MATH 9099-001 HOMEWORK DUE 12 MARCH

- (1) Exercise 4.4.6
- (2) Consider ideal

$$I = \langle x^2 + y^2 + z^2 - 4, x^2 + 2y^2 - 5, xz - 1 \rangle \subset k[x, y, z]$$

- (a) Find the elimination ideals $_1I$ and $_2I$.
- (b) Find all solutions to the system

$$x^{2} + y^{2} + z^{2} = 4$$
$$x^{2} + 2y^{2} = 5$$
$$xz = 1$$

(3) Consider the system of equations

$$x^2 + 2y^2 = 3$$
$$x^2 + xy + y^2 = 3$$

- (a) Let I be the corresponding ideal in k[x,y] and compute $k[x] \cap I$ and $k[y] \cap I$.
- (b) Find all solutions to the system.
- (4) Consider the ideal,

$$I = \langle x^2 + y^2 + z^2 + 2, 3x^2 + 4y^2 + 4z^2 + 5 \rangle \subset k[x, y, z]$$

- (a) Find the elimination ideal $_{1}I.$
- (b) Compare V(I) and $V({}_{1}I)$ for $k={\bf R}$ and explain.

You may use Macaulay 2 to solve problems (2)–(4); if you do, the relevant code is due together with your solutions.