MATH 5399-001 HOMEWORK DUE 14 MAR

Before 5 pm on 14 March turn in your handwritten or (much preferred) T_{EX} 'ed solutions to the following problems.

- (1) Rewrite each of the following polynomials, ordering the terms using the lex order, the grlex order, and the grevlex order.
 - (a) $f(x, y, z) = 2x + 3y + z + x^2 z^2 + x^3 y^4$.
 - (b) $f(x, y, z) = 2x^2y^9 3x^5yz^4 + xyz^3 xy^4$.
- (2) In \mathbb{N} with the usual ordering, there are finitely many numbers between any two given numbers. Is this necessarily true for a monomial order on \mathbb{N}^n ?
- (3) Let $A = [a_{ij}]$ be an $m \times n$ matrix with real entries on row echelon form. Let $J \subset \mathbb{R}[x_1, \ldots, x_n]$ be the ideal generated by the linear forms $\sum_{j=1}^n a_{ij}x_j$ for $1 \leq i \leq m$. Show that these generators form a Grobner basis for J with respect to a suitable monomial order.

Before Midnight on 14 March send me a Macaulay 2 file (extension m2) with the commands to solve the following problems. Please make **restart** the first command in your file.

(1) Modify the function from the previous homework to take a monomial order as a third arguemnt and list the monomials in that order.