MATH 3310 Quiz 2 FALL 2017 NAME: Key

© Lars Winther Christensen Department of Math and Stat Texas Tech University

- 1. Each of the following arguments contains an error. Mark it and use the blank line to explain what the problem is.
 - (a) Let x and y be integers. If x = y, then one has $xy = y^2$ and hence $x^2 xy = x^2 y^2$. This may be rewritten as x(x y) = (x + y)(x y), and cancellation of common factors yields x = x + y. Thus, for x = 1 = y one gets 1 = 2.

Cancellation only valid for x + y as div by o not def.

(b) For every $\theta \in [0, 2\pi)$ the Pythagorean Theorem yields $\cos^2 \theta + \sin^2 \theta = 1$ and hence $\cos \theta = \sqrt{1 - \sin^2 \theta}$. Evaluating this expression at $\theta = \pi$ one gets $-1 = \sqrt{1 - 0} = 1$.

 $\sqrt{\cos^2\theta} = |\cos\theta|$

(c) If a is even and b is odd, then a+b-1 is divisible by 4. Indeed, one has $\underline{a=2k}$ and $\underline{b=2k+1}$, so a+b-1=2k+(2k+1)-1=4k.

Argunent only valid for L = a+1

(d) Let p_1, p_2, \ldots, p_n be primes. Since $P = p_1 p_2 \cdots p_n + 1$ is not divisible by any of the primes p_1, p_2, \ldots, p_n it must itself be prime, and there are thus infinitely many primes.

Could be divisible by a prine 7 = p; tor i=1,-,n.
3.5+1 = 16 div. by 2.

- 2. For each of the following arguments, decide what is being proved.
 - (a) Let n be even and write n = 2k. One then has

$$n^2 - n = (2k)^2 - 2k = 2(2k^2 - k),$$

and as $2k^2 - k$ is an integer, $n^2 - n$ is even.

- (i) If $n^2 n$ is odd, then so is n.
- ii. If n is odd, then so is $n^2 n$.
- iii. For every integer n, the number $n^2 n$ is even.
- (iv) If n is even, then $n^2 n$ is even.
- (b) Set n = 2k + 1. One then has

$$n(n+1) = (2k+1)((2k+1)+1) = (2k+1)(2k+2) = 2(2k+1)(k+1),$$

and as (2k+1)(k+1) is an integer, n(n+1) is even.

- i. For every integer n, the number n(n+1) is even.
- ii. If n(n+1) is odd, then so is n.
- (iii) If n is odd, then n(n+1) is even.
- iv. If n is even, then n(n+1) is even.
- (c) The numbers 2 and 11 are prime, but 2(11) 1 = 22 1 = 21 = 3(7) is not prime.
 - i. For odd primes p and q, the number pq 1 is not a prime.
 - ii. Nothing
 - (iii) It is not true that pq 1 is prime for all primes p and q.
 - (iv.) There exist primes p and q, such that pq 1 is not a prime.
- (d) Let α be the repeated decimal $0.\overline{99}$. One has $10\alpha = 9.\overline{99}$ and, therefore, $9\alpha = 10\alpha \alpha = 9$. That is, $\alpha = 1$.
 - i. Nothing
 - (ii) The repeated decimal $0.\overline{99}$ is the number 1.
 - (iii) Not every number has a unique decimal representation.
 - (iv.) One has $1.\overline{00} = 0.\overline{99}$.