −→

in the derived category of k-complexes. The middle complex is acyclic as I is
semi-injective, and the right-hand complexes is even contractible; it follows that
HomR(A, J) is acyclic, whence J is semi-injective.

(v) ⇒ (i): A ring is von Neumann regular if and only if the opposite ring is
so; it is thus sufficient to show that every R◦-module is flat. The character dual
HomZ(M,Q/Z) of an R◦-module M is a pure-injective R-module. It follows from
the assumption that HomZ(M,Q/Z) is injective, whence M is flat.

(iii)⇒ (iv): Let P be a complex of pure-projective R-modules. By assumption
each module Pi is flat and hence a pure quotient of a free R-module Li, cf. (1.2).
By pure-projectivity of Pi, the homomorphism HomR(Pi, Li) → HomR(Pi, Pi) is
surjective, whence Pi is a summand of Li. Thus, P is a complex of projective R-
modules and semi-flat. Now proceed in parallel with the proof of (ii)⇒ (v) above,
but invoke (1.9) instead of (1.10). Alternately see [7, thm. 7.8].

(iv) ⇒ (ii): A finitely presented module is pure-projective, so by assumption
finitely presented R-modules are projective. It follows that every short exact se-
quence of R-modules is pure, so every acyclic R-complex is pure acyclic. �

2. Pure quasi-isomorphisms

We continue with a discussion of morphisms with pure acyclic mapping cones.
Recall that a morphism α of complexes is a homotopy equivalence if and only if its
mapping cone, Coneα, is contractible, while α is a quasi-isomorphism if and only if
Coneα is acyclic. Pure quasi-isomorphisms are an intermediate type of morphisms.

(2.1) Definition. A morphism of R-complexes is called a pure quasi-isomorphism
if its mapping cone is a pure acyclic complex.

(2.2) Remark. A morphism α of R-complexes is a pure quasi-isomorphism if and
only if HomR(A,α) is a quasi-isomorphism for every finitely presented R-module
A, equivalently for every complex A of pure-projective R-modules. This follows in
view of Remark (1.8) from the isomorphism HomR(A,Coneα) ∼= Cone HomR(A,α).

(2.3) Example. A contractible complex is pure acyclic, so every homotopy equiv-
alence is a pure quasi-isomorphism. Further, every quasi-isomorphism of semi-flat
complexes is a pure quasi-isomorphism by [7, cor. 7.4] and Remark (2.2).
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(2.4) Purity in the category of complexes. For R-complexes L and M , the
hom-set is denoted homC(R)(L,M); it relates to the total Hom complex through
the equality homC(R)(L,M) = Z0(HomR(L,M)) of graded k-modules.

An exact sequence of R-complexes 0 → L → M → N → 0 is called pure if the
sequence of k-complexes

0 −→ homC(R)(A,L) −→ homC(R)(A,M) −→ homC(R)(A,N) −→ 0

is exact for every bounded complex A of finitely presented R-modules. It follows
from [11, thm. 5.1.3] and [7, thm. 4.5] that every pure exact sequence ofR-complexes
is degreewise pure.

A subcomplex L ⊆ M , and a quotient complex M/L, are called pure if the
canonical exact sequence 0→ L→M →M/L→ 0 is pure.

The next results are useful for recognizing pure quasi-isomorphisms (homotopy
equivalences) and pure acyclic pure subcomplexes (contractible split subcomplexes).

(2.5) Proposition. Let 0 −→ L
α−−→ M

β−−→ N −→ 0 be a degreewise pure exact
sequence in C(R). The following assertions hold.

(a) The complex L is pure acyclic if and only if β is a pure quasi-isomorphism.

(b) The complex N is pure acyclic if and only if α is a pure quasi-isomorphism.

Moreover, if L or N is pure acyclic, then the sequence is pure in C(R).
In particular, a pure acyclic subcomplex is a pure subcomplex if and only if it is

a degreewise pure subcomplex.

Proof. For every finitely presented R-module A, the sequence

0 −→ HomR(A,L)
HomR(A,α)−−−−−−−→ HomR(A,M)

HomR(A,β)−−−−−−−→ HomR(A,N) −→ 0

is exact. The complex HomR(A,L) is acyclic if and only if HomR(A, β) is a quasi-
isomorphism, and HomR(A,N) is acyclic if and only if HomR(A,α) is a quasi-
isomorphism. Now Remark (2.2) yields (a) and (b).

Finally, for each bounded complex A of finitely presented R-modules, we must
verify exactness of the sequence

0 −→ homC(R)(A,L) −→ homC(R)(A,M) −→ homC(R)(A,N) −→ 0 .

As homC(R)(A,−) is left exact and one has homC(R)(A,−) = Z0(HomR(A,−)), this
amounts to showing that the map

Z0(HomR(A,M))
Z0(HomR(A,β))−−−−−−−−−−→ Z0(HomR(A,N))

is surjective. First, if L is pure acyclic, then β is a pure quasi-isomorphism by
(a), so the surjective morphism HomR(A, β) is a quasi-isomorphism and, therefore,
surjective on cycles. Next, if N is pure acyclic, then HomR(A,N) is acyclic. As
every surjective chain map is surjective on boundaries, it follows that HomR(A, β)
is surjective on cycles. �

(2.6) Proposition. Let 0 −→ L
α−−→ M

β−−→ N −→ 0 be a degreewise split exact
sequence in C(R). The following assertions hold.

(a) The complex L is contractible if and only if β is a homotopy equivalence.

(b) The complex N is contractible if and only if α is a homotopy equivalence.
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Moreover, if L or N is contractible, then the sequence splits in C(R).
In particular, a contractible subcomplex is a split subcomplex if and only if it is

a degreewise split subcomplex.

Proof. Part (a) follows from [3, lem. 1.6], and part (b) has an analogous proof. �

In the sequel we use following two-of-three property of pure quasi-isomorphisms.

(2.7) Lemma. Let α : L→M and β : M → N be morphisms of R-complexes. If
two of α, β, and βα are pure quasi-isomorphisms, then so is the third.

Proof. For every finitely presented R-module A one has

H(HomR(A, β)) H(HomR(A,α)) = H(HomR(A, βα)) ,

which shows that if any two of the morphisms H(HomR(A,α)), H(HomR(A, β)),
and H(HomR(A, βα)) are isomorphisms, then so is the third. Now the statement
follows from Remark (2.2). �

It is an elementary observation that an acyclic semi-projective (-injective) com-
plex is contractible and, hence, a quasi-isomorphism of semi-projective (-injective)
complexes is a homotopy equivalence. In the same vein one has the following im-
mediate consequences of (1.9) and (1.10).

(2.8) Corollary. A pure quasi-isomorphism of complexes of pure-projective mo-
dules is a homotopy equivalence. �

(2.9) Corollary. A pure quasi-isomorphism of complexes of pure-injective modules
is a homotopy equivalence. �

3. Flavors of minimality

We introduce the notion of pure-minimality and explore how it compares to notions
found in the literature. This section paves the way for our main results in Section 5.

We start by recalling that an R-complex M is minimal if every homotopy equiv-
alence M → M is an isomorphism or, equivalently, every morphism M → M that
is homotopic to the identity 1M is an isomorphism. In our context, this definition is
best known from [3]. It is also an instance of Roig’s [13] notion of S-left or S-right
minimality: the one where S in [13, def. 1.1] is the class of homotopy equivalences.

Every complex has a minimal semi-injective resolution; see [2] or [12, prop. B.2].
Minimal semi-projective resolutions are more tricky: If R is left perfect—such that
flat R-modules are projective—then every R-complex has a minimal semi-projective
resolution. If R is semi-perfect—such that finitely generated flat R-modules are
projective—then every R-complex M with H(M) degreewise finitely generated and
Hi(M) = 0 for i� 0 has a minimal semi-projective resolution, see [2]. For the case
of resolutions of modules over a perfect ring, one can refer to Eilenberg [8].

(3.1) Example. The Z-complex F = 0 −→ Z ι−→ Q −→ 0, where ι is the nat-
ural embedding, is minimal. Indeed, the morphisms ±1F are the only homotopy
equivalences F → F , because there no nonzero homomorphisms Q→ Z.
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The following weaker condition already detects minimality of complexes of in-
jective or projective modules; see Proposition (3.4)2 below.

(3.2) Definition. An R-complex M is called split-minimal if the zero complex is
the only contractible split subcomplex of M .

In the literature, contractible complexes are at times called split; we emphasize
that by a (degreewise) split subcomplex we mean a (degreewise) direct summand.

(3.3) Example. Let p > 5 be a prime and denote by Zp the integers localized at
the powers of p. The Z-complex F = 0 −→ Zp

2−→ Zp −→ 0 is split-minimal but
not minimal. Indeed, Zp is torsion-free, so it has no non-trivial direct summands,
whence the zero complex is the only acyclic split subcomplex of F . However, the
morphism 3F is homotopic to 1F (the homotopy is given by the identity on Zp) but
not an isomorphism.

To frame the next result we point out that the complex F in Example (3.3) is a
complex of flat modules.

(3.4) Proposition. Every minimal R-complex is split-minimal. Moreover:

(a) A complex of injective R-modules is minimal if and only if it is split-minimal.

(b) If R is left perfect, then a complex of projective R-modules is minimal if and
only if it is split-minimal.

(c) If R is semi-perfect, then a complex of finitely generated projective R-modules
is minimal if and only if it is split-minimal.

Proof. A minimal R-complex has by [3, prop. 1.7] no nonzero contractible split
subcomplexes, hence it is split-minimal.

(a): Let I be a split-minimal complex of injective R-modules. By [2] or [12,
prop. B.2] it has a decomposition I = I ′ ⊕ I ′′, where I ′ is minimal and I ′′ is
contractible. In particular, I ′′ is a contractible split subcomplex of I, and so I ′′ = 0.

(b) & (c): Suppose that R is left perfect and P is a split-minimal complex of
projective R-modules, or that R is semi-perfect and P is a split-minimal complex
of finitely generated projective R-modules. In either case, P has a decomposition
P = P ′ ⊕ P ′′, where P ′ is minimal and P ′′ is contractible; see [2]. As above, it
follows that P ′′ = 0, and so P is minimal. �

In search of a useful notion of minimality for complexes of flat modules, we turn
to purity to formulate an analogue of split-minimality. Given a semi-flat complex
F with flat dimension n, the cokernels Ci(F ) are flat for i > n, and it follows that
P = · · · → Fn+1 → Bn(F )→ 0 is a pure acyclic degreewise pure subcomplex of F .

At the least, a “minimal” semi-flat complex ought to vanish beyond the flat
dimension, but a minimal semi-flat complex need not meet that requirement; see
Example (3.9). Inspired by this example, we introduce a notion of minimality that
forbids nonzero pure acyclic pure (equivalently, degreewise pure) subcomplexes.

2 The gist of this result is that minimality and split-minimality are equivalent notions for

complexes of injective modules and complexes of projective modules. For the former this is true
as stated, and for the latter it is true over rings where minimal complexes of projective modules

are known to exist, in the strong sense that every complex of projectives decomposes as a direct

sum of a minimal complex and a contractible one. The proof references the unpublished [2],
and the result serves to encapsulate this reference in the sense that one can henceforth focus on

split-minimality of complexes of projective modules.
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(3.5) Definition. An R-complex M is called pure-minimal if the zero complex is
the only pure acyclic pure subcomplex of M .

(3.6) Remark. Every pure-minimal complex is split-minimal. Indeed every con-
tractible complex is pure acyclic and every split subcomplex is a pure subcomplex.

(3.7) Example. The minimal Z-complex F from Example (3.1) is pure-minimal.
To see this, recall that a Z-module is flat if and only if it is torsion free; this means
that 0 and Z are the only pure submodules of Z; cf. (1.2). The only candidate for a

nonzero pure acyclic pure subcomplex of F is, therefore, 0 −→ Z 1−→ Z −→ 0, but
Z is not a pure submodule of Q, as Q/Z is torsion.

(3.8) Example. The Z-complex F in Example (3.3) is pure-minimal but not mini-
mal. To see that it is pure-minimal, one first checks that every non-trivial quotient
of Zp by a Z-submodule is torsion. As in Example (3.7) it then follows that the flat
Z-module Zp has no non-trivial pure submodules, whence the zero complex is the
only acyclic pure subcomplex of F .

(3.9) Example. Let p be a prime and Z∧(p) denote the p-adic completion of Z(p).

The Z(p)-complex F = 0 → Z(p) → Z∧(p) → 0 is minimal but not pure-minimal.

Indeed, from HomZ(p)
(Z∧(p),Z(p)) = 0 it follows that every homotopy equivalence

F → F is an isomorphism. Evidently, F and Z∧(p)/Z(p) are both minimal semi-

flat resolutions of Z∧(p)/Z(p). However, F is not pure-minimal as the subcomplex

0→ Z(p)
1−→ Z(p) → 0 is degreewise pure and hence pure per Proposition (2.5).

(3.10) Remark. If one lets the class S in [13, def. 1.1] be that of pure quasi-
isomorphisms, then an S-right minimal complex in the sense of Roig is pure-
minimal. The converse is false: with F as in Example (3.1), the map 2F is a
pure quasi-isomorphism, see Example (2.3), with no left inverse.

For ease of reference, the next two corollaries paraphrase parts of Proposi-
tions (2.5) and (2.6).

(3.11) Corollary. Let M be an R-complex. The next conditions are equivalent.

(i) M is pure-minimal.

(ii) The zero complex is the only pure acyclic degreewise pure subcomplex of M .

(iii) In a degreewise pure exact sequence 0 −→ L −→M
β−−→ N −→ 0 the mor-

phism β is a pure quasi-isomorphism if and only if it is an isomorphism. �

(3.12) Corollary. Let M be an R-complex. The next conditions are equivalent.

(i) M is split-minimal.

(ii) The zero complex is the only contractible degreewise split subcomplex of M .

(iii) In a degreewise split exact sequence 0 −→ L −→M
β−−→ N −→ 0 the mor-

phism β is a homotopy equivalence if and only if it is an isomorphism. �

With Corollaries (3.11) and (3.12) in place, we now show that split-minimality
and pure-minimality coincide in standard settings while we already saw in Exam-
ple (3.9) that a (split-)minimal complex of flat modules need not be pure-minimal.

(3.13) Theorem. Let M be an R-complex. Under any one of the assumptions
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(a) R is left noetherian, M is a complex of injective R-modules,

(b) R is left perfect, M is a complex of projective R-modules,

(c) R is semi-perfect, M is a complex of finitely generated projective R-modules,

(d) R is left noetherian, M is a complex of finitely generated projective R-
modules,

every pure acyclic pure subcomplex of M is contractible and a split subcomplex; in
particular, the complex M is split-minimal if and only if it is pure-minimal.

Proof. Let P be a pure acyclic pure subcomplex of M and consider the pure exact
sequence

(∗) 0 −→ P −→M →M/P −→ 0 .

Under any one of the assumptions (a)–(d) the sequence is degreewise split exact by
Lemma (1.5). Applied to the exact sequences 0→ Zi(P )→ Pi → Zi−1(P )→ 0 the
same lemma shows that P is contractible. Now it follows from Proposition (2.6)
that the sequence (∗) splits.

By Remark (3.6) every pure-minimal complex is split-minimal, and the argument
above shows that the converse holds under the assumptions (a)–(d). �

(3.14) Corollary. Let R and M be as in (3.13)(a), (b), or (c). The R-complex M
is pure-minimal if and only if it is split-minimal if and only if it is minimal.

Proof. Combine Proposition (3.4) and Theorem (3.13). �

(3.15) The diagram below summarizes the (non-)implications among the notions of
minimality considered in this section. We stress that while the three notions agree
under either of the assumptions (a), (b), or (c) in Theorem (3.13), the examples
that lie behind the non-implications deal with semi-flat complexes over PIDs.

minimal
�

(3.9) (<

(3.4)

�+

pure-minimal

(3.6)

r�

�
(3.8)

h|

split-minimal

k
(3.3)

G[

2
(3.9) & (3.4)

AU

4. Minimality of acyclic complexes

The zero complex is minimal as can be; this short section complements the preceding
one by spelling out what the flavors of minimality mean for acyclic complexes.

We start by noticing that the Dold complex from Example (1.7) is an acyclic com-
plex of projective and injective modules which is both minimal and pure-minimal, as
Z/4Z has no non-trivial pure submodule. Thus, nonzero minimal and pure-minimal
acyclic complexes exist over quasi-Frobenius rings.

(4.1) Proposition. The zero complex is the only contractible split-minimal com-
plex. In particular, the zero complex is the only

• acyclic split-minimal semi-injective complex,
• acyclic split-minimal semi-projective complex,
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• pure acyclic split-minimal complex of pure-injective modules,
• pure acyclic split-minimal complex of pure-projective modules.

Proof. The first assertion is immediate from Definition (3.2) and the remaining
follow from [1, 1.3.P and 1.3.I], (1.9), and (1.10). �

(4.2) Example. Assume that R is semi-simple; that is, every acyclic R-complex
is contractible. It follows from Proposition (4.1) that the zero complex is the only
acyclic split-minimal R-complex. Even more, an R-complex M is split-minimal if
and only if the zero complex is the only acyclic subcomplex of M . Indeed, the “if”
is trivial and the “only if” follows from Proposition (2.6).

(4.3) Proposition. The zero complex is the only pure acyclic pure-minimal com-
plex; in particular it is the only acyclic pure-minimal semi-flat complex.

Proof. The first assertion is immediate from Definition (3.5) and the second follows
from [7, thm. 7.3]. �

(4.4) Example. Assume that R is von Neumann regular; that is, every acyclic
R-complex is pure acyclic; see Theorem (1.11). It follows from Proposition (4.3)
that the zero complex is the only acyclic pure-minimal R-complex. (In fact, this
property characterizes von Neumann regular rings; see Corollary (5.2).) Even more,
an R-complex M is pure-minimal if and only if the zero complex is the only acyclic
subcomplex of M . Here “only if” follows from Proposition (2.5) and “if” is clear.

For work in the derived category of chain complexes—computation of derived
functors for example—the emphasis is on distinguished complexes of injective (pro-
jective or flat) modules, namely the semi-injective (-projective or -flat) complexes.
The next result shows that the noetherian hypothesis in Theorem (3.13)(a), so to
speak, does not impact work in the derived category.

(4.5) Proposition. Let I be a semi-injective R-complex. The following conditions
are equivalent:

(i) I is minimal.

(ii) I is split-minimal.

(iii) I is pure-minimal.

(iv) The zero complex is the only acyclic subcomplex of I.

Proof. In view of Proposition (3.4)(a) and Remark (3.6) it suffices to show that
(i) implies (iv). Assume that I is minimal and let A be an acyclic subcomplex.
As I is semi-injective, the quasi-isomorphism π : I → I/A has a left inverse up to
homotopy. That is, there is a morphism γ : I/A→ I such that γπ is homotopic to
1I . As I is minimal, it follows that γπ is an isomorphism and, therefore, A = 0. �

Pure-minimal semi-flat complexes have a similar characterization.3

(4.6) Proposition. Let F be a semi-flat R-complex. The following conditions are
equivalent:

(i) F is pure-minimal.

3 When they exist, minimal semi-projective complexes are characterized by having only the
trivial acyclic quotient complex.
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(ii) The zero complex is the only acyclic pure subcomplex of F .

Proof. It is clear that (ii) implies (i). For the converse, let P be an acyclic pure
subcomplex of F . It follows from [7, prop. 6.2] that P is semi-flat, hence P is pure
acyclic by [7, thm. 7.3] and, therefore, P = 0. �

5. Pure-minimal replacements

Every chain complex M has a minimal, hence pure-minimal, semi-injective resolu-

tion M
'−−−→ I; see Proposition (4.5). In particular, M and I are isomorphic in

the derived category. We proceed to show that every complex is isomorphic, in the
derived category, to a pure-minimal semi-flat complex.

The gist of the next theorem, which is our central construction, is that every
complex has a pure acyclic pure subcomplex, such that the quotient by this sub-
complex is pure-minimal.

(5.1) Theorem. Let M be an R-complex. There is a pure exact sequence in C(R)

0 −→ P −→M −→M/P −→ 0

with P pure acyclic and M/P pure-minimal. Consequently, the map M −→M/P
is a pure quasi-isomorphism.

Proof. Consider the set of all pure acyclic pure subcomplexes of M , ordered by
containment. Let Λ be a chain in this set, and let U be the union colimA∈ΛA. It
is standard that U is a subcomplex of M and we proceed to show that it is a pure
subcomplex and pure acyclic.

First we verify that U is a pure subcomplex. Let F be a bounded complex of
finitely presented R-modules. For every A ∈ Λ there is an exact sequence

0→ homC(R)(F,A)→ homC(R)(F,M)→ homC(R)(F,M/A)→ 0 .

Recall, e.g. from [7, thm. 4.5], that as Λ is filtered there is a natural isomorphism,

colim
A∈Λ

homC(R)(F,−)
∼=−−−→ homC(R)(F, colim

A∈Λ
(−)) .

Using this, along with the fact that filtered colimits are exact, we obtain the fol-
lowing commutative diagram with exact rows:

0 // colim
A∈Λ

homC(R)(F,A) //

∼=
��

colim
A∈Λ

homC(R)(F,M) //

∼=
��

colim
A∈Λ

homC(R)(F,M/A) //

∼=
��

0

0 // homC(R)(F, colim
A∈Λ

A) // homC(R)(F, colim
A∈Λ

M) // homC(R)(F, colim
A∈Λ

M/A)

It follows that

homC(R)(F, colim
A∈Λ

M) −→ homC(R)(F, colim
A∈Λ

M/A) −→ 0

is exact, and so U = colimA∈ΛA is a pure subcomplex of M .
Next we argue that U is pure acyclic. Let F be a finitely presented R-module; we

have to show that HomR(F,U) is acyclic. Since the functor HomR(F,−) preserves
filtered colimits, one has

HomR(F,U) = HomR(F, colim
A∈Λ

A) ∼= colim
A∈Λ

HomR(F,A) .
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As each complex A is pure acyclic, the complexes HomR(F,A) are acyclic. Finally,
colimA∈Λ(−) preserves acyclicity and so HomR(F,U) is acyclic.

By Zorn’s lemma, there exists a maximal pure acyclic pure subcomplex P of M .
To show that M/P is pure-minimal, let P ′/P ⊆ M/P be a pure acyclic pure
subcomplex. Consider the commutative diagram with exact rows and columns:

0

��

0

��

P

��

P

��

0 // P ′ //

��

M //

��

M/P ′ // 0

0 // P ′/P //

��

M/P //

��

M/P ′ // 0

0 0

The bottom row and the middle column are pure sequences in C(R) by the assump-
tions and by what we have shown above. Hence, for every bounded complex F of
finitely presented R-modules, application of homC(R)(F,−) yields another commu-
tative diagram with exact rows and columns

0

��

0

��

homC(R)(F, P )

��

homC(R)(F, P )

��

0 // homC(R)(F, P
′) //

��

homC(R)(F,M) //

��

homC(R)(F,M/P ′)

0 // homC(R)(F, P
′/P ) // homC(R)(F,M/P ) //

��

homC(R)(F,M/P ′) // 0

0

A diagram chase shows that the morphism homC(R)(F,M) −→ homC(R)(F,M/P ′)
is surjective, whence P ′ is a pure subcomplex of M . To see that P ′ is pure acyclic it
is now by Proposition (2.5) sufficient to show that the canonical map M → M/P ′

is a pure quasi-isomorphism. This map is the composite of canonical maps

M −→M/P −→M/P ′ ,

both of which are pure quasi-isomorphisms, again by Proposition (2.5). Now it
follows from Lemma (2.7) that M → M/P ′ is a pure quasi-isomorphism. As P is
a maximal pure acyclic pure subcomplex of M , one gets P ′/P = 0, and it follows
that M/P is pure-minimal.

An application of Proposition (2.5) now shows that the map M → M/P is a
pure quasi-isomorphism. �

(5.2) Corollary. The following conditions are equivalent.
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(i) R is von Neumann regular.

(ii) The zero complex is the only acyclic pure-minimal R-complex.

(iii) An R-complex M is pure-minimal if and only if the zero complex is the only
acyclic subcomplex of M .

Proof. It was noted in Example (4.4) that (iii) follows from (i) by way of Propo-
sition (2.5), and (iii) clearly implies (ii). To see that (ii) implies (i), let M be
an acyclic R-complex. By Theorem (5.1) there is a pure acyclic subcomplex P
of M such that the quotient M/P is pure-minimal and acyclic. By assumption,
M/P = 0 so M = P is pure acyclic. It now follows from Theorem (1.11) that R is
von Neumann regular. �

In classical settings—such as in Theorem (3.13)(a,b,c)—a complex decomposes
as a direct sum of a minimal complex and a contractible one. These decompositions
are recovered by Theorem (5.1)—combined with Corollary (3.14)—and it yields a
similar decomposition for complexes of finitely generated projective modules over
noetherian rings.

(5.3) Corollary. Let R and M be as in (3.13)(a), (b), (c) or (d). The exact
sequence 0 → P → M → M/P → 0 from (5.1) is split in C(R) and yields a
decomposition M ∼= P⊕(M/P ), where P is contractible and M/P is pure-minimal.

Proof. Immediate from Theorem (3.13). �

(5.4) Theorem. Let R be left noetherian and M be an R-complex with H(M)
degreewise finitely generated and Hi(M) = 0 for i� 0. There is a semi-projective

resolution L
'−−−→M with L pure-minimal and degreewise finitely generated. Fur-

thermore, for every such resolution L
'−−−→M one has

proj. dimRM = sup{i | Li 6= 0} .

Proof. Notice first that if M is acyclic, then one can take L = 0. Assume that M

is not acyclic, and let L′
'−−−→M be a semi-projective resolution with L′ degreewise

finitely generated. By Corollary (5.3) the complex L′ has a pure-minimal summand
L, which is semi-projective, degreewise finitely generated, and isomorphic to M in
the derived category. By [1, 1.4.P] there is a quasi-isomorphism L→M .

Let L
'−−−→M be a semi-projective resolution with L pure-minimal and degree-

wise finitely generated. By [1, thm. 2.4.P] one has proj. dimRM 6 sup{i | Li 6= 0},
and equality holds trivially if proj. dimRM =∞. If M has finite projective dimen-
sion n, then L⊆n = 0→ Cn(L)→ Ln−1 → · · · is a semi-projective R-complex iso-
morphic to M in the derived category; see [1, thm. 2.4.P]. Thus, the canonical mor-
phism L → L⊆n is a surjective homotopy equivalence, which by Proposition (2.6)
implies that Ker(L→ L⊆n) is a contractible split subcomplex of L; that is, it is zero
complex. Hence one has L = L⊆n and so proj. dimRM = n = sup{i | Li 6= 0}. �

(5.5) Remark. For any pure-minimal degreewise finitely generated semi-projective
complex P , the proof of Theorem (5.4) yields proj. dimR P = sup{i | Pi 6= 0}.

The construction in Theorem (5.1) also applies to yield a complex that detects
flat dimension. We recall from [1, exa. 2.9.F] that a complex M need not have a
semi-flat resolution that detects its flat dimension, hence we settle for a semi-flat
replacement of M , i.e. a semi-flat complex isomorphic to M in the derived category.
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(5.6) Theorem. For every R-complex M there exists a pure-minimal semi-flat R-
complex F isomorphic to M in the derived category. Furthermore, for every such
complex F one has

flat dimRM = sup{i | Fi 6= 0} .

Proof. If M is acyclic, then one can take F = 0, so assume that M is not acyclic.

Let L
'−−−→M be a semi-projective resolution. Theorem (5.1) yields a pure acyclic

pure subcomplex P of L such that the quotient F = L/P is pure-minimal. As P
is semi-flat, it follows from [7, prop. 6.2] that F is semi-flat as well. There are now
quasi-isomorphisms

M
'←−−− L '−−−→ F ,

so M and F are isomorphic in the derived category.
Let F be a pure-minimal semi-flat R-complex isomorphic to M in the derived

category. By [1, thm. 2.4.F] one has flat dimRM 6 sup{i | Fi 6= 0}, and equality
holds trivially if flat dimRM = ∞. If M has finite flat dimension n, then F⊆n =
0→ Cn(F )→ Fn−1 → · · · is a semi-flat R-complex isomorphic to M in the derived
category; see [1, thm. 2.4.F]. Set K = Ker(F → F⊆n) and consider the exact
sequence

0 −→ K −→ F −→ F⊆n −→ 0 .

It is degreewise pure as F⊆n is a complex of flat modules. The morphism F −→ F⊆n
is a pure quasi-isomorphism, see Example (2.3), so it follows from Proposition (2.5)
that K is pure acyclic. Since F is pure-minimal, Corollary (3.11) yields K = 0.
Hence one has F = F⊆n and so flat dimRM = n = sup{i | Fi 6= 0}. �

Minimal semi-projective resolutions are only known to exist for all R-complexes
if R is a left perfect ring. We close this section with a characterization of such rings
in terms of existence of pure-minimal semi-projective resolutions.

(5.7) Theorem. The following conditions on R are equivalent.

(i) R is left perfect.

(ii) Every semi-flat R-complex is semi-projective.

(iii) Every R-complex has a pure-minimal semi-projective resolution.

Proof. Every flat module over a perfect ring is projective, and a semi-flat complex
of projective modules is semi-projective; see [7, thm. 7.8]. Thus (i) implies (ii).
By Theorem (5.6) every R-complex M has a pure-minimal semi-flat replacement
F . Assuming (ii) the complex F is semi-projective, and it follows from [1, 1.4.P]
that there is a quasi-isomorphism F → M . Thus (ii) implies (iii). To finish
the proof, let F be a flat R-module with pure-minimal semi-projective resolution

π : P
'−−−→ F . As H(π) : H(P )→ H(F ) = F is an isomorphism, π is surjective, and

it follows from (1.2) that K = Kerπ is a degreewise pure subcomplex of P . Since P
and F are semi-flat complexes, π is a pure quasi-isomorphism, see Example (2.3).
From Proposition (2.5) it now follows that K is pure acyclic, whence K = 0. That
is, F ∼= P is a projective R-module. �

Appendix. Sufficient conditions for acyclicity

We collect a few technical results that are useful for proving acyclicity of Hom and
tensor product complexes. The results complement and improve those in [6, sec. 2];
the proofs extend and dualize an argument by Emmanouil [10].
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(A.1) Proposition. Let M and N be R-complexes. The complex HomR(M,N) is
acyclic if the following conditions are satisfied.

(a) HomR(Mi, N) is acyclic for every i ∈ Z, and

(b) HomR(Ci(M), N) is acyclic for every i� 0.

Proof. Emmanouil’s argument for [10, lem. 2.6] can be adapted to apply; see also
the argument for the dual result Proposition (A.3) below. �

(A.2) Corollary. Let L be an R◦-complex and M be an R-complex. The complex
L⊗RM is acyclic if the next conditions are satisfied.

(a) L⊗RMi is acyclic for every i ∈ Z, and

(b) L⊗R Ci(M) is acyclic for every i� 0.

Proof. Recall that the complex L⊗RM is acyclic if and only if the dual complex
HomZ(L⊗RM,Q/Z) is acyclic. The result now follows from Proposition (A.1) by
way of Hom–tensor adjunction. �

(A.3) Proposition. Let M and N be R-complexes. The complex HomR(M,N) is
acyclic if the following conditions are satisfied.

(a) HomR(M,Ni) is acyclic for every i ∈ Z, and

(b) HomR(M,Zi(N)) is acyclic for every i� 0.

Proof. It is well-known, for example from [6, lem. 2.5], that condition (a) implies
that the complex HomR(M,N<m) is acyclic for every m. From an application of
HomR(M,−) to the degreewise split exact sequence 0→ N<m → N → N>m → 0 it
follows that it is sufficient to prove that HomR(M,N>m) is acyclic for some integer
m. Thus, without loss of generality assume that Ni = 0 holds for i � 0 and that
HomR(M,Zi(N)) is acyclic for every i ∈ Z.

A homomorphism M → N is a cycle in HomR(M,N) if and only if it is a chain
map and a boundary if and only if it is null-homotopic. Let ϕ : M → N be a chain
map; after shifting and reindexing we may assume that ϕ has degree zero. The goal
is to construct a homotopy from ϕ to 0, i.e. a family of R-module homomorphisms
σi : Mi → Ni+1 with ϕi = ∂Ni+1σi + σi−1∂

M
i . Evidently σi has to be zero for i� 0;

this provides the basis for an induction argument. Fix n and assume that the
desired homomorphisms σi have been constructed for i 6 n − 2; assume further
that a homomorphism τn−1 : Mn−1 → Nn with ϕn−1 = ∂Nn τn−1 + σn−2∂

M
n−1 has

been constructed. The map τn−1 may not have all the properties required of σn−1,
but in the induction step it is modified to yield the desired σn−1. For i � 0 one
takes τi = 0. The next diagram depicts the data from the induction hypothesis.

· · · // Mn+1
//

ϕn+1

��

Mn
//

ϕn

��

Mn−1
//

ϕn−1

��
τn−1

{{

Mn−2
//

ϕn−2

��
σn−2

zz

Mn−3
//

ϕn−3

��
σn−3

zz

· · ·

· · · // Nn+1
// Nn // Nn−1

// Nn−2
// Nn−3

// · · ·

In the induction step we need to construct homomorphisms

(1) τn : Mn −→ Nn+1 and υn−1 : Mn−1 −→ Nn

such that σn−1 = τn−1 + υn−1 satisfies

(2) ϕn = ∂Nn+1τn + σn−1∂
M
n and ϕn−1 = ∂Nn σn−1 + σn−2∂

M
n−1 .
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In the next computation, the first equality holds as ϕ is a chain map, and the second
follows from the assumption on τn−1,

∂Nn (ϕn − τn−1∂
M
n ) = (ϕn−1 − ∂Nn τn−1)∂Mn = σn−2∂

M
n−1∂

M
n = 0 .

This shows that ϕn − τn−1∂
M
n corestricts to a homomorphism Mn → Zn(N). It is

elementary to verify that the diagram

· · · // Mn+3
//

��

Mn+2
//

ϕn+1∂
M
n+2

��

Mn+1
//

ϕn+1

��

Mn
//

ϕn−τn−1∂
M
n

��

Mn−1
//

��

· · ·

0 // Zn+1(N) // // Nn+1
// Zn(N) // 0

is commutative; that is, the vertical maps form a chain map ϕ′ : M → N ′. By
the assumptions and [6, lem. 2.5] the complex HomR(M,N ′) is acyclic, so ϕ′ is
null-homotopic. In particular, there exist homomorphisms τn and υn−1 as in (1)
with

ϕn − τn−1∂
M
n = ∂Nn+1τn + υn−1∂

M
n .

It is now straightforward to verify that the identities in (2) hold. �

(A.4) Corollary. Let L be an R◦-complex and M be an R-complex. The complex
L⊗RM is acyclic if the next conditions are satisfied.

(a) Li ⊗RM is acyclic for every i ∈ Z, and

(b) Bi(L)⊗RM is acyclic for every i� 0.

Proof. As in the proof of Corollary (A.2) it suffices to show that the complex

HomZ(L⊗RM,Q/Z) ∼= HomR(M,HomZ(L,Q/Z))

is acyclic. The cycles of HomZ(L,Q/Z) have the form

Zi(HomZ(L,Q/Z)) = HomZ(B−i−1(L),Q/Z) .

Now apply Proposition (A.3). �
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