MATH 3310 HOMEWORK ASSIGNMENT 2

DUE ON FRIDAY 1 FEBRUARY 2019

(1) Consider the sets

$$U = \{ x \in \mathbb{R} \mid |x - 2| < 5 \},\$$

$$V = \{ x \in \mathbb{R} \mid |x + 1| \le 3 \},\$$
 and

$$W = \{ x \in \mathbb{R} \mid |x| > 2 \}.$$

Use the interval notation to express the following sets:

- (a) U. (b) V. (c) W. (d) $U \cap V$.
- (e) $V \cup W$.
- (f) U W.
- (2) For every real number x set

 $A_x = \{x^2\}, \quad B_x = (-\infty, x), \text{ and } C_x = [x - 1, x + 1].$

- For $X = \{1, 3, 5, 7\}$ determine each of the following sets.
- (a) $\bigcap_{x \in X} A_x$ and $\bigcup_{x \in X} A_x$. (b) $\bigcap_{x \in X} B_x$ and $\bigcup_{x \in X} B_x$. (c) $\bigcap_{x \in X} C_x$ and $\bigcup_{x \in X} C_x$.
- (3) Determine the set A_n in each of the following collections:
 - (a) $\{A_n\}_{n \in \mathbb{N}} = \{[0,1], [0,2], [0,3], \ldots\}.$
 - (b) $\{A_n\}_{n\in\mathbb{N}} = \{[1,3), [1,2+\frac{1}{2}), [1,2+\frac{1}{3}), \ldots\}.$ (c) $\{A_n\}_{n\in\mathbb{N}} = \{(-\frac{2}{3},3), (-\frac{5}{3},6), (-\frac{8}{3},9), \ldots\}.$
- (4) Consider the set $A = \{a, b, c, d, e, f, g\}$. For each of the following collections of subsets of A decide if it is a partition of A, and if it is not explain why?
 - (a) $\{\{a, e\}, \{b, c, d, f, g\}\}$.
 - (b) $\{\{\}, \{a, e, f\}, \{b, c, d, g\}\}$.
 - (c) $\{\{a, g, b\}, \{e, f\}, \{b, c, d\}\}.$
 - (d) $\{\{a,b\},\{c,d\},\{f,g\}\}.$
 - (e) $\{\{a, e\}, \{b, d\}, \{f, g, c\}\}$.
 - (f) $\{A, \{a, b, c, d, e, f, g\}\}$.
- (5) Consider the set $A = \{a, b, c, d, e, f, g, h, i, j, k\}$ and give an example of a partition \mathcal{S} of A that satisfies
 - $|\mathcal{S}| = 5.$
 - $|X| \neq 3$ for all $X \in \mathcal{S}$.
 - There is a subset \mathcal{T} of \mathcal{S} with $|\mathcal{T}| = 4$ and $|\bigcup_{X \in \mathcal{T}} X| = 9$.