MATH 3310 HOMEWORK ASSIGNMENT 4

DUE ON FRIDAY 15 FEBRUARY 2019

- (1) Construct open sentences p(x) and q(x) over the domain $S = \mathcal{P}(\{\Delta, *\})$ such that the all of the following hold:
 - For some $x \in S$ both statements p(x) and q(x) are true
 - For some $x \in S$ both statements p(x) and q(x) are false.
 - For some $x \in S$ the statement p(x) is true and q(x) is false.
 - For some $x \in S$ the statement p(x) is false and q(x) is true.
- (2) Consider the sets

 $X = \left\{ x \in \mathbb{R} \mid |x| = 2 \right\} \quad \text{and} \quad Y = \left\{ y \in \mathbb{R} \mid |y| \leqslant 4 \right\}.$ Draw the subset $(X \times Y) \cup (Y \times X)$ of $\mathbb{R} \times \mathbb{R}$.

(3) Given the sets

 $A = \{1, 2, 4, 7, 11\}$ and $B = \{1, 3, 4, 9\}$

determine the truth value of the following statements: (a) $(|A| = 5) \land (|B| = 4)$. (b) $(|A - B| = |A \cap B|) \lor (|A \cup B| = 9)$. (c) $(A \subseteq B) \implies (A \cap B = \emptyset)$.

(4) Construct a truth table to decide if the statement

$$(p \implies q) \land \sim q \implies \sim p$$

is a tautology.

(5) Set $S = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ and consider the open sentences

p(x): x is prime, $x \in S$ and q(x): $2^x - 1$ is prime, $x \in S$.

- (a) Determine all values of the variable $x \in S$ for which the statement $p(x) \implies q(x)$ is true.
- (b) Determine all values of the variable $x \in S$ for which the statement $q(x) \implies p(x)$ is true.
- (c) Determine all values of the variable $x \in S$ for which the statement $p(x) \iff q(x)$ is true.