MATH 3360 HOMEWORK ASSIGNMENT 6

DUE ON FRIDAY 6 MARCH 2020

- (1) For each of the following product groups G determine the largest possible order of an element in G and give an example of an element $g \in G$ of maximal order.
 - (a) $G = \mathbb{Z}_3 \times \mathbb{Z}_7$.
 - (b) $G = \mathbb{Z}_6 \times \mathbb{Z}_{10}.$ (c) $G = \mathbb{Z}_3 \times S_4.$
- (2) Let G be a group and Z the center of G. Show that if the quotient group G/Z is cyclic, then G is abelian.
- (3) Write \mathbb{Z}_{30} as a direct sum of subgroups in two different ways.
- (4) Find all possible group homomorphisms $\mathbb{Z}_6 \to \mathbb{Z}_8$.
- (5) Let $M_2(\mathbb{Z})$ be the set of 2×2 matrices with entries in \mathbb{Z} and let I_2 denote the 2×2 identity matrix. Show that the matrices $A \in M_2(\mathbb{Z})$ that satisfy $A^2 = I_2$ form a group that is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.