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1. Each of the following arguments contains an error. Mark it and use the blank line to explain
what the problem is.

-(a) Let z and y be integers. If z = y, then one has zy = y? and hence 2 — zy = 22 — y2.
This may be rewritten as z(z — y) = (z +v)(z — y), and cancellation of common factors
yields z = z + y. Thus, for x =1 = y one gets 1 = 2.
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(b) For every 6 € [0,2m) the Pythagorean Theorem yields cos®6 + sin?6 = 1 and hence
cosf = /1 — sin? §. Evaluating this expression at § = 7 one gets —1 =+/1-0=1.
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(c) If a is even and b is odd, then a + b — 1 is divisible by 4. Indeed, one has a = 2k and
=2k+1,s0a+b—1=2k+ (2k+1)—1=4k.
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(d) Let p1,ps,...,p, be primes. Since P = pypy - - p,+1 is not divisible by any of the primes
P1,D2, - - -, Ppn it must itself be prime, and there are thus infinitely many primes.
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2. For each of the following arguments, decide what is being proved.

(a) Let n be even and write n = 2k. One then has
n? —n = (2k)? — 2k = 2(2k* — k),

and as 2k? — k is an integer, n? — n is even.
@ If n2 — n is odd, then so is n.
ii. If n is odd, then so is n? — n.
iii. For every integer n, the number n? — n is even.

iv) If n is even, then n? — n is even.

(b) Set n =2k + 1. One then has

n(n+1) = (2k+1)((2k+1) +1) = 2k +1)(2k +2) = 202k + 1)(k +1),

and as (2k + 1)(k + 1) is an integer, n(n + 1) is even.
i. For every integer n, the number n(n + 1) is even.
ii. If n(n+ 1) is odd, then so is n.

iii,) If n is odd, then n(n + 1) is even.

iv. If n is even, then n(n + 1) is even.

(c) The numbers 2 and 11 are prime, but 2(11) — 1 = 22 — 1 = 21 = 3(7) is not prime.
i. For odd primes p and ¢, the number pg — 1 is not a prime.
ii. Nothing
@ It is not true that pg — 1 is prime for all primes p and g.
iv.,) There exist primes p and ¢, such that pg — 1 is not a prime.

(d) Let o be the repeated decimal 0.99. One has 10c: = 9.99 and, therefore, 9a = 10a—a = 9.
That is, o = 1.
i. Nothing
(\nj The repeated decimal 0.99 is‘ the number 1.
(iii) Not every number has a unique decimal representation.
@ One has 1.00 = 0.99.




